organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-hy­droxy­pyridinium) sulfate monohydrate

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 14 November 2009; accepted 15 November 2009; online 21 November 2009)

In the crystal structure of the title salt, 2C5H6NO+·SO42−·H2O, one planar (r.m.s. deviation = 0.01 Å) cation is stacked approximately over the other [dihedral angle between planes = 8.6 (1)°]. The pyridinium and hydr­oxy H atoms are hydrogen-bond donor atoms to the O atoms of the sulfate anion; the cations, anions and water mol­ecules are consolidated into a three-dimensional network through O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For the crystal structures of 4-hydroxy­pyridinium salts, see: Fukunaga et al. (2004[Fukunaga, T., Kashino, S. & Ishida, H. (2004). Acta Cryst. C60, o718-o722.]); Gao et al. (2004[Gao, S., Lu, Z.-Z., Huo, L.-H., Zain, S. M. & Ng, S. W. (2004). Acta Cryst. E60, o2195-o2196.]); Kiviniemi et al. (2001[Kiviniemi, S., Nissinen, M., Kolli, T., Jalonen, J., Rissanen, K. & Pursiainen, J. (2001). J. Inclusion Phenom. Macrocycl. Chem. 40, 153-159.]); Wang et al. (2006[Wang, Y., Tang, L. & Wang, Y. (2006). Chem. Lett. pp. 548-549.]).

[Scheme 1]

Experimental

Crystal data
  • 2C5H6NO+·SO42−·H2O

  • Mr = 306.29

  • Monoclinic, P 21 /n

  • a = 7.1404 (2) Å

  • b = 19.9797 (5) Å

  • c = 9.5148 (2) Å

  • β = 102.557 (1)°

  • V = 1324.94 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.25 × 0.18 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.934, Tmax = 0.957

  • 12868 measured reflections

  • 3032 independent reflections

  • 2693 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.103

  • S = 1.05

  • 3032 reflections

  • 197 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1w 0.85 (1) 1.71 (1) 2.552 (2) 171 (2)
O6—H6⋯O2 0.86 (1) 1.68 (1) 2.539 (1) 177 (2)
O1w—H11⋯O1 0.84 (1) 1.93 (1) 2.765 (2) 170 (3)
O1w—H12⋯O3i 0.85 (1) 1.99 (2) 2.783 (2) 157 (3)
N1—H1n⋯O4ii 0.86 1.95 2.766 (2) 158
N2—H2n⋯O3iii 0.86 1.87 2.705 (2) 163
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structures of 4-hydroxypyridinium salts, see: Fukunaga et al. (2004); Gao et al. (2004); Kiviniemi et al. (2001); Wang et al. (2006).

Experimental top

Copper nitrate (0.37 g, 2 mmol) and 4-hydroxypyridine-3-sulfonic acid (0.35 g, 2 mmol) were dissolved in hot water. The pH value was adjusted to 6 with 0.1 M sodium hydroxide. The solution was allowed to evaporate slowly at room temperature; colorless prismatic crystals were isolated from the blue-green solution after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H = 0.85±0.01 Å; their temperature factors were refined. The pyridinium H-atoms could be found in a difference Fourier map; however, their refinement led to somewhat unsatisfactory angles. As such, their positions were fixed and their temperatures tied to those of the parent atoms.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of 2[C5H6NO][SO4].H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Bis(4-hydroxypyridinium) sulfate monohydrate top
Crystal data top
2C5H6NO+·SO42·H2OF(000) = 640
Mr = 306.29Dx = 1.535 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11052 reflections
a = 7.1404 (2) Åθ = 3.0–27.4°
b = 19.9797 (5) ŵ = 0.28 mm1
c = 9.5148 (2) ÅT = 293 K
β = 102.557 (1)°Prism, colorless
V = 1324.94 (6) Å30.25 × 0.18 × 0.16 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3032 independent reflections
Radiation source: fine-focus sealed tube2693 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scanθmax = 27.4°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.934, Tmax = 0.957k = 2525
12868 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0703P)2 + 0.2237P]
where P = (Fo2 + 2Fc2)/3
3032 reflections(Δ/σ)max = 0.001
197 parametersΔρmax = 0.42 e Å3
6 restraintsΔρmin = 0.43 e Å3
Crystal data top
2C5H6NO+·SO42·H2OV = 1324.94 (6) Å3
Mr = 306.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1404 (2) ŵ = 0.28 mm1
b = 19.9797 (5) ÅT = 293 K
c = 9.5148 (2) Å0.25 × 0.18 × 0.16 mm
β = 102.557 (1)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3032 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2693 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.957Rint = 0.020
12868 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0346 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.42 e Å3
3032 reflectionsΔρmin = 0.43 e Å3
197 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.61983 (4)0.073598 (14)0.24878 (3)0.02657 (12)
O10.43221 (15)0.06385 (5)0.15168 (11)0.0397 (3)
O20.64861 (17)0.14531 (5)0.28579 (12)0.0436 (3)
O30.77259 (15)0.05185 (5)0.17503 (12)0.0388 (2)
O40.63392 (17)0.03440 (5)0.38109 (10)0.0417 (3)
O50.20084 (17)0.22956 (5)0.36294 (12)0.0425 (3)
O60.47857 (16)0.23613 (5)0.11899 (11)0.0373 (2)
O1W0.1093 (2)0.12590 (7)0.2064 (2)0.0645 (4)
N10.04132 (18)0.41179 (6)0.18890 (13)0.0356 (3)
H1N0.00880.45070.15320.043*
N20.62608 (18)0.42205 (6)0.27653 (15)0.0379 (3)
H2N0.65560.46170.30910.045*
C10.0033 (2)0.35736 (7)0.10572 (15)0.0355 (3)
H10.06860.36230.01050.043*
C20.0458 (2)0.29479 (7)0.15884 (14)0.0321 (3)
H20.01350.25730.10060.039*
C30.14570 (19)0.28776 (7)0.30255 (14)0.0304 (3)
C40.1913 (2)0.34564 (7)0.38645 (14)0.0340 (3)
H40.25850.34240.48160.041*
C50.1361 (2)0.40666 (7)0.32736 (16)0.0358 (3)
H5A0.16430.44510.38310.043*
C60.5135 (2)0.41430 (7)0.14439 (17)0.0382 (3)
H6A0.46880.45190.08970.046*
C70.4642 (2)0.35222 (7)0.08949 (14)0.0329 (3)
H70.38700.34740.00220.039*
C80.53127 (18)0.29565 (6)0.17300 (13)0.0271 (3)
C90.64828 (19)0.30528 (7)0.31067 (14)0.0304 (3)
H90.69460.26880.36850.036*
C100.6930 (2)0.36886 (8)0.35840 (15)0.0350 (3)
H100.77120.37550.44910.042*
H50.158 (3)0.1970 (8)0.308 (2)0.060 (6)*
H60.540 (3)0.2060 (8)0.1754 (18)0.053 (5)*
H110.204 (3)0.1028 (11)0.195 (3)0.076 (7)*
H120.021 (3)0.1002 (12)0.221 (3)0.093 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03062 (19)0.01762 (17)0.02844 (18)0.00117 (10)0.00024 (13)0.00033 (10)
O10.0326 (5)0.0376 (5)0.0431 (6)0.0009 (4)0.0045 (4)0.0053 (4)
O20.0599 (7)0.0181 (5)0.0440 (6)0.0024 (4)0.0081 (5)0.0031 (4)
O30.0371 (5)0.0294 (5)0.0513 (6)0.0046 (4)0.0123 (5)0.0042 (4)
O40.0610 (7)0.0301 (5)0.0308 (5)0.0052 (5)0.0030 (4)0.0034 (4)
O50.0543 (7)0.0295 (5)0.0406 (6)0.0081 (5)0.0032 (5)0.0031 (4)
O60.0479 (6)0.0239 (5)0.0354 (5)0.0011 (4)0.0010 (4)0.0020 (4)
O1W0.0465 (7)0.0422 (7)0.1120 (11)0.0086 (6)0.0328 (8)0.0245 (7)
N10.0367 (6)0.0292 (6)0.0408 (6)0.0047 (5)0.0086 (5)0.0058 (5)
N20.0384 (7)0.0271 (6)0.0497 (7)0.0089 (5)0.0132 (5)0.0081 (5)
C10.0324 (7)0.0414 (8)0.0317 (6)0.0018 (6)0.0045 (5)0.0033 (5)
C20.0316 (7)0.0323 (6)0.0319 (6)0.0015 (5)0.0056 (5)0.0045 (5)
C30.0282 (6)0.0295 (6)0.0341 (6)0.0034 (5)0.0085 (5)0.0016 (5)
C40.0347 (7)0.0348 (7)0.0309 (6)0.0027 (5)0.0034 (5)0.0028 (5)
C50.0369 (7)0.0305 (6)0.0396 (7)0.0012 (6)0.0077 (6)0.0039 (6)
C60.0403 (8)0.0264 (6)0.0481 (8)0.0004 (6)0.0099 (6)0.0078 (6)
C70.0333 (7)0.0308 (6)0.0321 (6)0.0001 (5)0.0017 (5)0.0050 (5)
C80.0257 (6)0.0246 (6)0.0309 (6)0.0005 (4)0.0060 (5)0.0000 (5)
C90.0285 (6)0.0323 (6)0.0294 (6)0.0011 (5)0.0042 (5)0.0022 (5)
C100.0288 (6)0.0408 (7)0.0350 (7)0.0065 (5)0.0055 (5)0.0072 (6)
Geometric parameters (Å, º) top
S1—O41.4674 (10)C1—C21.365 (2)
S1—O11.4656 (10)C1—H10.9300
S1—O21.4790 (10)C2—C31.4051 (18)
S1—O31.4845 (10)C2—H20.9300
O5—C31.3187 (16)C3—C41.4026 (19)
O5—H50.849 (9)C4—C51.364 (2)
O6—C81.3175 (15)C4—H40.9300
O6—H60.861 (9)C5—H5A0.9300
O1W—H110.844 (10)C6—C71.362 (2)
O1W—H120.847 (10)C6—H6A0.9300
N1—C11.3419 (19)C7—C81.4046 (18)
N1—C51.3479 (19)C7—H70.9300
N1—H1N0.8600C8—C91.4054 (18)
N2—C101.343 (2)C9—C101.3633 (19)
N2—C61.346 (2)C9—H90.9300
N2—H2N0.8600C10—H100.9300
O4—S1—O1110.65 (7)C4—C3—C2118.51 (12)
O4—S1—O2109.43 (6)C5—C4—C3119.46 (12)
O1—S1—O2109.85 (6)C5—C4—H4120.3
O4—S1—O3109.21 (6)C3—C4—H4120.3
O1—S1—O3109.15 (6)N1—C5—C4120.62 (13)
O2—S1—O3108.53 (7)N1—C5—H5A119.7
C3—O5—H5112.0 (15)C4—C5—H5A119.7
C8—O6—H6109.0 (14)N2—C6—C7121.01 (13)
H11—O1W—H12109 (3)N2—C6—H6A119.5
C1—N1—C5121.28 (12)C7—C6—H6A119.5
C1—N1—H1N119.4C6—C7—C8119.20 (13)
C5—N1—H1N119.4C6—C7—H7120.4
C10—N2—C6121.06 (12)C8—C7—H7120.4
C10—N2—H2N119.5O6—C8—C7118.19 (12)
C6—N2—H2N119.5O6—C8—C9123.28 (11)
N1—C1—C2120.98 (13)C7—C8—C9118.52 (12)
N1—C1—H1119.5C10—C9—C8119.13 (12)
C2—C1—H1119.5C10—C9—H9120.4
C1—C2—C3119.14 (12)C8—C9—H9120.4
C1—C2—H2120.4N2—C10—C9121.07 (12)
C3—C2—H2120.4N2—C10—H10119.5
O5—C3—C4117.95 (12)C9—C10—H10119.5
O5—C3—C2123.54 (12)
C5—N1—C1—C20.1 (2)C10—N2—C6—C70.1 (2)
N1—C1—C2—C30.5 (2)N2—C6—C7—C80.4 (2)
C1—C2—C3—O5179.30 (13)C6—C7—C8—O6178.62 (13)
C1—C2—C3—C40.1 (2)C6—C7—C8—C90.3 (2)
O5—C3—C4—C5179.92 (13)O6—C8—C9—C10179.00 (12)
C2—C3—C4—C50.7 (2)C7—C8—C9—C100.1 (2)
C1—N1—C5—C40.7 (2)C6—N2—C10—C90.4 (2)
C3—C4—C5—N11.1 (2)C8—C9—C10—N20.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1w0.85 (1)1.71 (1)2.552 (2)171 (2)
O6—H6···O20.86 (1)1.68 (1)2.539 (1)177 (2)
O1w—H11···O10.84 (1)1.93 (1)2.765 (2)170 (3)
O1w—H12···O3i0.85 (1)1.99 (2)2.783 (2)157 (3)
N1—H1n···O4ii0.861.952.766 (2)158
N2—H2n···O3iii0.861.872.705 (2)163
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula2C5H6NO+·SO42·H2O
Mr306.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.1404 (2), 19.9797 (5), 9.5148 (2)
β (°) 102.557 (1)
V3)1324.94 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.25 × 0.18 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.934, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
12868, 3032, 2693
Rint0.020
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.103, 1.05
No. of reflections3032
No. of parameters197
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.43

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1w0.85 (1)1.71 (1)2.552 (2)171 (2)
O6—H6···O20.86 (1)1.68 (1)2.539 (1)177 (2)
O1w—H11···O10.84 (1)1.93 (1)2.765 (2)170 (3)
O1w—H12···O3i0.85 (1)1.99 (2)2.783 (2)157 (3)
N1—H1n···O4ii0.861.952.766 (2)158
N2—H2n···O3iii0.861.872.705 (2)163
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (No. 1054 G036), Heilongjiang University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFukunaga, T., Kashino, S. & Ishida, H. (2004). Acta Cryst. C60, o718–o722.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGao, S., Lu, Z.-Z., Huo, L.-H., Zain, S. M. & Ng, S. W. (2004). Acta Cryst. E60, o2195–o2196.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKiviniemi, S., Nissinen, M., Kolli, T., Jalonen, J., Rissanen, K. & Pursiainen, J. (2001). J. Inclusion Phenom. Macrocycl. Chem. 40, 153–159.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Tang, L. & Wang, Y. (2006). Chem. Lett. pp. 548–549.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds