organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(1-Naphth­yl)-N-phenyl­oxirane-2-carboxamide

aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: kangtairan@yahoo.com.cn

(Received 16 November 2009; accepted 16 November 2009; online 21 November 2009)

In the title compound, C19H15NO2, the mol­ecule adopts a syn configuration with the naphthalene and N-phenyl­formamide units located on the same side of the ep­oxy ring. The ep­oxy ring makes dihedral angles of 58.73 (9) and 65.18 (9)°, respectively, with the naphthalene ring system and the benzene ring. Inter­molecular N—H⋯O and C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For background to the use of epoxide-containing compounds as building blocks in the synthesis of biologically active compounds, see: Porter & Skidmore (2000[Porter, M. J. & Skidmore, J. (2000). Chem. Commun. pp. 1215-1225.]); Shing et al. (2006[Shing, T. K. M., Luk, T. & Lee, C. M. (2006). Tetrahedron, 62, 6621-6629.]); Watanabe et al. (1998[Watanabe, S., Arai, T., Sasai, H., Bougauchi, M. & Shibasaki, M. (1998). J. Org. Chem. 63, 8090-8091.]). For related structures, see: He (2009[He, L. (2009). Acta Cryst. E65, o2052.]); He & Chen (2009[He, L. & Chen, L.-M. (2009). Acta Cryst. E65, o2976.]); He et al. (2009[He, L., Qin, H.-M. & Chen, L.-M. (2009). Acta Cryst. E65, o2999.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15NO2

  • Mr = 289.32

  • Orthorhombic, P 21 21 21

  • a = 6.62890 (10) Å

  • b = 10.03500 (10) Å

  • c = 23.2033 (3) Å

  • V = 1543.51 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.65 mm−1

  • T = 290 K

  • 0.40 × 0.36 × 0.30 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.782, Tmax = 0.829

  • 13761 measured reflections

  • 1783 independent reflections

  • 1641 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.093

  • S = 1.08

  • 1783 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.08 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H4⋯O2i 0.84 (2) 2.17 (2) 2.954 (1) 155.7 (18)
C5—H5⋯O1ii 0.93 2.58 3.431 (2) 153 (1)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

α,β-Epoxides are very important building blocks for the synthesis of complex molecules, in particular, of biologically active compounds (Porter & Skidmore, 2000; Shing et al., 2006; Watanabe et al., 1998). Various effective systems have been developed over the years for the preparation of α,β-epoxides. The most common approach to access these molecules is the epoxidation of α,β-unsaturatd carbonyl compound. As a part of our interest in the synthsis of epoxides ring systems, we synthesis the title compound by using Darzens reaction. We report herein the crystal structure of the title compound.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. In the molecular, the 1-naphthyl ring with the phenyl ring adopts a cis configuration about the epoxides ring. The dihedral angle between the phenyl ring and the 1-naphthyl ring is 77.79 (4)°, O1/C8/C9 epoxide ring makes dihedral angles of 58.73 (9)° and 65.18 (9)° with the 1-naphthyl ring and phenyl ring, respectively. These values are very similar to those observed in related structures (He, 2009; He & Chen, 2009; He et al., 2009). The crystal packing is stabilized by N—H···0 and C—H···0 hydrogen bonding (Table 1).

Related literature top

For background to the use of epoxide-containing compounds as building blocks in the synthesis of biologically active compounds, see: Porter & Skidmore (2000); Shing et al. (2006); Watanabe et al. (1998). For related structures, see: He (2009); He & Chen (2009); He et al. (2009).

Experimental top

2-Chloro-N-phenylacetamide (0.085 g, 0.5 mmol) and potassium hydroxide (0.056 g, 1.0 mmol) were dissolved in chloroform (4 ml). To the solution was added 1-naphthaldehyde (0.094 g, 0.6 mmol) at 298 K, the solution was stirred for 6 h and removal of solvent under reduced pressure, the residue was purified through column chromatography. Colourless single crystals of (I) were obtained by recrystallization from an ethyl acetate solution.

Refinement top

Imine H atom was located in a difference Fourier map and refined isotropically, with restrains of N—H = 0.84±1 Å. The carbon-bound hydrogen atoms were placed in calculated positions with C—H = 0.93–0.98 Å, and refined using a riding model with Uiso(H) =1.2Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
3-(1-Naphthyl)-N-phenyloxirane-2-carboxamide top
Crystal data top
C19H15NO2F(000) = 608
Mr = 289.32Dx = 1.245 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 9381 reflections
a = 6.6289 (1) Åθ = 3.8–72.1°
b = 10.0350 (1) ŵ = 0.65 mm1
c = 23.2033 (3) ÅT = 290 K
V = 1543.51 (3) Å3Block, colorless
Z = 40.40 × 0.36 × 0.30 mm
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
1783 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1641 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 15.9149 pixels mm-1θmax = 72.3°, θmin = 3.8°
ω scansh = 68
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1212
Tmin = 0.782, Tmax = 0.829l = 2628
13761 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.0314P]
where P = (Fo2 + 2Fc2)/3
1783 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.08 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C19H15NO2V = 1543.51 (3) Å3
Mr = 289.32Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.6289 (1) ŵ = 0.65 mm1
b = 10.0350 (1) ÅT = 290 K
c = 23.2033 (3) Å0.40 × 0.36 × 0.30 mm
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
1783 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1641 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.829Rint = 0.031
13761 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.08 e Å3
1783 reflectionsΔρmin = 0.13 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.20270 (19)0.10810 (12)0.82723 (5)0.0681 (3)
O21.0096 (2)0.38001 (11)0.74225 (7)0.0738 (4)
N10.8951 (2)0.16688 (13)0.74912 (6)0.0534 (3)
H40.926 (3)0.092 (2)0.7622 (8)0.065 (5)*
C10.3564 (3)0.1625 (3)0.65510 (8)0.0820 (6)
H10.23760.15920.63390.098*
C20.4104 (3)0.0578 (2)0.68938 (9)0.0750 (5)
H20.32750.01680.69170.090*
C30.5874 (3)0.06219 (17)0.72067 (8)0.0619 (4)
H30.62240.00900.74430.074*
C40.7135 (2)0.17226 (15)0.71700 (6)0.0521 (3)
C50.6590 (3)0.27941 (19)0.68282 (8)0.0659 (4)
H50.74110.35430.68040.079*
C60.4786 (3)0.2728 (2)0.65216 (9)0.0806 (6)
H60.44020.34450.62920.097*
C71.0258 (2)0.26612 (14)0.75961 (7)0.0523 (3)
C81.2046 (2)0.23071 (15)0.79612 (7)0.0558 (4)
H81.33590.25730.78050.067*
C91.1896 (2)0.23005 (17)0.85940 (8)0.0597 (4)
H91.31350.25550.87970.072*
C100.9999 (3)0.25565 (18)0.89182 (7)0.0588 (4)
C110.8539 (3)0.1600 (2)0.89662 (8)0.0738 (5)
H110.86890.07910.87760.089*
C120.6808 (3)0.1835 (3)0.93030 (9)0.0855 (7)
H120.58190.11810.93300.103*
C130.6567 (3)0.2994 (3)0.95855 (9)0.0854 (7)
H130.54140.31270.98070.103*
C140.8028 (3)0.4013 (2)0.95534 (7)0.0718 (5)
C150.9780 (3)0.38002 (19)0.92061 (7)0.0587 (4)
C161.1212 (3)0.4825 (2)0.91701 (8)0.0690 (4)
H161.23450.47100.89390.083*
C171.0979 (4)0.5988 (3)0.94673 (10)0.0880 (6)
H171.19380.66590.94320.106*
C180.9322 (5)0.6176 (3)0.98222 (11)0.1012 (8)
H180.92050.69561.00360.121*
C190.7874 (4)0.5231 (3)0.98595 (9)0.0927 (7)
H190.67520.53831.00910.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0674 (7)0.0523 (6)0.0846 (7)0.0119 (6)0.0146 (6)0.0057 (5)
O20.0694 (7)0.0412 (6)0.1109 (10)0.0041 (6)0.0195 (7)0.0016 (6)
N10.0506 (7)0.0396 (6)0.0700 (7)0.0001 (5)0.0054 (6)0.0003 (6)
C10.0604 (10)0.1084 (17)0.0771 (11)0.0011 (11)0.0134 (9)0.0229 (12)
C20.0523 (9)0.0768 (12)0.0960 (13)0.0071 (9)0.0031 (9)0.0250 (11)
C30.0518 (8)0.0524 (8)0.0814 (10)0.0007 (7)0.0049 (7)0.0099 (8)
C40.0486 (8)0.0488 (7)0.0590 (8)0.0025 (7)0.0020 (6)0.0085 (6)
C50.0660 (10)0.0609 (9)0.0707 (9)0.0014 (8)0.0075 (8)0.0042 (8)
C60.0768 (12)0.0928 (14)0.0722 (11)0.0095 (12)0.0161 (10)0.0058 (10)
C70.0491 (8)0.0411 (7)0.0666 (8)0.0019 (6)0.0003 (7)0.0092 (6)
C80.0455 (7)0.0464 (7)0.0754 (9)0.0041 (7)0.0016 (7)0.0099 (7)
C90.0476 (8)0.0591 (8)0.0725 (9)0.0031 (7)0.0106 (7)0.0094 (7)
C100.0505 (8)0.0687 (9)0.0571 (8)0.0000 (8)0.0086 (7)0.0031 (7)
C110.0653 (10)0.0803 (12)0.0757 (10)0.0129 (10)0.0124 (9)0.0083 (10)
C120.0612 (11)0.1093 (17)0.0859 (13)0.0194 (13)0.0057 (10)0.0263 (13)
C130.0564 (11)0.131 (2)0.0693 (10)0.0054 (12)0.0082 (9)0.0238 (12)
C140.0595 (10)0.1020 (14)0.0539 (8)0.0149 (11)0.0018 (7)0.0095 (9)
C150.0531 (8)0.0723 (10)0.0505 (7)0.0054 (8)0.0034 (6)0.0030 (7)
C160.0660 (10)0.0751 (11)0.0658 (9)0.0003 (9)0.0002 (8)0.0080 (9)
C170.0988 (16)0.0799 (13)0.0853 (12)0.0038 (13)0.0017 (12)0.0181 (11)
C180.120 (2)0.1003 (17)0.0831 (13)0.0244 (18)0.0033 (14)0.0278 (13)
C190.0897 (15)0.1226 (19)0.0658 (10)0.0355 (16)0.0118 (11)0.0050 (12)
Geometric parameters (Å, º) top
O1—C81.4266 (19)C9—C101.488 (2)
O1—C91.436 (2)C9—H90.9800
O2—C71.217 (2)C10—C111.367 (3)
N1—C71.342 (2)C10—C151.423 (2)
N1—C41.417 (2)C11—C121.408 (3)
N1—H40.84 (2)C11—H110.9300
C1—C21.365 (3)C12—C131.345 (4)
C1—C61.373 (3)C12—H120.9300
C1—H10.9300C13—C141.410 (3)
C2—C31.381 (3)C13—H130.9300
C2—H20.9300C14—C191.417 (4)
C3—C41.388 (2)C14—C151.429 (2)
C3—H30.9300C15—C161.402 (3)
C4—C51.384 (2)C16—C171.364 (3)
C5—C61.393 (3)C16—H160.9300
C5—H50.9300C17—C181.386 (4)
C6—H60.9300C17—H170.9300
C7—C81.499 (2)C18—C191.352 (4)
C8—C91.472 (2)C18—H180.9300
C8—H80.9800C19—H190.9300
C8—O1—C961.87 (10)O1—C9—H9114.9
C7—N1—C4127.99 (14)C8—C9—H9114.9
C7—N1—H4116.1 (15)C10—C9—H9114.9
C4—N1—H4115.8 (15)C11—C10—C15120.32 (16)
C2—C1—C6119.65 (18)C11—C10—C9121.23 (17)
C2—C1—H1120.2C15—C10—C9118.36 (15)
C6—C1—H1120.2C10—C11—C12120.3 (2)
C1—C2—C3120.29 (19)C10—C11—H11119.8
C1—C2—H2119.9C12—C11—H11119.8
C3—C2—H2119.9C13—C12—C11120.8 (2)
C2—C3—C4120.33 (18)C13—C12—H12119.6
C2—C3—H3119.8C11—C12—H12119.6
C4—C3—H3119.8C12—C13—C14121.31 (19)
C5—C4—C3119.75 (15)C12—C13—H13119.3
C5—C4—N1123.56 (15)C14—C13—H13119.3
C3—C4—N1116.68 (14)C13—C14—C19123.3 (2)
C4—C5—C6118.67 (18)C13—C14—C15118.65 (19)
C4—C5—H5120.7C19—C14—C15118.0 (2)
C6—C5—H5120.7C16—C15—C10123.11 (16)
C1—C6—C5121.3 (2)C16—C15—C14118.30 (18)
C1—C6—H6119.4C10—C15—C14118.59 (17)
C5—C6—H6119.4C17—C16—C15121.4 (2)
O2—C7—N1125.45 (15)C17—C16—H16119.3
O2—C7—C8118.66 (14)C15—C16—H16119.3
N1—C7—C8115.89 (13)C16—C17—C18120.5 (2)
O1—C8—C959.38 (10)C16—C17—H17119.8
O1—C8—C7118.91 (13)C18—C17—H17119.8
C9—C8—C7120.76 (13)C19—C18—C17120.4 (2)
O1—C8—H8115.4C19—C18—H18119.8
C9—C8—H8115.4C17—C18—H18119.8
C7—C8—H8115.4C18—C19—C14121.4 (2)
O1—C9—C858.75 (10)C18—C19—H19119.3
O1—C9—C10117.46 (15)C14—C19—H19119.3
C8—C9—C10124.10 (14)
C6—C1—C2—C30.4 (3)O1—C9—C10—C15175.59 (13)
C1—C2—C3—C40.8 (3)C8—C9—C10—C15106.34 (18)
C2—C3—C4—C51.5 (2)C15—C10—C11—C120.3 (3)
C2—C3—C4—N1178.11 (15)C9—C10—C11—C12176.26 (16)
C7—N1—C4—C511.2 (2)C10—C11—C12—C130.5 (3)
C7—N1—C4—C3169.22 (16)C11—C12—C13—C140.2 (3)
C3—C4—C5—C60.9 (3)C12—C13—C14—C19177.7 (2)
N1—C4—C5—C6178.69 (16)C12—C13—C14—C150.8 (3)
C2—C1—C6—C51.0 (3)C11—C10—C15—C16179.42 (17)
C4—C5—C6—C10.4 (3)C9—C10—C15—C164.0 (2)
C4—N1—C7—O20.7 (3)C11—C10—C15—C141.2 (2)
C4—N1—C7—C8179.01 (13)C9—C10—C15—C14175.40 (14)
C9—O1—C8—C7110.62 (15)C13—C14—C15—C16179.15 (17)
O2—C7—C8—O1165.96 (15)C19—C14—C15—C162.3 (2)
N1—C7—C8—O113.7 (2)C13—C14—C15—C101.5 (2)
O2—C7—C8—C996.3 (2)C19—C14—C15—C10177.07 (16)
N1—C7—C8—C983.36 (18)C10—C15—C16—C17177.89 (18)
C8—O1—C9—C10115.07 (16)C14—C15—C16—C171.5 (3)
C7—C8—C9—O1107.55 (15)C15—C16—C17—C181.1 (4)
O1—C8—C9—C10103.91 (18)C16—C17—C18—C192.7 (4)
C7—C8—C9—C103.6 (2)C17—C18—C19—C141.8 (4)
O1—C9—C10—C117.8 (2)C13—C14—C19—C18179.2 (2)
C8—C9—C10—C1177.1 (2)C15—C14—C19—C180.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H4···O2i0.84 (2)2.17 (2)2.954 (1)155.7 (18)
C5—H5···O1ii0.932.583.431 (2)153 (1)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC19H15NO2
Mr289.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)290
a, b, c (Å)6.6289 (1), 10.0350 (1), 23.2033 (3)
V3)1543.51 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.65
Crystal size (mm)0.40 × 0.36 × 0.30
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.782, 0.829
No. of measured, independent and
observed [I > 2σ(I)] reflections
13761, 1783, 1641
Rint0.031
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.093, 1.08
No. of reflections1783
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.08, 0.13

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H4···O2i0.84 (2)2.17 (2)2.954 (1)155.7 (18)
C5—H5···O1ii0.932.583.431 (2)152.5 (3)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y+1/2, z+3/2.
 

Acknowledgements

The diffraction data were collected at the Centre for Testing and Analysis, Sichuan University. We are grateful for financial support from China West Normal University (No 412374).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHe, L. (2009). Acta Cryst. E65, o2052.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, L. & Chen, L.-M. (2009). Acta Cryst. E65, o2976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, L., Qin, H.-M. & Chen, L.-M. (2009). Acta Cryst. E65, o2999.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPorter, M. J. & Skidmore, J. (2000). Chem. Commun. pp. 1215–1225.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShing, T. K. M., Luk, T. & Lee, C. M. (2006). Tetrahedron, 62, 6621–6629.  Web of Science CSD CrossRef CAS Google Scholar
First citationWatanabe, S., Arai, T., Sasai, H., Bougauchi, M. & Shibasaki, M. (1998). J. Org. Chem. 63, 8090–8091.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds