metal-organic compounds
Bis[N,N-bis(2-hydroxyethyl)dithiocarbamato-κ2S,S′]copper(II)
aSchool of Basical Science, East China Jiaotong University, Nanchang 330013, People's Republic of China, and bSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: zhongyun1973@126.com
In the title compound, [Cu(C5H10NO2S2)2], the CuII cation is chelated by two bis(2-hydroxyethyl)dithiocarbamate anions with a distorted square-planar coordination geometry. Intermolecular O—H⋯O hydrogen bonding is observed between the terminal hydroxy groups in the crystal structure.
Related literature
For the different et al. (2006); Zhang et al. (2004); Jian et al. (1999); Hogarth et al. (2000). For the Cu—S bond distances in a related structure, see: Jian et al. (2003).
of Cu in copper–dithiocarbamate complexes, see: CardellExperimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1999); data reduction: SAINT program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053680904999X/xu2681sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680904999X/xu2681Isup2.hkl
NaOH(0.04 g, 1.0 mmol), NH(CH2CH2OH)2 (0.105 g, 1.0 mmol) and CS2 (0.092 g, 1.2 mmol) was stirred for 1 h in methanol (25 ml) at room temperature, to this solution, CuCl2 (0.067 g, 0.5 mmol) was added. The mixture was stirred for 2 h at room temperature and the precipitate was filtered off. Black crystals were obtained from the slow evaporation of the filtrate.
H atoms were placed in calculated positions with C—H = 0.97 and O—H = 0.82 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). The highest peak in the final difference Fourier map is 1.1 Å apart from the C1 atom.
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids for non-H atoms. |
[Cu(C5H10NO2S2)2] | F(000) = 876 |
Mr = 424.06 | Dx = 1.726 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5620 reflections |
a = 11.1088 (9) Å | θ = 2.5–28.1° |
b = 14.7047 (11) Å | µ = 1.86 mm−1 |
c = 11.3401 (9) Å | T = 298 K |
β = 118.253 (1)° | Prism, black |
V = 1631.7 (2) Å3 | 0.35 × 0.35 × 0.30 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2928 independent reflections |
Radiation source: fine-focus sealed tube | 2652 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.068 |
ϕ and ω scans | θmax = 25.3°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −13→9 |
Tmin = 0.562, Tmax = 0.605 | k = −16→17 |
8158 measured reflections | l = −7→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0446P)2 + 1.7228P] where P = (Fo2 + 2Fc2)/3 |
2928 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 1.74 e Å−3 |
0 restraints | Δρmin = −0.56 e Å−3 |
[Cu(C5H10NO2S2)2] | V = 1631.7 (2) Å3 |
Mr = 424.06 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.1088 (9) Å | µ = 1.86 mm−1 |
b = 14.7047 (11) Å | T = 298 K |
c = 11.3401 (9) Å | 0.35 × 0.35 × 0.30 mm |
β = 118.253 (1)° |
Bruker SMART CCD area-detector diffractometer | 2928 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2652 reflections with I > 2σ(I) |
Tmin = 0.562, Tmax = 0.605 | Rint = 0.068 |
8158 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.03 | Δρmax = 1.74 e Å−3 |
2928 reflections | Δρmin = −0.56 e Å−3 |
190 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.0521 (3) | −0.05853 (18) | 0.2261 (3) | 0.0192 (6) | |
C2 | −0.1504 (3) | −0.0869 (2) | 0.2496 (3) | 0.0233 (6) | |
H2A | −0.1983 | −0.1411 | 0.2531 | 0.028* | |
H2B | −0.2019 | −0.0601 | 0.1614 | 0.028* | |
C3 | −0.1424 (4) | −0.0196 (3) | 0.3548 (4) | 0.0406 (8) | |
H3A | −0.1207 | −0.0520 | 0.4371 | 0.049* | |
H3B | −0.0697 | 0.0236 | 0.3735 | 0.049* | |
C4 | 0.0381 (3) | −0.20342 (18) | 0.3257 (3) | 0.0212 (6) | |
H4A | 0.1013 | −0.2229 | 0.2942 | 0.025* | |
H4B | −0.0383 | −0.2454 | 0.2901 | 0.025* | |
C5 | 0.1091 (3) | −0.2093 (2) | 0.4765 (3) | 0.0227 (6) | |
H5A | 0.0560 | −0.1763 | 0.5100 | 0.027* | |
H5B | 0.1130 | −0.2725 | 0.5028 | 0.027* | |
C6 | 0.3436 (3) | 0.17401 (18) | 0.0766 (2) | 0.0162 (5) | |
C7 | 0.5611 (3) | 0.20374 (19) | 0.0815 (3) | 0.0190 (6) | |
H7A | 0.5985 | 0.1702 | 0.1650 | 0.023* | |
H7B | 0.6123 | 0.2600 | 0.0980 | 0.023* | |
C8 | 0.5805 (3) | 0.1480 (2) | −0.0214 (3) | 0.0255 (6) | |
H8A | 0.6740 | 0.1264 | 0.0185 | 0.031* | |
H8B | 0.5209 | 0.0953 | −0.0462 | 0.031* | |
C9 | 0.3588 (3) | 0.30637 (19) | −0.0457 (3) | 0.0206 (6) | |
H9A | 0.2618 | 0.3096 | −0.0736 | 0.025* | |
H9B | 0.3693 | 0.3001 | −0.1255 | 0.025* | |
C10 | 0.4260 (3) | 0.3936 (2) | 0.0247 (3) | 0.0307 (7) | |
H10A | 0.5215 | 0.3927 | 0.0462 | 0.037* | |
H10B | 0.3827 | 0.4445 | −0.0347 | 0.037* | |
Cu1 | 0.18494 (3) | 0.05408 (2) | 0.13092 (3) | 0.02051 (13) | |
N1 | −0.0131 (2) | −0.11176 (16) | 0.2714 (2) | 0.0194 (5) | |
N2 | 0.4167 (2) | 0.22570 (16) | 0.0394 (2) | 0.0166 (5) | |
O1 | −0.2655 (3) | 0.02700 (18) | 0.3122 (3) | 0.0447 (6) | |
H1 | −0.3242 | −0.0082 | 0.3092 | 0.067* | |
O2 | 0.2441 (2) | −0.17337 (15) | 0.5363 (2) | 0.0270 (5) | |
H2 | 0.2414 | −0.1197 | 0.5156 | 0.040* | |
O3 | 0.5511 (2) | 0.19925 (15) | −0.13961 (19) | 0.0290 (5) | |
H3 | 0.6027 | 0.2431 | −0.1195 | 0.044* | |
O4 | 0.4164 (3) | 0.40549 (16) | 0.1437 (2) | 0.0457 (7) | |
H4 | 0.4534 | 0.3626 | 0.1944 | 0.069* | |
S1 | 0.20586 (7) | −0.08469 (5) | 0.23294 (7) | 0.02249 (18) | |
S2 | −0.01496 (8) | 0.04398 (5) | 0.14746 (8) | 0.02730 (19) | |
S3 | 0.17688 (7) | 0.19631 (5) | 0.03995 (7) | 0.01979 (17) | |
S4 | 0.40396 (7) | 0.07346 (5) | 0.16331 (7) | 0.02160 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0173 (13) | 0.0192 (14) | 0.0184 (13) | −0.0016 (11) | 0.0064 (11) | −0.0002 (10) |
C2 | 0.0194 (14) | 0.0258 (15) | 0.0272 (15) | −0.0037 (12) | 0.0130 (12) | −0.0013 (12) |
C3 | 0.0315 (18) | 0.051 (2) | 0.047 (2) | −0.0082 (17) | 0.0249 (16) | −0.0178 (18) |
C4 | 0.0210 (14) | 0.0159 (13) | 0.0253 (14) | −0.0022 (11) | 0.0097 (12) | 0.0012 (11) |
C5 | 0.0208 (14) | 0.0214 (14) | 0.0258 (15) | 0.0013 (12) | 0.0110 (12) | 0.0039 (11) |
C6 | 0.0163 (12) | 0.0175 (13) | 0.0151 (12) | 0.0001 (11) | 0.0076 (10) | −0.0040 (10) |
C7 | 0.0144 (13) | 0.0229 (14) | 0.0202 (13) | −0.0002 (11) | 0.0086 (11) | 0.0004 (11) |
C8 | 0.0250 (15) | 0.0253 (15) | 0.0311 (15) | 0.0012 (13) | 0.0173 (13) | −0.0021 (12) |
C9 | 0.0172 (13) | 0.0227 (14) | 0.0203 (13) | 0.0003 (11) | 0.0077 (11) | 0.0057 (11) |
C10 | 0.0266 (16) | 0.0206 (15) | 0.0334 (17) | −0.0023 (13) | 0.0047 (13) | 0.0066 (13) |
Cu1 | 0.0192 (2) | 0.0191 (2) | 0.0275 (2) | 0.00087 (14) | 0.01459 (16) | 0.00434 (13) |
N1 | 0.0161 (11) | 0.0186 (11) | 0.0226 (12) | −0.0017 (10) | 0.0084 (9) | 0.0018 (9) |
N2 | 0.0146 (11) | 0.0173 (11) | 0.0182 (11) | −0.0005 (9) | 0.0079 (9) | 0.0009 (9) |
O1 | 0.0341 (13) | 0.0424 (14) | 0.0581 (16) | 0.0015 (12) | 0.0223 (12) | −0.0075 (12) |
O2 | 0.0191 (10) | 0.0286 (11) | 0.0287 (11) | 0.0026 (9) | 0.0076 (8) | 0.0000 (9) |
O3 | 0.0321 (12) | 0.0350 (12) | 0.0256 (10) | −0.0108 (10) | 0.0183 (9) | −0.0059 (9) |
O4 | 0.0601 (17) | 0.0282 (12) | 0.0299 (12) | 0.0181 (12) | 0.0058 (11) | −0.0052 (10) |
S1 | 0.0161 (3) | 0.0221 (4) | 0.0296 (4) | 0.0025 (3) | 0.0111 (3) | 0.0073 (3) |
S2 | 0.0251 (4) | 0.0220 (4) | 0.0423 (4) | 0.0070 (3) | 0.0221 (3) | 0.0120 (3) |
S3 | 0.0157 (3) | 0.0196 (3) | 0.0263 (4) | 0.0013 (3) | 0.0118 (3) | 0.0025 (3) |
S4 | 0.0195 (3) | 0.0189 (3) | 0.0294 (4) | 0.0034 (3) | 0.0140 (3) | 0.0062 (3) |
C1—N1 | 1.324 (4) | C7—C8 | 1.522 (4) |
C1—S1 | 1.717 (3) | C7—H7A | 0.9700 |
C1—S2 | 1.730 (3) | C7—H7B | 0.9700 |
C2—N1 | 1.472 (4) | C8—O3 | 1.434 (4) |
C2—C3 | 1.519 (4) | C8—H8A | 0.9700 |
C2—H2A | 0.9700 | C8—H8B | 0.9700 |
C2—H2B | 0.9700 | C9—N2 | 1.471 (3) |
C3—O1 | 1.396 (4) | C9—C10 | 1.508 (4) |
C3—H3A | 0.9700 | C9—H9A | 0.9700 |
C3—H3B | 0.9700 | C9—H9B | 0.9700 |
C4—N1 | 1.479 (3) | C10—O4 | 1.414 (4) |
C4—C5 | 1.510 (4) | C10—H10A | 0.9700 |
C4—H4A | 0.9700 | C10—H10B | 0.9700 |
C4—H4B | 0.9700 | Cu1—S1 | 2.3026 (8) |
C5—O2 | 1.423 (3) | Cu1—S2 | 2.3201 (8) |
C5—H5A | 0.9700 | Cu1—S3 | 2.3148 (8) |
C5—H5B | 0.9700 | Cu1—S4 | 2.2999 (8) |
C6—N2 | 1.319 (4) | O1—H1 | 0.8200 |
C6—S4 | 1.726 (3) | O2—H2 | 0.8200 |
C6—S3 | 1.727 (3) | O3—H3 | 0.8200 |
C7—N2 | 1.477 (3) | O4—H4 | 0.8200 |
N1—C1—S1 | 124.4 (2) | O3—C8—H8A | 109.1 |
N1—C1—S2 | 122.3 (2) | C7—C8—H8A | 109.1 |
S1—C1—S2 | 113.23 (16) | O3—C8—H8B | 109.1 |
N1—C2—C3 | 111.0 (2) | C7—C8—H8B | 109.1 |
N1—C2—H2A | 109.4 | H8A—C8—H8B | 107.8 |
C3—C2—H2A | 109.4 | N2—C9—C10 | 112.7 (2) |
N1—C2—H2B | 109.4 | N2—C9—H9A | 109.1 |
C3—C2—H2B | 109.4 | C10—C9—H9A | 109.1 |
H2A—C2—H2B | 108.0 | N2—C9—H9B | 109.1 |
O1—C3—C2 | 111.3 (3) | C10—C9—H9B | 109.1 |
O1—C3—H3A | 109.4 | H9A—C9—H9B | 107.8 |
C2—C3—H3A | 109.4 | O4—C10—C9 | 111.6 (3) |
O1—C3—H3B | 109.4 | O4—C10—H10A | 109.3 |
C2—C3—H3B | 109.4 | C9—C10—H10A | 109.3 |
H3A—C3—H3B | 108.0 | O4—C10—H10B | 109.3 |
N1—C4—C5 | 114.6 (2) | C9—C10—H10B | 109.3 |
N1—C4—H4A | 108.6 | H10A—C10—H10B | 108.0 |
C5—C4—H4A | 108.6 | S4—Cu1—S1 | 100.48 (3) |
N1—C4—H4B | 108.6 | S4—Cu1—S3 | 76.94 (3) |
C5—C4—H4B | 108.6 | S1—Cu1—S3 | 176.35 (3) |
H4A—C4—H4B | 107.6 | S4—Cu1—S2 | 167.33 (3) |
O2—C5—C4 | 112.7 (2) | S1—Cu1—S2 | 77.02 (3) |
O2—C5—H5A | 109.1 | S3—Cu1—S2 | 104.91 (3) |
C4—C5—H5A | 109.1 | C1—N1—C2 | 120.1 (2) |
O2—C5—H5B | 109.1 | C1—N1—C4 | 121.8 (2) |
C4—C5—H5B | 109.1 | C2—N1—C4 | 117.4 (2) |
H5A—C5—H5B | 107.8 | C6—N2—C9 | 122.0 (2) |
N2—C6—S4 | 123.0 (2) | C6—N2—C7 | 120.7 (2) |
N2—C6—S3 | 124.5 (2) | C9—N2—C7 | 117.3 (2) |
S4—C6—S3 | 112.51 (15) | C3—O1—H1 | 109.5 |
N2—C7—C8 | 113.3 (2) | C5—O2—H2 | 109.5 |
N2—C7—H7A | 108.9 | C8—O3—H3 | 109.5 |
C8—C7—H7A | 108.9 | C10—O4—H4 | 109.5 |
N2—C7—H7B | 108.9 | C1—S1—Cu1 | 85.25 (10) |
C8—C7—H7B | 108.9 | C1—S2—Cu1 | 84.42 (10) |
H7A—C7—H7B | 107.7 | C6—S3—Cu1 | 84.86 (9) |
O3—C8—C7 | 112.5 (2) | C6—S4—Cu1 | 85.35 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.82 | 1.86 | 2.654 (4) | 162 |
O2—H2···O1ii | 0.82 | 2.29 | 2.694 (3) | 111 |
O3—H3···O2iii | 0.82 | 1.94 | 2.744 (3) | 166 |
O4—H4···O3iv | 0.82 | 1.90 | 2.677 (3) | 157 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, −y, −z+1; (iii) −x+1, y+1/2, −z+1/2; (iv) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C5H10NO2S2)2] |
Mr | 424.06 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 11.1088 (9), 14.7047 (11), 11.3401 (9) |
β (°) | 118.253 (1) |
V (Å3) | 1631.7 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.86 |
Crystal size (mm) | 0.35 × 0.35 × 0.30 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.562, 0.605 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8158, 2928, 2652 |
Rint | 0.068 |
(sin θ/λ)max (Å−1) | 0.600 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.095, 1.03 |
No. of reflections | 2928 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.74, −0.56 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.82 | 1.86 | 2.654 (4) | 162.3 |
O2—H2···O1ii | 0.82 | 2.29 | 2.694 (3) | 110.8 |
O3—H3···O2iii | 0.82 | 1.94 | 2.744 (3) | 165.5 |
O4—H4···O3iv | 0.82 | 1.90 | 2.677 (3) | 157.4 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, −y, −z+1; (iii) −x+1, y+1/2, −z+1/2; (iv) x, −y+1/2, z+1/2. |
Acknowledgements
This work was supported by the Natural Science Foundation of Jiangxi Province, China (2007GZH1573).
References
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsis, USA. Google Scholar
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsis, USA. Google Scholar
Cardell, D., Hogarth, D. & Faulkner, S. (2006). Inorg. Chim. Acta, 359, 1321–1324. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hogarth, G., Pateman, A. & Redmond, S. P. (2000). Inorg. Chim. Acta, 306, 232–236. Web of Science CSD CrossRef CAS Google Scholar
Jian, F.-F., Wang, Z.-X., Bai, Z.-P., You, X.-Z., Fun, H. K., Chinnakali, K. & Razak, I. A. (1999). Polyhedron, 18, 3401–3406. Web of Science CSD CrossRef CAS Google Scholar
Jian, F.-F., Xue, T., Jiao, K. & Zhang, S.-S. (2003). Chin. J. Chem. 21, 50–55. CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, W., Zhu, X.-L., Cheng, Z.-P., Zhu, J., Lang, J.-P. & Lu, J.-M. (2004). Chin. J. Chem. 22, 888–890. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal dithiocarbamate complexes have been extensively studied. Monomeric, dimeric, polymeric, two-dimensional and three-dimensional structures are all featured amongst these complexes. In copper dithiocarbamate complexes, the copper oxidation states I–III have been accessible (Cardell et al., 2006; Zhang et al., 2004; Jian et al., 1999; Hogarth et al., 2000) because dithiocarbamates have capability to stabilize transition metals in a wide range of oxidation states. The title complex (I), was synthesized and characterized by X-ray crystal structure analysis.
The title complex has a monomeric structure (shown as Fig.1). The copper atom, which has distorted square-planar geometry, was coordinated to four sulfur atoms of two 2-hydroxyethyldithiocarbamate ligands. The Cu—S distances ranged from 2.2999 (8) to 2.3201 (8) Å. This is consistent with the literature precedents (Jian, 2003). The interesting feature of this structure is the presence of hydrogen bonding between molecules, owing to the presence of hydrogen-bonding functionality in the N-bound residues. The structure can be thought of as being comprised of layers held together primarily by O—H–O interactions in the bc plane; see Table 2 for geometric parameters describing the hydrogen-bonding interactions. Successive layers stack parallel to the a direction, held together by O—H–O interactions.