metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[N,N-bis­­(2-hy­droxy­ethyl)di­thio­carbamato-κ2S,S′]copper(II)

aSchool of Basical Science, East China Jiaotong University, Nanchang 330013, People's Republic of China, and bSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: zhongyun1973@126.com

(Received 17 November 2009; accepted 20 November 2009; online 28 November 2009)

In the title compound, [Cu(C5H10NO2S2)2], the CuII cation is chelated by two bis­(2-hydroxy­ethyl)dithio­carbamate anions with a distorted square-planar coordination geometry. Inter­molecular O—H⋯O hydrogen bonding is observed between the terminal hydr­oxy groups in the crystal structure.

Related literature

For the different oxidation state of Cu in copper–dithio­carbamate complexes, see: Cardell et al. (2006[Cardell, D., Hogarth, D. & Faulkner, S. (2006). Inorg. Chim. Acta, 359, 1321-1324.]); Zhang et al. (2004[Zhang, W., Zhu, X.-L., Cheng, Z.-P., Zhu, J., Lang, J.-P. & Lu, J.-M. (2004). Chin. J. Chem. 22, 888-890.]); Jian et al. (1999[Jian, F.-F., Wang, Z.-X., Bai, Z.-P., You, X.-Z., Fun, H. K., Chinnakali, K. & Razak, I. A. (1999). Polyhedron, 18, 3401-3406.]); Hogarth et al. (2000[Hogarth, G., Pateman, A. & Redmond, S. P. (2000). Inorg. Chim. Acta, 306, 232-236.]). For the Cu—S bond distances in a related structure, see: Jian et al. (2003[Jian, F.-F., Xue, T., Jiao, K. & Zhang, S.-S. (2003). Chin. J. Chem. 21, 50-55.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C5H10NO2S2)2]

  • Mr = 424.06

  • Monoclinic, P 21 /c

  • a = 11.1088 (9) Å

  • b = 14.7047 (11) Å

  • c = 11.3401 (9) Å

  • β = 118.253 (1)°

  • V = 1631.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.86 mm−1

  • T = 298 K

  • 0.35 × 0.35 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.562, Tmax = 0.605

  • 8158 measured reflections

  • 2928 independent reflections

  • 2652 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.095

  • S = 1.03

  • 2928 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 1.74 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—S1 2.3026 (8)
Cu1—S2 2.3201 (8)
Cu1—S3 2.3148 (8)
Cu1—S4 2.2999 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.82 1.86 2.654 (4) 162
O2—H2⋯O1ii 0.82 2.29 2.694 (3) 111
O3—H3⋯O2iii 0.82 1.94 2.744 (3) 166
O4—H4⋯O3iv 0.82 1.90 2.677 (3) 157
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsis, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsis, USA.]); data reduction: SAINT program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metal dithiocarbamate complexes have been extensively studied. Monomeric, dimeric, polymeric, two-dimensional and three-dimensional structures are all featured amongst these complexes. In copper dithiocarbamate complexes, the copper oxidation states I–III have been accessible (Cardell et al., 2006; Zhang et al., 2004; Jian et al., 1999; Hogarth et al., 2000) because dithiocarbamates have capability to stabilize transition metals in a wide range of oxidation states. The title complex (I), was synthesized and characterized by X-ray crystal structure analysis.

The title complex has a monomeric structure (shown as Fig.1). The copper atom, which has distorted square-planar geometry, was coordinated to four sulfur atoms of two 2-hydroxyethyldithiocarbamate ligands. The Cu—S distances ranged from 2.2999 (8) to 2.3201 (8) Å. This is consistent with the literature precedents (Jian, 2003). The interesting feature of this structure is the presence of hydrogen bonding between molecules, owing to the presence of hydrogen-bonding functionality in the N-bound residues. The structure can be thought of as being comprised of layers held together primarily by O—H–O interactions in the bc plane; see Table 2 for geometric parameters describing the hydrogen-bonding interactions. Successive layers stack parallel to the a direction, held together by O—H–O interactions.

Related literature top

For the different oxidation state of Cu in copper–dithiocarbamate complexes, see: Cardell et al. (2006); Zhang et al. (2004); Jian et al. (1999); Hogarth et al. (2000). For the Cu—S bond distances in a related structure, see: Jian et al. (2003).

Experimental top

NaOH(0.04 g, 1.0 mmol), NH(CH2CH2OH)2 (0.105 g, 1.0 mmol) and CS2 (0.092 g, 1.2 mmol) was stirred for 1 h in methanol (25 ml) at room temperature, to this solution, CuCl2 (0.067 g, 0.5 mmol) was added. The mixture was stirred for 2 h at room temperature and the precipitate was filtered off. Black crystals were obtained from the slow evaporation of the filtrate.

Refinement top

H atoms were placed in calculated positions with C—H = 0.97 and O—H = 0.82 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). The highest peak in the final difference Fourier map is 1.1 Å apart from the C1 atom.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids for non-H atoms.
Bis[N,N-bis(2-hydroxyethyl)dithiocarbamato- κ2S,S']copper(II) top
Crystal data top
[Cu(C5H10NO2S2)2]F(000) = 876
Mr = 424.06Dx = 1.726 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5620 reflections
a = 11.1088 (9) Åθ = 2.5–28.1°
b = 14.7047 (11) ŵ = 1.86 mm1
c = 11.3401 (9) ÅT = 298 K
β = 118.253 (1)°Prism, black
V = 1631.7 (2) Å30.35 × 0.35 × 0.30 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2928 independent reflections
Radiation source: fine-focus sealed tube2652 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ϕ and ω scansθmax = 25.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 139
Tmin = 0.562, Tmax = 0.605k = 1617
8158 measured reflectionsl = 713
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0446P)2 + 1.7228P]
where P = (Fo2 + 2Fc2)/3
2928 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 1.74 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Cu(C5H10NO2S2)2]V = 1631.7 (2) Å3
Mr = 424.06Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1088 (9) ŵ = 1.86 mm1
b = 14.7047 (11) ÅT = 298 K
c = 11.3401 (9) Å0.35 × 0.35 × 0.30 mm
β = 118.253 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2928 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2652 reflections with I > 2σ(I)
Tmin = 0.562, Tmax = 0.605Rint = 0.068
8158 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.03Δρmax = 1.74 e Å3
2928 reflectionsΔρmin = 0.56 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0521 (3)0.05853 (18)0.2261 (3)0.0192 (6)
C20.1504 (3)0.0869 (2)0.2496 (3)0.0233 (6)
H2A0.19830.14110.25310.028*
H2B0.20190.06010.16140.028*
C30.1424 (4)0.0196 (3)0.3548 (4)0.0406 (8)
H3A0.12070.05200.43710.049*
H3B0.06970.02360.37350.049*
C40.0381 (3)0.20342 (18)0.3257 (3)0.0212 (6)
H4A0.10130.22290.29420.025*
H4B0.03830.24540.29010.025*
C50.1091 (3)0.2093 (2)0.4765 (3)0.0227 (6)
H5A0.05600.17630.51000.027*
H5B0.11300.27250.50280.027*
C60.3436 (3)0.17401 (18)0.0766 (2)0.0162 (5)
C70.5611 (3)0.20374 (19)0.0815 (3)0.0190 (6)
H7A0.59850.17020.16500.023*
H7B0.61230.26000.09800.023*
C80.5805 (3)0.1480 (2)0.0214 (3)0.0255 (6)
H8A0.67400.12640.01850.031*
H8B0.52090.09530.04620.031*
C90.3588 (3)0.30637 (19)0.0457 (3)0.0206 (6)
H9A0.26180.30960.07360.025*
H9B0.36930.30010.12550.025*
C100.4260 (3)0.3936 (2)0.0247 (3)0.0307 (7)
H10A0.52150.39270.04620.037*
H10B0.38270.44450.03470.037*
Cu10.18494 (3)0.05408 (2)0.13092 (3)0.02051 (13)
N10.0131 (2)0.11176 (16)0.2714 (2)0.0194 (5)
N20.4167 (2)0.22570 (16)0.0394 (2)0.0166 (5)
O10.2655 (3)0.02700 (18)0.3122 (3)0.0447 (6)
H10.32420.00820.30920.067*
O20.2441 (2)0.17337 (15)0.5363 (2)0.0270 (5)
H20.24140.11970.51560.040*
O30.5511 (2)0.19925 (15)0.13961 (19)0.0290 (5)
H30.60270.24310.11950.044*
O40.4164 (3)0.40549 (16)0.1437 (2)0.0457 (7)
H40.45340.36260.19440.069*
S10.20586 (7)0.08469 (5)0.23294 (7)0.02249 (18)
S20.01496 (8)0.04398 (5)0.14746 (8)0.02730 (19)
S30.17688 (7)0.19631 (5)0.03995 (7)0.01979 (17)
S40.40396 (7)0.07346 (5)0.16331 (7)0.02160 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0173 (13)0.0192 (14)0.0184 (13)0.0016 (11)0.0064 (11)0.0002 (10)
C20.0194 (14)0.0258 (15)0.0272 (15)0.0037 (12)0.0130 (12)0.0013 (12)
C30.0315 (18)0.051 (2)0.047 (2)0.0082 (17)0.0249 (16)0.0178 (18)
C40.0210 (14)0.0159 (13)0.0253 (14)0.0022 (11)0.0097 (12)0.0012 (11)
C50.0208 (14)0.0214 (14)0.0258 (15)0.0013 (12)0.0110 (12)0.0039 (11)
C60.0163 (12)0.0175 (13)0.0151 (12)0.0001 (11)0.0076 (10)0.0040 (10)
C70.0144 (13)0.0229 (14)0.0202 (13)0.0002 (11)0.0086 (11)0.0004 (11)
C80.0250 (15)0.0253 (15)0.0311 (15)0.0012 (13)0.0173 (13)0.0021 (12)
C90.0172 (13)0.0227 (14)0.0203 (13)0.0003 (11)0.0077 (11)0.0057 (11)
C100.0266 (16)0.0206 (15)0.0334 (17)0.0023 (13)0.0047 (13)0.0066 (13)
Cu10.0192 (2)0.0191 (2)0.0275 (2)0.00087 (14)0.01459 (16)0.00434 (13)
N10.0161 (11)0.0186 (11)0.0226 (12)0.0017 (10)0.0084 (9)0.0018 (9)
N20.0146 (11)0.0173 (11)0.0182 (11)0.0005 (9)0.0079 (9)0.0009 (9)
O10.0341 (13)0.0424 (14)0.0581 (16)0.0015 (12)0.0223 (12)0.0075 (12)
O20.0191 (10)0.0286 (11)0.0287 (11)0.0026 (9)0.0076 (8)0.0000 (9)
O30.0321 (12)0.0350 (12)0.0256 (10)0.0108 (10)0.0183 (9)0.0059 (9)
O40.0601 (17)0.0282 (12)0.0299 (12)0.0181 (12)0.0058 (11)0.0052 (10)
S10.0161 (3)0.0221 (4)0.0296 (4)0.0025 (3)0.0111 (3)0.0073 (3)
S20.0251 (4)0.0220 (4)0.0423 (4)0.0070 (3)0.0221 (3)0.0120 (3)
S30.0157 (3)0.0196 (3)0.0263 (4)0.0013 (3)0.0118 (3)0.0025 (3)
S40.0195 (3)0.0189 (3)0.0294 (4)0.0034 (3)0.0140 (3)0.0062 (3)
Geometric parameters (Å, º) top
C1—N11.324 (4)C7—C81.522 (4)
C1—S11.717 (3)C7—H7A0.9700
C1—S21.730 (3)C7—H7B0.9700
C2—N11.472 (4)C8—O31.434 (4)
C2—C31.519 (4)C8—H8A0.9700
C2—H2A0.9700C8—H8B0.9700
C2—H2B0.9700C9—N21.471 (3)
C3—O11.396 (4)C9—C101.508 (4)
C3—H3A0.9700C9—H9A0.9700
C3—H3B0.9700C9—H9B0.9700
C4—N11.479 (3)C10—O41.414 (4)
C4—C51.510 (4)C10—H10A0.9700
C4—H4A0.9700C10—H10B0.9700
C4—H4B0.9700Cu1—S12.3026 (8)
C5—O21.423 (3)Cu1—S22.3201 (8)
C5—H5A0.9700Cu1—S32.3148 (8)
C5—H5B0.9700Cu1—S42.2999 (8)
C6—N21.319 (4)O1—H10.8200
C6—S41.726 (3)O2—H20.8200
C6—S31.727 (3)O3—H30.8200
C7—N21.477 (3)O4—H40.8200
N1—C1—S1124.4 (2)O3—C8—H8A109.1
N1—C1—S2122.3 (2)C7—C8—H8A109.1
S1—C1—S2113.23 (16)O3—C8—H8B109.1
N1—C2—C3111.0 (2)C7—C8—H8B109.1
N1—C2—H2A109.4H8A—C8—H8B107.8
C3—C2—H2A109.4N2—C9—C10112.7 (2)
N1—C2—H2B109.4N2—C9—H9A109.1
C3—C2—H2B109.4C10—C9—H9A109.1
H2A—C2—H2B108.0N2—C9—H9B109.1
O1—C3—C2111.3 (3)C10—C9—H9B109.1
O1—C3—H3A109.4H9A—C9—H9B107.8
C2—C3—H3A109.4O4—C10—C9111.6 (3)
O1—C3—H3B109.4O4—C10—H10A109.3
C2—C3—H3B109.4C9—C10—H10A109.3
H3A—C3—H3B108.0O4—C10—H10B109.3
N1—C4—C5114.6 (2)C9—C10—H10B109.3
N1—C4—H4A108.6H10A—C10—H10B108.0
C5—C4—H4A108.6S4—Cu1—S1100.48 (3)
N1—C4—H4B108.6S4—Cu1—S376.94 (3)
C5—C4—H4B108.6S1—Cu1—S3176.35 (3)
H4A—C4—H4B107.6S4—Cu1—S2167.33 (3)
O2—C5—C4112.7 (2)S1—Cu1—S277.02 (3)
O2—C5—H5A109.1S3—Cu1—S2104.91 (3)
C4—C5—H5A109.1C1—N1—C2120.1 (2)
O2—C5—H5B109.1C1—N1—C4121.8 (2)
C4—C5—H5B109.1C2—N1—C4117.4 (2)
H5A—C5—H5B107.8C6—N2—C9122.0 (2)
N2—C6—S4123.0 (2)C6—N2—C7120.7 (2)
N2—C6—S3124.5 (2)C9—N2—C7117.3 (2)
S4—C6—S3112.51 (15)C3—O1—H1109.5
N2—C7—C8113.3 (2)C5—O2—H2109.5
N2—C7—H7A108.9C8—O3—H3109.5
C8—C7—H7A108.9C10—O4—H4109.5
N2—C7—H7B108.9C1—S1—Cu185.25 (10)
C8—C7—H7B108.9C1—S2—Cu184.42 (10)
H7A—C7—H7B107.7C6—S3—Cu184.86 (9)
O3—C8—C7112.5 (2)C6—S4—Cu185.35 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.862.654 (4)162
O2—H2···O1ii0.822.292.694 (3)111
O3—H3···O2iii0.821.942.744 (3)166
O4—H4···O3iv0.821.902.677 (3)157
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C5H10NO2S2)2]
Mr424.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.1088 (9), 14.7047 (11), 11.3401 (9)
β (°) 118.253 (1)
V3)1631.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.86
Crystal size (mm)0.35 × 0.35 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.562, 0.605
No. of measured, independent and
observed [I > 2σ(I)] reflections
8158, 2928, 2652
Rint0.068
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.03
No. of reflections2928
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.74, 0.56

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected bond lengths (Å) top
Cu1—S12.3026 (8)Cu1—S32.3148 (8)
Cu1—S22.3201 (8)Cu1—S42.2999 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.862.654 (4)162.3
O2—H2···O1ii0.822.292.694 (3)110.8
O3—H3···O2iii0.821.942.744 (3)165.5
O4—H4···O3iv0.821.902.677 (3)157.4
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangxi Province, China (2007GZH1573).

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsis, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsis, USA.  Google Scholar
First citationCardell, D., Hogarth, D. & Faulkner, S. (2006). Inorg. Chim. Acta, 359, 1321–1324.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHogarth, G., Pateman, A. & Redmond, S. P. (2000). Inorg. Chim. Acta, 306, 232–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationJian, F.-F., Wang, Z.-X., Bai, Z.-P., You, X.-Z., Fun, H. K., Chinnakali, K. & Razak, I. A. (1999). Polyhedron, 18, 3401–3406.  Web of Science CSD CrossRef CAS Google Scholar
First citationJian, F.-F., Xue, T., Jiao, K. & Zhang, S.-S. (2003). Chin. J. Chem. 21, 50–55.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Zhu, X.-L., Cheng, Z.-P., Zhu, J., Lang, J.-P. & Lu, J.-M. (2004). Chin. J. Chem. 22, 888–890.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds