metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tri­methyl­phenyl­ammonium) tetra­bromidobis(4-chloro­phen­yl)stannate(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 18 November 2009; accepted 19 November 2009; online 25 November 2009)

The SnIV atom in the title salt, [N(CH3)3(C6H5)]2[SnBr4(C6H4Cl)2], exists in a distorted all-trans SnC2Br4 octa­hedral geometry. The SnIV atom lies on a center of inversion. Weak inter­molecular C—H⋯Br hydrogen bonding is observed between trimethyl­phenyl­ammonium cations and the Sn complex anion in the crystal structure.

Related literature

For bis­(4-dimethyl­amino­pyridinium) tetra­bromidodiphenyl­stannate, see: Yap et al. (2008[Yap, Q. L., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m696.]).

[Scheme 1]

Experimental

Crystal data
  • (C9H14N)2[SnBr4(C6H4Cl)2]

  • Mr = 933.84

  • Monoclinic, C 2/c

  • a = 25.7930 (3) Å

  • b = 9.0937 (1) Å

  • c = 15.8303 (2) Å

  • β = 113.4146 (6)°

  • V = 3407.30 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.62 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.482, Tmax = 0.756

  • 15816 measured reflections

  • 3916 independent reflections

  • 3427 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.098

  • S = 1.24

  • 3916 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −1.03 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C1 2.156 (3)
Sn1—Br1 2.7368 (4)
Sn1—Br2 2.7386 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15C⋯Br1 0.96 2.91 3.839 (5) 163

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For bis(4-dimethylaminopyridinium) tetrabromidodiphenylstannate, see: Yap et al. (2008).

Experimental top

In an attempt to cleave a tin-carbon bond in a tetraorganotin compound, tetrakis(4-chlorophenyl)tin (0.57 g, 1 mmol) and trimethylphenylammonium tribromide (0.38 g, 1 mmol) were heated in ethanol for six hours. Colorless crystals of the stannate separated from the solution after a few days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

The final difference Fourier map had peak near Sn1 and a hole near Br2.

The refinement program suggested a rather larger second parameter for the weighting scheme. The scheme was arbitrarily selected as (0.05 5.00), which led to a satisfactory, albeit somewhat large, goodness-of-fit.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the two independent formula units of 2[N(CH3)3(C6H5)] [SnBr4(C6H4Cl)2] at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Bis(trimethylphenylammonium) tetrabromidobis(4-chlorophenyl)stannate(IV) top
Crystal data top
(C9H14N)2[SnBr4(C6H4Cl)2]F(000) = 1816
Mr = 933.84Dx = 1.820 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 946 reflections
a = 25.7930 (3) Åθ = 2.4–28.2°
b = 9.0937 (1) ŵ = 5.62 mm1
c = 15.8303 (2) ÅT = 293 K
β = 113.4146 (6)°Block, colorless
V = 3407.30 (7) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3916 independent reflections
Radiation source: fine-focus sealed tube3427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3333
Tmin = 0.482, Tmax = 0.756k = 1111
15816 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.24 w = 1/[σ2(Fo2) + (0.05P)2 + 5.0P]
where P = (Fo2 + 2Fc2)/3
3916 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 1.28 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
(C9H14N)2[SnBr4(C6H4Cl)2]V = 3407.30 (7) Å3
Mr = 933.84Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.7930 (3) ŵ = 5.62 mm1
b = 9.0937 (1) ÅT = 293 K
c = 15.8303 (2) Å0.30 × 0.25 × 0.20 mm
β = 113.4146 (6)°
Data collection top
Bruker SMART APEX
diffractometer
3916 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3427 reflections with I > 2σ(I)
Tmin = 0.482, Tmax = 0.756Rint = 0.025
15816 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.24Δρmax = 1.28 e Å3
3916 reflectionsΔρmin = 1.03 e Å3
181 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.25000.75000.50000.02955 (10)
Br10.183541 (17)0.69102 (4)0.59433 (3)0.04572 (12)
Br20.292712 (17)0.99167 (4)0.60875 (3)0.04584 (12)
Cl10.45173 (6)0.34442 (18)0.80689 (10)0.0818 (4)
N10.13915 (14)0.2207 (3)0.5931 (2)0.0400 (7)
C10.31591 (13)0.6149 (3)0.5957 (2)0.0295 (6)
C20.30386 (17)0.4780 (4)0.6223 (3)0.0422 (8)
H20.26700.44260.59640.051*
C30.34514 (18)0.3939 (4)0.6858 (3)0.0466 (9)
H30.33660.30280.70370.056*
C40.39961 (17)0.4473 (5)0.7226 (3)0.0473 (9)
C50.41310 (16)0.5804 (5)0.6971 (3)0.0518 (10)
H50.45020.61410.72220.062*
C60.37092 (15)0.6646 (4)0.6334 (3)0.0420 (8)
H60.37980.75560.61580.050*
C70.08627 (16)0.2803 (4)0.5981 (2)0.0383 (8)
C80.0346 (2)0.2255 (6)0.5397 (4)0.0658 (13)
H80.03250.15010.49880.079*
C90.0136 (2)0.2830 (8)0.5424 (5)0.0817 (17)
H90.04850.24690.50220.098*
C100.0121 (2)0.3909 (6)0.6018 (4)0.0702 (14)
H100.04540.42900.60260.084*
C110.0390 (3)0.4433 (6)0.6607 (4)0.0732 (15)
H110.04030.51610.70270.088*
C120.0888 (2)0.3908 (5)0.6594 (3)0.0564 (11)
H120.12330.42910.69900.068*
C130.1911 (2)0.2531 (7)0.6789 (3)0.0683 (14)
H13A0.19600.35750.68670.102*
H13B0.22360.21070.67310.102*
H13C0.18670.21150.73130.102*
C140.1361 (2)0.0572 (5)0.5795 (5)0.0728 (15)
H14A0.10590.03370.52180.109*
H14B0.12920.01110.62860.109*
H14C0.17120.02220.57950.109*
C150.1479 (2)0.2913 (6)0.5144 (3)0.0573 (11)
H15A0.11710.26600.45770.086*
H15B0.18270.25700.51290.086*
H15C0.14940.39610.52210.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02499 (16)0.03104 (17)0.03048 (17)0.00219 (11)0.00875 (12)0.00523 (11)
Br10.0450 (2)0.0460 (2)0.0533 (2)0.00187 (16)0.02717 (18)0.00690 (16)
Br20.0481 (2)0.0417 (2)0.0424 (2)0.00224 (16)0.01229 (17)0.00120 (15)
Cl10.0651 (8)0.0921 (9)0.0723 (8)0.0379 (7)0.0105 (6)0.0363 (7)
N10.0452 (18)0.0404 (15)0.0392 (16)0.0008 (13)0.0219 (14)0.0015 (12)
C10.0289 (15)0.0301 (14)0.0286 (14)0.0038 (12)0.0105 (12)0.0032 (11)
C20.040 (2)0.0401 (18)0.0415 (19)0.0019 (16)0.0111 (16)0.0051 (15)
C30.055 (2)0.0371 (18)0.043 (2)0.0073 (17)0.0149 (18)0.0098 (15)
C40.044 (2)0.053 (2)0.0394 (19)0.0212 (18)0.0114 (16)0.0108 (17)
C50.0280 (18)0.062 (3)0.057 (2)0.0037 (18)0.0080 (17)0.010 (2)
C60.0301 (17)0.0438 (19)0.048 (2)0.0015 (15)0.0110 (15)0.0100 (16)
C70.040 (2)0.0405 (18)0.0363 (18)0.0006 (15)0.0168 (16)0.0021 (14)
C80.049 (3)0.081 (3)0.058 (3)0.008 (2)0.012 (2)0.021 (2)
C90.039 (3)0.102 (4)0.089 (4)0.008 (3)0.010 (3)0.007 (3)
C100.053 (3)0.069 (3)0.099 (4)0.012 (2)0.041 (3)0.016 (3)
C110.083 (4)0.055 (3)0.098 (4)0.009 (3)0.053 (3)0.009 (3)
C120.051 (2)0.051 (2)0.068 (3)0.005 (2)0.024 (2)0.014 (2)
C130.047 (3)0.105 (4)0.047 (2)0.016 (3)0.013 (2)0.003 (2)
C140.082 (4)0.040 (2)0.120 (5)0.001 (2)0.065 (4)0.001 (3)
C150.070 (3)0.064 (3)0.051 (2)0.006 (2)0.038 (2)0.004 (2)
Geometric parameters (Å, º) top
Sn1—C1i2.156 (3)C7—C121.380 (6)
Sn1—C12.156 (3)C7—C81.380 (6)
Sn1—Br12.7368 (4)C8—C91.365 (8)
Sn1—Br1i2.7368 (4)C8—H80.9300
Sn1—Br2i2.7386 (4)C9—C101.349 (8)
Sn1—Br22.7386 (4)C9—H90.9300
Cl1—C41.743 (4)C10—C111.362 (8)
N1—C141.499 (5)C10—H100.9300
N1—C151.495 (5)C11—C121.377 (7)
N1—C71.499 (5)C11—H110.9300
N1—C131.510 (6)C12—H120.9300
C1—C61.379 (5)C13—H13A0.9600
C1—C21.389 (5)C13—H13B0.9600
C2—C31.371 (5)C13—H13C0.9600
C2—H20.9300C14—H14A0.9600
C3—C41.378 (6)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C4—C51.364 (6)C15—H15A0.9600
C5—C61.384 (5)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C6—H60.9300
C1i—Sn1—C1180.000 (1)C1—C6—H6119.7
C1i—Sn1—Br190.29 (8)C12—C7—C8119.8 (4)
C1—Sn1—Br189.71 (8)C12—C7—N1120.8 (4)
C1i—Sn1—Br1i89.71 (8)C8—C7—N1119.4 (4)
C1—Sn1—Br1i90.29 (8)C9—C8—C7119.4 (5)
Br1—Sn1—Br1i180.0C9—C8—H8120.3
C1i—Sn1—Br2i90.43 (8)C7—C8—H8120.3
C1—Sn1—Br2i89.57 (8)C8—C9—C10121.7 (5)
Br1—Sn1—Br2i90.173 (13)C8—C9—H9119.1
Br1i—Sn1—Br2i89.827 (12)C10—C9—H9119.1
C1i—Sn1—Br289.57 (8)C11—C10—C9118.9 (5)
C1—Sn1—Br290.43 (8)C11—C10—H10120.5
Br1—Sn1—Br289.827 (12)C9—C10—H10120.5
Br1i—Sn1—Br290.173 (13)C10—C11—C12121.5 (5)
Br2i—Sn1—Br2180.000 (10)C10—C11—H11119.2
C14—N1—C15108.9 (4)C12—C11—H11119.2
C14—N1—C7111.7 (3)C11—C12—C7118.6 (5)
C15—N1—C7109.3 (3)C11—C12—H12120.7
C14—N1—C13107.4 (4)C7—C12—H12120.7
C15—N1—C13107.0 (4)N1—C13—H13A109.5
C7—N1—C13112.5 (3)N1—C13—H13B109.5
C6—C1—C2118.6 (3)H13A—C13—H13B109.5
C6—C1—Sn1120.4 (2)N1—C13—H13C109.5
C2—C1—Sn1121.0 (3)H13A—C13—H13C109.5
C3—C2—C1121.4 (4)H13B—C13—H13C109.5
C3—C2—H2119.3N1—C14—H14A109.5
C1—C2—H2119.3N1—C14—H14B109.5
C2—C3—C4118.6 (4)H14A—C14—H14B109.5
C2—C3—H3120.7N1—C14—H14C109.5
C4—C3—H3120.7H14A—C14—H14C109.5
C5—C4—C3121.6 (3)H14B—C14—H14C109.5
C5—C4—Cl1119.5 (3)N1—C15—H15A109.5
C3—C4—Cl1118.8 (3)N1—C15—H15B109.5
C4—C5—C6119.2 (4)H15A—C15—H15B109.5
C4—C5—H5120.4N1—C15—H15C109.5
C6—C5—H5120.4H15A—C15—H15C109.5
C5—C6—C1120.6 (4)H15B—C15—H15C109.5
C5—C6—H6119.7
Br1—Sn1—C1—C6133.2 (3)C2—C1—C6—C50.7 (6)
Br1i—Sn1—C1—C646.8 (3)Sn1—C1—C6—C5177.9 (3)
Br2i—Sn1—C1—C6136.6 (3)C14—N1—C7—C12140.8 (5)
Br2—Sn1—C1—C643.4 (3)C15—N1—C7—C1298.7 (5)
Br1—Sn1—C1—C245.3 (3)C13—N1—C7—C1220.0 (5)
Br1i—Sn1—C1—C2134.7 (3)C14—N1—C7—C840.4 (6)
Br2i—Sn1—C1—C244.8 (3)C15—N1—C7—C880.2 (5)
Br2—Sn1—C1—C2135.2 (3)C13—N1—C7—C8161.2 (4)
C6—C1—C2—C31.2 (6)C12—C7—C8—C90.9 (8)
Sn1—C1—C2—C3177.4 (3)N1—C7—C8—C9178.0 (5)
C1—C2—C3—C40.8 (6)C7—C8—C9—C101.0 (10)
C2—C3—C4—C50.2 (6)C8—C9—C10—C110.1 (10)
C2—C3—C4—Cl1177.4 (3)C9—C10—C11—C121.4 (9)
C3—C4—C5—C60.7 (7)C10—C11—C12—C71.5 (8)
Cl1—C4—C5—C6176.9 (3)C8—C7—C12—C110.3 (7)
C4—C5—C6—C10.2 (7)N1—C7—C12—C11179.2 (4)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···Br10.962.913.839 (5)163

Experimental details

Crystal data
Chemical formula(C9H14N)2[SnBr4(C6H4Cl)2]
Mr933.84
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)25.7930 (3), 9.0937 (1), 15.8303 (2)
β (°) 113.4146 (6)
V3)3407.30 (7)
Z4
Radiation typeMo Kα
µ (mm1)5.62
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.482, 0.756
No. of measured, independent and
observed [I > 2σ(I)] reflections
15816, 3916, 3427
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.098, 1.24
No. of reflections3916
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.28, 1.03

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Sn1—C12.156 (3)Sn1—Br22.7386 (4)
Sn1—Br12.7368 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···Br10.962.913.839 (5)163
 

Acknowledgements

We thank the University of Malaya (grant No. RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationYap, Q. L., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m696.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds