organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 1-bromo-2-naphthoate

aDepartment of Chemical & Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
*Correspondence e-mail: aywgx@yahoo.com.cn

(Received 23 November 2009; accepted 24 November 2009; online 28 November 2009)

In the mol­ecular structure of the title compound, C12H9BrO2, the methoxy­carbonyl group is twisted by a dihedral angle of 29.8 (3)°with respect to the naphthalene ring system. An overlapped arrangement is observed between parallel naphthalene ring systems of adjacent mol­ecules, and the face-to-face distance of 3.590 (9) Å suggests there is ππ stacking in the crystal structure.

Related literature

For the chemistry of naphthoate derivatives, see: Ballabh et al. (2005[Ballabh, A., Trivedi, D. R. & Dastidar, P. (2005). Cryst. Growth Des. 5, 1545-1553.]); Imai et al. (2006[Imai, Y., Takeshita, M., Sato, T. & Kuroda, R. (2006). Chem. Commun. 10, 1070-1072.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9BrO2

  • Mr = 265.10

  • Monoclinic, P 21 /c

  • a = 9.3614 (19) Å

  • b = 9.3014 (19) Å

  • c = 12.069 (2) Å

  • β = 93.66 (3)°

  • V = 1048.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.89 mm−1

  • T = 298 K

  • 0.4 × 0.35 × 0.2 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.881, Tmax = 0.940

  • 10520 measured reflections

  • 2400 independent reflections

  • 1751 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.127

  • S = 1.06

  • 2400 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Naphthoate derivatives are an important class of chemical raw materials, which have found wide range of applications in catalytic reaction, coordination chemistry as ligand, dye industry, and which are also used in medicine as drugs, such as adapalene. Recently, a series of naphthoate compounds have been reported (Ballabh et al., 2005; Imai et al., 2006). As an extension of these work on the structural characterization, we report here the crystal structure of the title compound methyl 1-bromo-2-naphthoate.

The crystal data show that in the title compound (Fig.1), the two benzene rings are essentially coplanar and only twisted from each other by a dihedral angle of 1.11 (2)°. All the bond length are within the normal range. An overlapped arrangement is observed between parallel naphthalene ring systems of adjacent molecules, and the face-to-face distance of 3.590 (9) Å suggests there is ππ stacking in the crystal structure.

Related literature top

For the chemistry of naphthoate derivatives, see: Ballabh et al. (2005); Imai et al. (2006).

Experimental top

The purchased 1-bromo-2-naphthoate (3 mmol, 795 mg) was dissolved in chloroform (20 ml) and evaporated in the air affording colorless block crystals of this compound suitable for X-ray analysis were obtained.

Refinement top

All H atoms bonded to C atoms were fixed geometrically and treated as riding with C–H = 0.93 Å(aromatic), C–H =0.96 Å(methyl), with Uiso(H) = 1.2Ueq(aromatic) and Uiso(H) = 1.5Ueq(methyl).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
Methyl 1-bromo-2-naphthoate top
Crystal data top
C12H9BrO2F(000) = 528
Mr = 265.10Dx = 1.679 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1751 reflections
a = 9.3614 (19) Åθ = 3.1–27.5°
b = 9.3014 (19) ŵ = 3.89 mm1
c = 12.069 (2) ÅT = 298 K
β = 93.66 (3)°Block, colourless
V = 1048.7 (4) Å30.4 × 0.35 × 0.2 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
2400 independent reflections
Radiation source: fine-focus sealed tube1751 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.881, Tmax = 0.940l = 1515
10520 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.053P)2]
where P = (Fo2 + 2Fc2)/3
2400 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C12H9BrO2V = 1048.7 (4) Å3
Mr = 265.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3614 (19) ŵ = 3.89 mm1
b = 9.3014 (19) ÅT = 298 K
c = 12.069 (2) Å0.4 × 0.35 × 0.2 mm
β = 93.66 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2400 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1751 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.940Rint = 0.086
10520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.06Δρmax = 0.41 e Å3
2400 reflectionsΔρmin = 0.51 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.29147 (5)0.80840 (4)0.47073 (3)0.0664 (2)
C20.4234 (4)0.6858 (3)0.4033 (3)0.0450 (8)
C10.5663 (4)0.6855 (3)0.4501 (3)0.0485 (9)
C40.4815 (4)0.5034 (4)0.2735 (3)0.0553 (9)
H40.45330.44100.21590.066*
C30.3790 (4)0.5986 (3)0.3159 (3)0.0471 (8)
C50.6197 (5)0.5021 (4)0.3156 (3)0.0608 (10)
H50.68490.44050.28520.073*
C60.6655 (4)0.5916 (4)0.4039 (3)0.0512 (9)
C100.6150 (5)0.7727 (4)0.5411 (3)0.0596 (10)
H100.55170.83470.57330.072*
C90.7542 (5)0.7662 (5)0.5817 (4)0.0715 (12)
H90.78420.82390.64170.086*
C80.8523 (5)0.6753 (5)0.5355 (5)0.0774 (14)
H80.94680.67300.56420.093*
C120.0587 (5)0.4584 (5)0.1631 (4)0.0812 (13)
H12A0.03940.35880.14750.122*
H12B0.05310.51200.09500.122*
H12C0.01070.49480.21120.122*
C70.8094 (5)0.5901 (5)0.4484 (4)0.0699 (12)
H70.87540.52980.41740.084*
C110.2313 (4)0.5993 (4)0.2617 (3)0.0552 (9)
O10.1996 (3)0.4727 (3)0.2164 (2)0.0678 (7)
O20.1531 (4)0.7005 (3)0.2538 (3)0.0835 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0647 (3)0.0697 (3)0.0652 (3)0.02213 (19)0.0071 (2)0.01421 (18)
C20.050 (2)0.0373 (17)0.0492 (19)0.0072 (14)0.0111 (17)0.0042 (14)
C10.052 (2)0.0429 (19)0.051 (2)0.0000 (16)0.0059 (18)0.0077 (15)
C40.062 (3)0.049 (2)0.056 (2)0.0044 (18)0.0101 (19)0.0056 (17)
C30.050 (2)0.0426 (18)0.0495 (19)0.0051 (15)0.0090 (17)0.0060 (15)
C50.062 (3)0.055 (2)0.067 (2)0.012 (2)0.016 (2)0.0015 (19)
C60.048 (2)0.047 (2)0.059 (2)0.0036 (16)0.0093 (18)0.0099 (16)
C100.058 (3)0.052 (2)0.068 (3)0.0023 (18)0.003 (2)0.0026 (18)
C90.073 (3)0.065 (3)0.075 (3)0.004 (2)0.006 (3)0.002 (2)
C80.054 (3)0.079 (3)0.098 (4)0.004 (2)0.010 (3)0.015 (3)
C120.073 (3)0.085 (3)0.083 (3)0.014 (2)0.016 (3)0.009 (2)
C70.053 (3)0.070 (3)0.087 (3)0.012 (2)0.011 (2)0.010 (2)
C110.058 (2)0.055 (2)0.053 (2)0.0032 (19)0.0025 (18)0.0014 (17)
O10.0675 (19)0.0576 (16)0.0759 (18)0.0024 (14)0.0136 (15)0.0074 (14)
O20.067 (2)0.0716 (19)0.109 (2)0.0204 (15)0.0172 (19)0.0198 (16)
Geometric parameters (Å, º) top
Br1—C21.901 (3)C10—H100.9300
C2—C31.374 (5)C9—C81.390 (7)
C2—C11.418 (5)C9—H90.9300
C1—C61.415 (5)C8—C71.357 (6)
C1—C101.417 (5)C8—H80.9300
C4—C51.360 (5)C12—O11.436 (5)
C4—C31.425 (5)C12—H12A0.9600
C4—H40.9300C12—H12B0.9600
C3—C111.491 (5)C12—H12C0.9600
C5—C61.398 (5)C7—H70.9300
C5—H50.9300C11—O21.193 (4)
C6—C71.418 (5)C11—O11.324 (4)
C10—C91.364 (6)
C3—C2—C1122.4 (3)C1—C10—H10119.8
C3—C2—Br1120.7 (3)C10—C9—C8121.5 (4)
C1—C2—Br1116.9 (2)C10—C9—H9119.2
C6—C1—C10118.1 (4)C8—C9—H9119.2
C6—C1—C2118.1 (3)C7—C8—C9119.7 (4)
C10—C1—C2123.8 (3)C7—C8—H8120.1
C5—C4—C3121.1 (3)C9—C8—H8120.1
C5—C4—H4119.4O1—C12—H12A109.5
C3—C4—H4119.4O1—C12—H12B109.5
C2—C3—C4117.8 (3)H12A—C12—H12B109.5
C2—C3—C11124.1 (3)O1—C12—H12C109.5
C4—C3—C11118.1 (3)H12A—C12—H12C109.5
C4—C5—C6121.2 (4)H12B—C12—H12C109.5
C4—C5—H5119.4C8—C7—C6121.0 (4)
C6—C5—H5119.4C8—C7—H7119.5
C5—C6—C1119.4 (4)C6—C7—H7119.5
C5—C6—C7121.4 (4)O2—C11—O1123.2 (4)
C1—C6—C7119.3 (4)O2—C11—C3125.9 (3)
C9—C10—C1120.4 (4)O1—C11—C3110.8 (3)
C9—C10—H10119.8C11—O1—C12116.3 (3)
C3—C2—C1—C60.2 (5)C10—C1—C6—C71.2 (5)
Br1—C2—C1—C6177.9 (2)C2—C1—C6—C7179.4 (3)
C3—C2—C1—C10179.1 (3)C6—C1—C10—C90.5 (5)
Br1—C2—C1—C101.5 (4)C2—C1—C10—C9179.9 (4)
C1—C2—C3—C41.2 (5)C1—C10—C9—C80.3 (6)
Br1—C2—C3—C4176.4 (2)C10—C9—C8—C70.4 (7)
C1—C2—C3—C11177.7 (3)C9—C8—C7—C60.3 (7)
Br1—C2—C3—C114.7 (4)C5—C6—C7—C8178.7 (4)
C5—C4—C3—C22.1 (5)C1—C6—C7—C81.1 (6)
C5—C4—C3—C11176.9 (4)C2—C3—C11—O230.4 (6)
C3—C4—C5—C61.6 (6)C4—C3—C11—O2148.5 (4)
C4—C5—C6—C10.1 (5)C2—C3—C11—O1153.4 (3)
C4—C5—C6—C7179.7 (4)C4—C3—C11—O127.7 (4)
C10—C1—C6—C5178.6 (3)O2—C11—O1—C124.8 (6)
C2—C1—C6—C50.8 (5)C3—C11—O1—C12178.9 (3)

Experimental details

Crystal data
Chemical formulaC12H9BrO2
Mr265.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.3614 (19), 9.3014 (19), 12.069 (2)
β (°) 93.66 (3)
V3)1048.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.89
Crystal size (mm)0.4 × 0.35 × 0.2
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.881, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
10520, 2400, 1751
Rint0.086
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.127, 1.06
No. of reflections2400
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.51

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a start-up grant from Anyang Institute of Technology, China.

References

First citationBallabh, A., Trivedi, D. R. & Dastidar, P. (2005). Cryst. Growth Des. 5, 1545–1553.  Web of Science CSD CrossRef CAS Google Scholar
First citationImai, Y., Takeshita, M., Sato, T. & Kuroda, R. (2006). Chem. Commun. 10, 1070–1072.  Web of Science CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds