metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ2-bis­­(di­phenyl­phosphino)methane]bis­­(μ2-ethane-1,2-di­thiol­ato)-μ4-sulfido-μ2-sulfido-di­sulfidodimolybdenum(V)disilver(I) di­methyl­formamide tris­­olvate

aJiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
*Correspondence e-mail: jxstnu2008@yahoo.cn

(Received 6 October 2009; accepted 16 November 2009; online 21 November 2009)

Treatment of [Et4N]2[(edt)2Mo2S2(μ-S)2] (edt = ethane­dithio­l­ate) with two equivalents of Ag(CH3CN)4ClO4 in the presence of bis­(diphenyl­phosphino)methane (dppm) ligand gives rise to the title tetra­nuclear cluster, [Ag2Mo2(C2H4S2)2S4(C25H22P2)2]·3C3H7NO. The complex mol­ecule and one of the dimethyl­formamide (DMF) solvent mol­ecules occupy special positions on a mirror plane. The mol­ecular structure of the complex may be visualized as being built of [Mo2S2(μ-S)2(edt)2]2− dianions and [Ag2(dppm)2]2+ dications connected by two Ag—μ-Sedt and two Ag—μ4-S bonds.

Related literature

For general background to the chemistry of sulfido-bridged dinuclear clusters consisting of a [M2S4] core (M = Mo, W) and various transition metals, see: Kuwata & Hidai (2001[Kuwata, S. & Hidai, M. (2001). Coord. Chem. Rev. 213, 211-305.]); Curtis et al. (1997[Curtis, M. D., Druker, S. H., Goossen, L. & Kampf, J. W. (1997). Organometallics, 16, 231-235.]); Halbert et al. (1985[Halbert, T. R., Cohen, S. A. & Stiefel, E. I. (1985). Organometallics, 4, 1689-1690.]); Kawaguchi et al. (1997[Kawaguchi, H., Yamada, K., Ohnishi, S. & Tatsumi, K. (1997). J. Am. Chem. Soc. 119, 10871-10872.]); Brunner et al. (1985[Brunner, H., Janietz, N., Wachter, J., Zahn, T. & Ziegler, M. L. (1985). Angew. Chem. Int. Ed. 24, 133-135.]). For the synthesis and structure of the starting material, see: Pan et al. (1984[Pan, W.-H., Chandler, T., Enemark, J. H. & Stiefel, E. I. (1984). Inorg. Chem. 23, 4265-4269.]). For related structures, see: Zhu et al. (1990[Zhu, N.-Y., Zheng, Y.-F. & Wu, X.-T. (1990). Inorg. Chem. 29, 2705-2706.]); Lin et al. (1997[Lin, P., Wu, X.-T., Zhang, W.-J., Guo, J., Sheng, T.-L. & Lu, J.-X. (1997). Chem. Commun. pp. 1349-1350.]); Wei et al. (2008[Wei, Z.-H., Li, H.-X., Zhang, W.-H., Ren, Z.-G., Zhang, Y., Lang, J.-P. & Abrahams, B. F. (2008). Inorg. Chem. 47, 10461-10468.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2Mo2(C2H4S2)2S4(C25H22P2)2]·3C3H7NO

  • Mr = 1708.3

  • Orthorhombic, P n m a

  • a = 26.022 (5) Å

  • b = 21.375 (4) Å

  • c = 12.721 (3) Å

  • V = 7076 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 223 K

  • 0.35 × 0.20 × 0.07 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.746, Tmax = 0.915

  • 57121 measured reflections

  • 6401 independent reflections

  • 5931 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.085

  • wR(F2) = 0.188

  • S = 1.35

  • 6401 reflections

  • 401 parameters

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past decades, the chemistry of the sulfido-bridged dinuclear clusters consisting of [M2S4] core (M = Mo, W) and various transition metals has attracted much attention. For example, precursors [(dtc)2Mo2S2(µ-S)2] (dtc = S2CNEt2) (Kuwata & Hidai, 2001) and [Cpx2Mo2S2(µ-S)2] (Cpx = pentamethyl-, pentaethyl- or pentabutyl-cyclopentadienyl) (Curtis et al.,1997; Halbert et al., 1985; Kawaguchi et al., 1997; Brunner et al., 1985) were shown to react with transition metals to form both incomplete cubane-like [Mo2M'S4] and complete cubane-like [Mo2M'2S4] clusters. The type of cluster formed is dependent upon the ability of the terminal St and the bridging µ-Sb groups in [Mo2S4] core to bind further metal centers. Recently, another precursor [Et4N]2[(edt)2Mo2S2(µ-S)2] (1), which has a chelating edt at each Mo site of the [Mo2S4] core, has been introduced; its terminal St, the doubly bridging µ-Sb, and chelating Sedt are capable of binding Cu(I) centers (Zhu et al.,1990; Lin et al., 1997; Wei et al., 2008). However, until now, only quite limited data have been reported involving precursor 1 bound to Ag(I) complexes. In this paper we describe the result of our efforts to generate a Mo/Ag/S cluster [Mo2S2(µ-S)2(edt)2Ag2(dppm)2].3DMF (2.3DMF) by reaction of 1 with two equivalents of Ag(CH3CN)4ClO4 in the presence of dppm ligand.

The asymmetric unit of 2.3DMF contains half of the [Mo2S2(µ-S)2(edt)2Ag2(dppm)2] molecule, and one and a half DMF molecules (Fig. 1). The complex may be considered as having a [Mo2S2(µ-S)2(edt)2]2- anionic unit bound to a [Ag2(dppm)2]2+ cation via two Ag-µ-Sedt and two Ag-µ4-Sb bonds. A crystallographic mirror plane runs through S3, S5, C27 and C28 atoms. Each Mo center has a distorted square pyramidal environment, consisting of one terminal St, one Sedt, one µ-Sedt, and two µ-S atoms. Each Ag center has a distorted tetrahedral coordination made up of one µ-Sedt, one µ4-S and two P atoms from two dppm ligands. The Ag1—S5 bond [2.924 (3) Å], involving the µ4-S atom, is much longer than Ag1—S4 with the Sedt atom [2.588 (2) Å]. The eight-membered [Ag—P—C—P—Ag—P—C—P] ring in the [Ag2(dppm)2]2+ dication adopts a boat conformation. The Mo···Mo distance [2.8772 (14) Å] is longer than that in the precursor 1 [2.863 (3) Å] (Pan et al.,1984). The Mo1-µ-S4 bond length is elongated by 0.05 Å relative to that of Mo1—S2 as the S4 atom is involved in coordination to the Ag1 atom. The Mo1—S5 bond [2.344 (2) Å] is slightly longer than Mo1—S3 [2.322 (2) Å] due to the µ4-character of the S5 atom.

Related literature top

For general background to the chemistry of sulfido-bridged dinuclear clusters consisting of a [M2S4] core (M = Mo, W) and various transition metals, see: Kuwata & Hidai (2001); Curtis et al. (1997); Halbert et al. (1985); Kawaguchi et al. (1997); Brunner et al. (1985). For the synthesis and structure of the starting material, see: Pan et al. (1984). For related structures, see: Zhu et al. (1990); Lin et al. (1997); Wei et al. (2008).

Experimental top

To a solution of 1 (76 mg, 0.1 mmol) in 10 ml of CH2Cl2 was added dropwise a solution of Ag(CH3CN)4ClO4 (29 mg, 0.2 mmol) in 20 ml of MeCN. A bulk of deep red precipitate was formed within s. The red slurry was stirred for 10 minutes, and a solution of dppm (79 mg, 0.2 mmol) in CH2Cl2 (10 ml) was added. The resulting mixture was stirred for 30 min, forming a homogenous red solution. Addition of MeOH to this solution yielded a red microcrystalline solid, which was collected by filtration, washed with MeCN and Et2O, and dried in vacuo. Recrystallization of the solid in DMF/i-PrOH afforded red crystals of 2.3DMF two days later. Yield: 63 mg (50% based on Mo).

Refinement top

Even though packing analysis shows solvent accessible voids, our attempts to locate additional solvent proved unsuccessful, and none of the geometrically placed atoms, centered around the void, could be reasonably refined. Because of the quick loss of crystallinity upon removal from the mother liquor, the structure has a limited accuracy with high R-factors and goodness of fit; optimization of weighting scheme results in high value of the second coefficient. Some of the phenyl atoms show intense thermal motion, however attempts to introduce disorder of the phenyl ring did not produce noticeable improvement of the accuracy of the model.

All H atoms were placed geometrically (C—H 0.93 Å for aromatic and formate, 0.96 Å and 0.97 Å for methyl and methylene groups respectively) and included in the refinement in the riding motion approximation with Uiso(H) = 1.2Ueq of the parent atom [1.5Ueq for methyl groups].

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of 2.3DMF with thermal ellipsoids, drawn at 30% probability level; hydrogen atoms are omitted for clarity. The unlabeled atoms are derived from the reference atoms by means of the (x, 1/2 - y, z) symmetry transformation.
Bis[µ2-bis(diphenylphosphino)methane]bis(µ2-ethane-1,2-dithiolato)- µ4-sulfido-µ2-sulfido-disulfidodimolybdenum(V)disilver(I) dimethylformamide trisolvate top
Crystal data top
[Ag2Mo2(C2H4S2)2S4(C25H22P2)2]·3C3H7NOF(000) = 3448
Mr = 1708.3Dx = 1.604 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 7734 reflections
a = 26.022 (5) Åθ = 2.0–25.0°
b = 21.375 (4) ŵ = 1.26 mm1
c = 12.721 (3) ÅT = 223 K
V = 7076 (3) Å3Platelet, red
Z = 40.35 × 0.20 × 0.07 mm
Data collection top
Rigaku Mercury
diffractometer
6401 independent reflections
Radiation source: fine-focus sealed tube5931 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
ω scansθmax = 25.0°, θmin = 3.4°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 3030
Tmin = 0.746, Tmax = 0.915k = 2525
57121 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.085Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.35 w = 1/[σ2(Fo2) + (0.0747P)2 + 33.869P]
where P = (Fo2 + 2Fc2)/3
6401 reflections(Δ/σ)max < 0.001
401 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Ag2Mo2(C2H4S2)2S4(C25H22P2)2]·3C3H7NOV = 7076 (3) Å3
Mr = 1708.3Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 26.022 (5) ŵ = 1.26 mm1
b = 21.375 (4) ÅT = 223 K
c = 12.721 (3) Å0.35 × 0.20 × 0.07 mm
Data collection top
Rigaku Mercury
diffractometer
6401 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
5931 reflections with I > 2σ(I)
Tmin = 0.746, Tmax = 0.915Rint = 0.090
57121 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0850 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.35 w = 1/[σ2(Fo2) + (0.0747P)2 + 33.869P]
where P = (Fo2 + 2Fc2)/3
6401 reflectionsΔρmax = 0.95 e Å3
401 parametersΔρmin = 0.58 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.00904 (2)0.17618 (3)0.71271 (5)0.0236 (2)
Mo10.12522 (3)0.18270 (3)0.92175 (5)0.0211 (2)
P10.07622 (8)0.17918 (10)0.79382 (16)0.0218 (5)
S10.20195 (11)0.16455 (14)0.8910 (3)0.0520 (7)
O10.3659 (4)0.25000.0188 (7)0.038 (2)
N10.3070 (4)0.25000.1140 (8)0.025 (2)
C10.0888 (5)0.0364 (4)0.9861 (8)0.046 (3)
H9A0.12100.01990.95970.055*
H9B0.07430.00581.03410.055*
C20.0528 (4)0.0471 (4)0.8971 (7)0.038 (2)
H16A0.01920.05820.92430.045*
H16B0.04930.00890.85650.045*
C30.0801 (4)0.1653 (4)0.9351 (7)0.028 (2)
C40.0361 (5)0.1676 (6)0.9945 (8)0.056 (3)
H8A0.00490.17810.96340.067*
C50.0384 (7)0.1543 (8)1.1014 (9)0.086 (5)
H1A0.00860.15611.14160.103*
C60.0835 (8)0.1388 (6)1.1481 (10)0.083 (5)
H2A0.08450.12961.21950.099*
C70.1276 (7)0.1368 (6)1.0894 (10)0.071 (5)
H6A0.15880.12701.12100.085*
C80.1255 (5)0.1492 (5)0.9838 (8)0.044 (3)
H5A0.15540.14680.94410.053*
C90.1156 (3)0.1152 (4)0.7415 (6)0.0232 (18)
C100.0974 (4)0.0548 (4)0.7605 (7)0.0274 (19)
H22A0.06730.04890.79880.033*
C110.1241 (4)0.0037 (4)0.7223 (7)0.034 (2)
H29A0.11220.03640.73650.041*
C120.1677 (4)0.0114 (4)0.6640 (8)0.038 (2)
H17A0.18540.02310.63760.046*
C130.1850 (4)0.0714 (5)0.6449 (8)0.040 (2)
H13A0.21480.07710.60540.049*
C140.1595 (3)0.1233 (4)0.6829 (7)0.031 (2)
H20A0.17180.16330.66900.037*
C150.0903 (3)0.1697 (3)0.4725 (6)0.0202 (17)
C160.1304 (3)0.1645 (4)0.5441 (7)0.0269 (19)
H26A0.12350.16380.61580.032*
C170.1805 (4)0.1605 (5)0.5084 (8)0.040 (2)
H7A0.20710.15770.55690.048*
C180.1916 (4)0.1606 (4)0.4042 (8)0.035 (2)
H14A0.22550.15760.38170.042*
C190.1521 (3)0.1651 (4)0.3318 (7)0.031 (2)
H30A0.15960.16460.26030.037*
C200.1019 (4)0.1704 (4)0.3646 (7)0.0277 (19)
H31A0.07560.17450.31540.033*
C210.0123 (3)0.1164 (4)0.4566 (6)0.0224 (17)
C220.0119 (3)0.0654 (4)0.4086 (7)0.029 (2)
H25A0.04750.06380.40330.035*
C230.0184 (4)0.0170 (4)0.3688 (7)0.034 (2)
H19A0.00270.01730.33730.041*
C240.0713 (4)0.0194 (4)0.3758 (7)0.036 (2)
H18A0.09120.01300.34880.043*
C250.0947 (4)0.0702 (4)0.4231 (7)0.034 (2)
H15A0.13040.07210.42700.041*
C260.0657 (3)0.1177 (4)0.4643 (7)0.0282 (19)
H27A0.08180.15110.49770.034*
C270.1134 (5)0.25000.7688 (9)0.024 (3)
H33A0.12480.25000.69630.028*
H33B0.14360.25000.81340.028*
C280.0006 (4)0.25000.4579 (8)0.018 (2)
H34A0.01080.25000.38450.021*
H34B0.03660.25000.46050.021*
C290.3438 (7)0.25000.1950 (14)0.081 (7)
H3A0.37440.22960.17110.121*0.50
H3B0.33030.22810.25490.121*0.50
H3C0.35160.29230.21440.121*0.50
C300.2532 (5)0.25000.1436 (13)0.042 (3)
H30B0.24360.29090.16770.063*0.50
H30C0.24770.22020.19890.063*0.50
H30D0.23260.23890.08390.063*0.50
C310.3212 (5)0.25000.0161 (11)0.033 (3)
H120.29500.25000.03370.040*
C320.2952 (5)0.0235 (6)0.1897 (11)0.067 (4)
H4A0.31740.04150.13760.100*
H4B0.27760.05630.22680.100*
H4C0.31520.00060.23840.100*
C330.2240 (5)0.0106 (7)0.0615 (11)0.070 (4)
H10A0.20120.03970.09500.105*
H10B0.24380.03200.00900.105*
H10C0.20430.02200.02880.105*
C340.2541 (4)0.0767 (5)0.1667 (10)0.051 (3)
H110.22960.10060.13160.061*
P20.02494 (8)0.17823 (9)0.52142 (16)0.0187 (4)
S20.10053 (10)0.11032 (11)1.05640 (18)0.0370 (6)
N20.2582 (3)0.0164 (4)0.1394 (7)0.042 (2)
O20.2797 (3)0.1029 (4)0.2337 (7)0.069 (3)
S30.11821 (12)0.25001.0644 (2)0.0269 (7)
S40.07638 (8)0.10971 (9)0.81247 (16)0.0246 (5)
S50.09599 (12)0.25000.7891 (2)0.0243 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0258 (3)0.0255 (3)0.0194 (3)0.0015 (3)0.0011 (3)0.0018 (3)
Mo10.0231 (4)0.0186 (4)0.0217 (4)0.0017 (3)0.0047 (3)0.0009 (3)
P10.0248 (11)0.0197 (10)0.0210 (11)0.0013 (8)0.0007 (9)0.0021 (9)
S10.0415 (15)0.0467 (16)0.0678 (19)0.0071 (12)0.0064 (14)0.0074 (14)
O10.038 (6)0.040 (5)0.035 (5)0.0000.010 (4)0.000
N10.022 (5)0.027 (5)0.026 (6)0.0000.004 (4)0.000
C10.074 (8)0.027 (5)0.036 (6)0.007 (5)0.017 (5)0.010 (4)
C20.053 (6)0.023 (5)0.037 (5)0.002 (4)0.015 (5)0.008 (4)
C30.040 (5)0.020 (4)0.024 (5)0.008 (4)0.003 (4)0.002 (4)
C40.057 (7)0.084 (9)0.026 (5)0.029 (6)0.001 (5)0.006 (6)
C50.111 (12)0.130 (13)0.018 (6)0.066 (11)0.010 (7)0.005 (7)
C60.159 (16)0.064 (9)0.025 (6)0.053 (10)0.024 (9)0.017 (6)
C70.131 (14)0.043 (7)0.039 (7)0.022 (8)0.047 (8)0.006 (6)
C80.068 (7)0.037 (6)0.028 (5)0.015 (5)0.018 (5)0.005 (4)
C90.025 (5)0.029 (4)0.015 (4)0.000 (4)0.002 (3)0.000 (3)
C100.037 (5)0.020 (4)0.025 (5)0.002 (4)0.002 (4)0.000 (4)
C110.046 (6)0.023 (4)0.032 (5)0.001 (4)0.009 (5)0.004 (4)
C120.055 (6)0.018 (5)0.042 (6)0.009 (4)0.002 (5)0.002 (4)
C130.035 (5)0.035 (5)0.052 (6)0.006 (4)0.008 (5)0.003 (5)
C140.034 (5)0.021 (4)0.037 (5)0.002 (4)0.006 (4)0.006 (4)
C150.022 (4)0.014 (4)0.025 (4)0.000 (3)0.004 (3)0.002 (3)
C160.036 (5)0.024 (4)0.021 (4)0.002 (4)0.006 (4)0.004 (3)
C170.033 (5)0.044 (6)0.044 (6)0.003 (4)0.009 (5)0.001 (5)
C180.025 (5)0.029 (5)0.050 (6)0.000 (4)0.009 (4)0.000 (4)
C190.033 (5)0.030 (5)0.030 (5)0.005 (4)0.007 (4)0.002 (4)
C200.035 (5)0.028 (5)0.020 (4)0.000 (4)0.000 (4)0.000 (4)
C210.029 (4)0.019 (4)0.019 (4)0.001 (3)0.005 (4)0.001 (3)
C220.028 (5)0.027 (4)0.032 (5)0.001 (4)0.004 (4)0.000 (4)
C230.046 (6)0.023 (5)0.032 (5)0.000 (4)0.000 (4)0.009 (4)
C240.040 (5)0.034 (5)0.034 (5)0.011 (4)0.006 (4)0.010 (4)
C250.028 (5)0.042 (5)0.033 (5)0.010 (4)0.007 (4)0.003 (4)
C260.025 (5)0.033 (5)0.026 (5)0.002 (4)0.002 (4)0.007 (4)
C270.032 (7)0.015 (5)0.023 (6)0.0000.004 (5)0.000
C280.020 (6)0.020 (5)0.013 (5)0.0000.001 (5)0.000
C290.058 (12)0.14 (2)0.044 (10)0.0000.026 (9)0.000
C300.022 (7)0.041 (8)0.062 (10)0.0000.008 (7)0.000
C310.029 (7)0.032 (7)0.039 (8)0.0000.003 (6)0.000
C320.048 (7)0.057 (8)0.095 (10)0.003 (6)0.008 (7)0.018 (7)
C330.048 (7)0.080 (9)0.082 (9)0.010 (7)0.003 (7)0.023 (8)
C340.042 (6)0.052 (7)0.060 (7)0.007 (5)0.005 (6)0.003 (6)
P20.0201 (10)0.0189 (10)0.0171 (10)0.0009 (8)0.0003 (8)0.0010 (8)
S20.0540 (15)0.0328 (12)0.0243 (12)0.0104 (11)0.0123 (11)0.0080 (10)
N20.030 (4)0.041 (5)0.056 (6)0.007 (4)0.008 (4)0.005 (4)
O20.061 (6)0.064 (6)0.080 (6)0.000 (4)0.012 (5)0.032 (5)
S30.0349 (17)0.0261 (15)0.0197 (15)0.0000.0050 (13)0.000
S40.0325 (11)0.0182 (10)0.0229 (11)0.0005 (8)0.0081 (9)0.0003 (8)
S50.0351 (17)0.0176 (14)0.0203 (15)0.0000.0031 (13)0.000
Geometric parameters (Å, º) top
Ag1—P12.448 (2)C16—C171.384 (13)
Ag1—P22.469 (2)C16—H26A0.9300
Ag1—S42.588 (2)C17—C181.356 (14)
Ag1—S52.924 (3)C17—H7A0.9300
Ag1—Ag1i3.1558 (14)C18—C191.383 (13)
Mo1—S12.071 (3)C18—H14A0.9300
Mo1—S32.322 (2)C19—C201.377 (13)
Mo1—S52.344 (2)C19—H30A0.9300
Mo1—S22.396 (2)C20—H31A0.9300
Mo1—S42.446 (2)C21—C261.392 (12)
Mo1—Mo1i2.8772 (14)C21—C221.400 (12)
P1—C271.824 (7)C21—P21.834 (8)
P1—C31.824 (9)C22—C231.396 (12)
P1—C91.835 (8)C22—H25A0.9300
O1—C311.245 (15)C23—C241.382 (13)
N1—C311.300 (16)C23—H19A0.9300
N1—C291.406 (18)C24—C251.382 (13)
N1—C301.450 (16)C24—H18A0.9300
C1—C21.487 (13)C25—C261.370 (12)
C1—S21.842 (10)C25—H15A0.9300
C1—H9A0.9700C26—H27A0.9300
C1—H9B0.9700C27—P1i1.824 (7)
C2—S41.824 (9)C27—H33A0.9700
C2—H16A0.9700C27—H33B0.9700
C2—H16B0.9700C28—P2i1.846 (6)
C3—C41.372 (15)C28—P21.846 (6)
C3—C81.378 (13)C28—H34A0.9700
C4—C51.392 (16)C28—H34B0.9700
C4—H8A0.9300C29—H3A0.9600
C5—C61.36 (2)C29—H3B0.9600
C5—H1A0.9300C29—H3C0.9600
C6—C71.37 (2)C30—H30B0.9600
C6—H2A0.9300C30—H30C0.9600
C7—C81.370 (16)C30—H30D0.9600
C7—H6A0.9300C31—H120.9300
C8—H5A0.9300C32—N21.437 (15)
C9—C141.373 (12)C32—H4A0.9600
C9—C101.396 (11)C32—H4B0.9600
C10—C111.382 (12)C32—H4C0.9600
C10—H22A0.9300C33—N21.452 (14)
C11—C121.365 (14)C33—H10A0.9600
C11—H29A0.9300C33—H10B0.9600
C12—C131.382 (13)C33—H10C0.9600
C12—H17A0.9300C34—O21.218 (13)
C13—C141.381 (13)C34—N21.339 (14)
C13—H13A0.9300C34—H110.9300
C14—H20A0.9300S3—Mo1i2.322 (2)
C15—C161.389 (11)S5—Mo1i2.344 (2)
C15—C201.405 (12)S5—Ag1i2.924 (3)
C15—P21.820 (8)
P1—Ag1—P2124.54 (7)C16—C17—H7A119.3
P1—Ag1—S4114.92 (7)C17—C18—C19119.5 (9)
P2—Ag1—S4112.31 (7)C17—C18—H14A120.2
P1—Ag1—S5123.16 (8)C19—C18—H14A120.2
P2—Ag1—S5100.85 (8)C20—C19—C18120.6 (9)
S4—Ag1—S567.02 (6)C20—C19—H30A119.7
P1—Ag1—Ag1i88.50 (5)C18—C19—H30A119.7
P2—Ag1—Ag1i88.98 (5)C19—C20—C15119.9 (8)
S4—Ag1—Ag1i123.29 (5)C19—C20—H31A120.1
S5—Ag1—Ag1i57.35 (4)C15—C20—H31A120.1
S1—Mo1—S3109.83 (12)C26—C21—C22119.7 (8)
S1—Mo1—S5106.97 (12)C26—C21—P2118.8 (6)
S3—Mo1—S599.01 (8)C22—C21—P2121.2 (7)
S1—Mo1—S2105.81 (11)C23—C22—C21118.8 (8)
S3—Mo1—S279.66 (8)C23—C22—H25A120.6
S5—Mo1—S2145.47 (11)C21—C22—H25A120.6
S1—Mo1—S4105.92 (10)C24—C23—C22120.8 (8)
S3—Mo1—S4142.96 (10)C24—C23—H19A119.6
S5—Mo1—S479.26 (7)C22—C23—H19A119.6
S2—Mo1—S481.67 (8)C23—C24—C25119.7 (8)
S1—Mo1—Mo1i100.80 (8)C23—C24—H18A120.1
S3—Mo1—Mo1i51.72 (5)C25—C24—H18A120.1
S5—Mo1—Mo1i52.15 (5)C26—C25—C24120.4 (9)
S2—Mo1—Mo1i130.22 (6)C26—C25—H15A119.8
S4—Mo1—Mo1i129.64 (5)C24—C25—H15A119.8
C27—P1—C3106.1 (5)C25—C26—C21120.5 (8)
C27—P1—C9105.0 (4)C25—C26—H27A119.7
C3—P1—C9101.8 (4)C21—C26—H27A119.7
C27—P1—Ag1115.4 (4)P1i—C27—P1112.2 (6)
C3—P1—Ag1117.4 (3)P1i—C27—H33A109.2
C9—P1—Ag1109.5 (3)P1—C27—H33A109.2
C31—N1—C29120.6 (13)P1i—C27—H33B109.2
C31—N1—C30121.6 (11)P1—C27—H33B109.2
C29—N1—C30117.8 (13)H33A—C27—H33B107.9
C2—C1—S2110.0 (7)P2i—C28—P2112.4 (6)
C2—C1—H9A109.7P2i—C28—H34A109.1
S2—C1—H9A109.7P2—C28—H34A109.1
C2—C1—H9B109.7P2i—C28—H34B109.1
S2—C1—H9B109.7P2—C28—H34B109.1
H9A—C1—H9B108.2H34A—C28—H34B107.9
C1—C2—S4110.5 (7)N1—C29—H3A109.5
C1—C2—H16A109.5N1—C29—H3B109.5
S4—C2—H16A109.5H3A—C29—H3B109.5
C1—C2—H16B109.5N1—C29—H3C109.5
S4—C2—H16B109.5H3A—C29—H3C109.5
H16A—C2—H16B108.1H3B—C29—H3C109.5
C4—C3—C8118.5 (9)N1—C30—H30B109.5
C4—C3—P1119.4 (8)N1—C30—H30C109.5
C8—C3—P1122.1 (8)H30B—C30—H30C109.5
C3—C4—C5119.6 (13)N1—C30—H30D109.5
C3—C4—H8A120.2H30B—C30—H30D109.5
C5—C4—H8A120.2H30C—C30—H30D109.5
C6—C5—C4121.0 (14)O1—C31—N1127.4 (13)
C6—C5—H1A119.5O1—C31—H12116.3
C4—C5—H1A119.5N1—C31—H12116.3
C5—C6—C7119.6 (11)N2—C32—H4A109.5
C5—C6—H2A120.2N2—C32—H4B109.5
C7—C6—H2A120.2H4A—C32—H4B109.5
C8—C7—C6119.7 (13)N2—C32—H4C109.5
C8—C7—H6A120.2H4A—C32—H4C109.5
C6—C7—H6A120.2H4B—C32—H4C109.5
C7—C8—C3121.5 (12)N2—C33—H10A109.5
C7—C8—H5A119.2N2—C33—H10B109.5
C3—C8—H5A119.2H10A—C33—H10B109.5
C14—C9—C10119.6 (8)N2—C33—H10C109.5
C14—C9—P1124.5 (7)H10A—C33—H10C109.5
C10—C9—P1115.9 (6)H10B—C33—H10C109.5
C11—C10—C9119.9 (8)O2—C34—N2125.5 (11)
C11—C10—H22A120.1O2—C34—H11117.3
C9—C10—H22A120.1N2—C34—H11117.3
C12—C11—C10121.0 (8)C15—P2—C21105.5 (4)
C12—C11—H29A119.5C15—P2—C28104.7 (4)
C10—C11—H29A119.5C21—P2—C28102.7 (4)
C11—C12—C13118.5 (9)C15—P2—Ag1119.5 (3)
C11—C12—H17A120.7C21—P2—Ag1110.0 (3)
C13—C12—H17A120.7C28—P2—Ag1112.9 (3)
C14—C13—C12121.8 (9)C1—S2—Mo1104.6 (3)
C14—C13—H13A119.1C34—N2—C32120.7 (10)
C12—C13—H13A119.1C34—N2—C33120.7 (10)
C9—C14—C13119.3 (8)C32—N2—C33118.6 (10)
C9—C14—H20A120.4Mo1—S3—Mo1i76.55 (10)
C13—C14—H20A120.4C2—S4—Mo1107.9 (3)
C16—C15—C20118.7 (8)C2—S4—Ag1117.7 (3)
C16—C15—P2119.0 (6)Mo1—S4—Ag1106.28 (8)
C20—C15—P2122.2 (6)Mo1i—S5—Mo175.71 (9)
C17—C16—C15119.8 (8)Mo1i—S5—Ag1145.22 (13)
C17—C16—H26A120.1Mo1—S5—Ag199.16 (6)
C15—C16—H26A120.1Mo1i—S5—Ag1i99.16 (6)
C18—C17—C16121.4 (9)Mo1—S5—Ag1i145.22 (13)
C18—C17—H7A119.3Ag1—S5—Ag1i65.31 (7)
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Ag2Mo2(C2H4S2)2S4(C25H22P2)2]·3C3H7NO
Mr1708.3
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)223
a, b, c (Å)26.022 (5), 21.375 (4), 12.721 (3)
V3)7076 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.35 × 0.20 × 0.07
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.746, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
57121, 6401, 5931
Rint0.090
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.188, 1.35
No. of reflections6401
No. of parameters401
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0747P)2 + 33.869P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.95, 0.58

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge Jiangxi Science and Technology Normal University for funding.

References

First citationBrunner, H., Janietz, N., Wachter, J., Zahn, T. & Ziegler, M. L. (1985). Angew. Chem. Int. Ed. 24, 133–135.  CSD CrossRef Google Scholar
First citationCurtis, M. D., Druker, S. H., Goossen, L. & Kampf, J. W. (1997). Organometallics, 16, 231–235.  CSD CrossRef CAS Web of Science Google Scholar
First citationHalbert, T. R., Cohen, S. A. & Stiefel, E. I. (1985). Organometallics, 4, 1689–1690.  CSD CrossRef CAS Web of Science Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationKawaguchi, H., Yamada, K., Ohnishi, S. & Tatsumi, K. (1997). J. Am. Chem. Soc. 119, 10871–10872.  CSD CrossRef CAS Web of Science Google Scholar
First citationKuwata, S. & Hidai, M. (2001). Coord. Chem. Rev. 213, 211–305.  Web of Science CrossRef CAS Google Scholar
First citationLin, P., Wu, X.-T., Zhang, W.-J., Guo, J., Sheng, T.-L. & Lu, J.-X. (1997). Chem. Commun. pp. 1349–1350.  CSD CrossRef Web of Science Google Scholar
First citationPan, W.-H., Chandler, T., Enemark, J. H. & Stiefel, E. I. (1984). Inorg. Chem. 23, 4265–4269.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, Z.-H., Li, H.-X., Zhang, W.-H., Ren, Z.-G., Zhang, Y., Lang, J.-P. & Abrahams, B. F. (2008). Inorg. Chem. 47, 10461–10468.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhu, N.-Y., Zheng, Y.-F. & Wu, X.-T. (1990). Inorg. Chem. 29, 2705–2706.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds