metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1551-m1552

Poly[[tetra­aqua­bis­[μ4-2,2′-(p-phenyl­ene­di­­oxy)di­acetato][μ2-2,2′-(p-phenyl­ene­di­­oxy)di­acetato]dierbium(III)] hexa­hydrate]

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: weidanyi@nbu.edu.cn

(Received 19 October 2009; accepted 5 November 2009; online 11 November 2009)

The asymmetric unit of the title compound, [Er2(C10H8O6)3(H2O)4]·6H2O, comprises one Er3+ ion, one and a half 2,2′-(p-phenyl­enedi­oxy)diacetate (hqda) ligands, two coordinated water mol­ecules and three uncoordinated water mol­ecules. The Er3+ ion is nine-coordinated by seven O atoms from hqda ligands and two O atoms from water mol­ecules. In the title compound, there are two types of crystallographically independent ligands: one with an inversion center in the middle of the ligand is chelating on both ends of the ligand towards each one Er center; the other hqda ligands are bridging-chelating on one side, and bridging on the other end of the ligand. Two adjacent Er3+ ions are thus chelated and bridged by –COO groups from hqda ligands in three coordination modes (briding–chelating, bridging and chelating). These building blocks are linked by OOC—CH2O—C6H4—OCH2—COO spacers, forming two-dimensional neutral layers. Adjacent layers are linked by O—H⋯O hydrogen-bonding inter­actions, forming a three-dimensional supermolecular network.

Related literature

For general background to metal-organic frameworks, see: Maji et al. (2005[Maji, T. K., Mostafa, G., Chang, H. C. & Kitagawa, S. (2005). Chem. Commun. pp. 2436-2438.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Rao et al. (2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]); Sun et al. (2006[Sun, D. F., Ma, S. Q., Ke, Y. X., Collins, D. J. & Zhou, H. C. (2006). J. Am. Chem. Soc. 128, 3896-3897.]); Zou et al. (2006[Zou, R. Q., Sakurai, H. & Xu, Q. (2006). Angew. Chem., Int. Ed. 45, 2542-2546.]); Burrows et al. (2000[Burrows, A. D., Harrington, R. W., Mahon, M. F. & Price, C. E. (2000). J. Chem. Soc. Dalton Trans. pp. 3845-3854.]); Huang et al. (2005[Huang, W., Xie, X. K., Cui, K., Gou, S. H. & Li, Y. Z. (2005). Inorg. Chim. Acta, 358, 875-884.]). For related stuctures, see: Hong et al. (2006[Hong, X., -, L., Li, Y., -, Z., Hu, H. M., Pan, Y., Bai, J. F. & You, X. Z. (2006). Cryst. Growth Des. 6, 1221-1226.]); Li et al. (2008[Li, X., Li, Y. Q. & Zhang, Y. B. J. (2008). J. Coord. Chem. 61, 1720-1729.]).

[Scheme 1]

Experimental

Crystal data
  • [Er2(C10H8O6)3(H2O)4]·6H2O

  • Mr = 1187.17

  • Triclinic, [P \overline 1]

  • a = 8.5993 (17) Å

  • b = 9.6356 (19) Å

  • c = 12.689 (3) Å

  • α = 102.46 (3)°

  • β = 95.28 (3)°

  • γ = 106.69 (3)°

  • V = 970.0 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.40 mm−1

  • T = 298 K

  • 0.43 × 0.29 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.312, Tmax = 0.535

  • 9659 measured reflections

  • 4403 independent reflections

  • 4219 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.044

  • S = 1.17

  • 4403 reflections

  • 271 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −1.08 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10D⋯O7i 0.82 2.09 2.880 (4) 163
O10—H10C⋯O12 0.82 1.97 2.732 (4) 154
O11—H11D⋯O13 0.82 1.82 2.634 (4) 173
O11—H11C⋯O12 0.82 1.92 2.709 (4) 161
O12—H12D⋯O8ii 0.82 2.00 2.798 (4) 167
O12—H12C⋯O14iii 0.82 1.97 2.780 (4) 172
O13—H13D⋯O7iv 0.82 2.12 2.872 (4) 151
O13—H13C⋯O3 0.82 2.03 2.804 (4) 157
O14—H14C⋯O6 0.82 2.17 2.874 (4) 144
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) x, y, z-1; (iv) x-1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). Crystal Structure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The investigation of the assembly of metal-organic frameworks (MOFs) has attracted great interest due to their versatile architecture and promising applications for ion exchange, gas storage, separation, and catalysis (Maji et al., 2005; Moulton & Zaworotko 2001; Rao et al., 2004; Sun et al., 2006; Zou et al., 2006). The selection of multifunctional bridging ligands is crucial to synthesize novel MOFS (Burrows et al., 2000; Huang et al., 2005). Among these, hydroquinone-O,O'-diacetic acid (H2hqda) is a good ligand in the preparation various metal-organic coordination polymers. Recently, several lanthanide(III) hqda compounds with fascinating structures have been reported (Hong et al., 2006; Li et al., 2008). Herein, we report a new compound [Er2(hqda)3(H2O)4].6H2O.

The asymmetric unit of the title compound comprises one Er3+ ion, one and a half 2,2'-(p-phenylenedioxy)diacetate anions (hqda), two coordinated water molecules and three lattice water molecules. The Er3+ ion is nine coordinated by seven oxygen atoms of hqda ligands and two oxygen atoms of aqua ligands (Fig 1). The Er—O (carboxylate) distances fall in the range 2.341 (2)–2.529 (2) Å, and those of the Er—O (water) bonds are 2.317 (2) Å and 2.368 (2) Å, respectively. The coordination environment of the Er3+ ion may be described as a distorted tricapped trigonal prism. In the title compound, there are two types of crystallographically independent ligands. One type with an inversion center in the middle of the ligand is chelating on both ends of the ligand towards each one Er center. The other type is bridging-chelating on one side, and bridging on the other, thus connecting each two Er centers with each other. Two adjacent Er3+ ions are thus chelated and briged by –COO groups from hqda ligands in three coordination modes (briding-chelating, bridging and chelating modes) to form [Er2(hqda)3(H2O)4].6H2O building blocks. These building blocks are linked by the OOC–CH2O–C6H4–OCH2COO (hqda) spacers to form two-dimensional neutral layers perpendicular to the [100] direction (Fig 2). The lattice water molecules are sandwiched between these two-dimensional layers and hydrogen bonded with them. The adjacent two-dimensional layers are further interlinked by these hydrogen bonds to form a three-dimensional supermolecular network.

Related literature top

For general background on metal-organic frameworks (MOFs), see: Maji et al. (2005); Moulton & Zaworotko (2001); Rao et al. (2004); Sun et al. (2006); Zou et al. (2006); Burrows et al. (2000); Huang et al. (2005). For related stuctures, see: Hong et al. (2006); Li et al. (2008).

Experimental top

All commercially available chemicals were of reagent grade and used without further purification. Er(NO3)3.6H2O (0.0922 g, 0.2 mmol) and H2hqda (0.0452 g, 0.2 mmol) were added to a stirred solution of 20 ml dimethyl formamide/H2O to form a clear solution, which was mixed with 5 ml ethanol and 0.15 ml triethylamine. The resulting solution was kept at room temperature and pink, block-like crystals grew after ca. 20 days.

Refinement top

H atoms bonded to C atoms were placed in geometrically calculated positons and refined using a riding moldel, with distances of C—H = 0.93Å (benzene ring) and 0.97Å (–CH2), and Uiso(H) = 1.2Ueq(C). Water H atoms were positioned geometrically and refined with distance restraints of O—H = 0.82 (2) Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of complex molecule of the title compound. Displacement ellipsoids are drawn at the 45% probability level. H atoms and lattice water molecules were omitted for clarity. (Symmetry codes: ii = -x + 1, -y + 1, -z; iii = x, y, z-1; iv = x - 1, y, z; v = -x + 2, -y + 2, -z).
[Figure 2] Fig. 2. Two-dimensional layer in the title compond perpendicular to the [100] direction with H-atoms and lattice water molecules omitted.
Poly[[tetraaquabis[µ4-2,2'-(p-phenylenedioxy)diacetato][µ2- 2,2'-(p-phenylenedioxy)diacetato]dierbium(III)] hexahydrate] top
Crystal data top
[Er2(C10H8O6)3(H2O)4]·6H2OZ = 1
Mr = 1187.17F(000) = 584
Triclinic, P1Dx = 2.032 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5993 (17) ÅCell parameters from 8985 reflections
b = 9.6356 (19) Åθ = 3.2–27.5°
c = 12.689 (3) ŵ = 4.40 mm1
α = 102.46 (3)°T = 298 K
β = 95.28 (3)°Block, pink
γ = 106.69 (3)°0.43 × 0.29 × 0.15 mm
V = 970.0 (4) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4403 independent reflections
Radiation source: fine-focus sealed tube4219 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 911
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1212
Tmin = 0.312, Tmax = 0.535l = 1616
9659 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.044H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0129P)2 + 0.5344P]
where P = (Fo2 + 2Fc2)/3
4403 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.46 e Å3
1 restraintΔρmin = 1.08 e Å3
Crystal data top
[Er2(C10H8O6)3(H2O)4]·6H2Oγ = 106.69 (3)°
Mr = 1187.17V = 970.0 (4) Å3
Triclinic, P1Z = 1
a = 8.5993 (17) ÅMo Kα radiation
b = 9.6356 (19) ŵ = 4.40 mm1
c = 12.689 (3) ÅT = 298 K
α = 102.46 (3)°0.43 × 0.29 × 0.15 mm
β = 95.28 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4403 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4219 reflections with I > 2σ(I)
Tmin = 0.312, Tmax = 0.535Rint = 0.030
9659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0191 restraint
wR(F2) = 0.044H-atom parameters constrained
S = 1.17Δρmax = 0.46 e Å3
4403 reflectionsΔρmin = 1.08 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.869905 (13)0.797688 (12)0.007667 (8)0.01362 (4)
O10.7733 (2)0.9698 (2)0.10577 (15)0.0238 (4)
O20.9134 (2)1.2049 (2)0.10636 (14)0.0220 (4)
O30.5844 (2)1.0620 (2)0.24732 (14)0.0230 (4)
O40.7484 (3)0.8777 (2)0.61490 (15)0.0307 (5)
O50.8979 (2)1.0035 (2)0.90125 (13)0.0189 (4)
O60.7683 (3)0.7795 (2)0.79481 (15)0.0295 (5)
O71.0417 (2)0.6690 (2)0.07609 (14)0.0224 (4)
O80.8399 (2)0.7140 (2)0.15645 (15)0.0239 (4)
O90.9096 (3)0.5949 (3)0.32042 (15)0.0267 (5)
O100.7747 (2)0.5361 (2)0.08718 (17)0.0293 (5)
H10D0.81460.47260.07460.044*
H10C0.68990.49160.13170.044*
O110.5849 (3)0.7150 (3)0.03432 (19)0.0386 (6)
H11D0.52090.75170.00330.058*
H11C0.52690.64200.08230.058*
C10.8034 (3)1.1075 (3)0.13378 (19)0.0173 (5)
C20.6953 (4)1.1713 (3)0.2068 (2)0.0235 (6)
H2B0.76561.24960.26840.028*
H2A0.63241.21670.16550.028*
C30.6421 (3)1.0209 (3)0.3382 (2)0.0211 (6)
C40.5518 (4)0.8850 (4)0.3518 (2)0.0339 (7)
H4A0.46390.82250.29820.041*
C50.5904 (4)0.8402 (4)0.4447 (2)0.0360 (7)
H5A0.52790.74830.45340.043*
C60.7213 (4)0.9312 (3)0.5240 (2)0.0241 (6)
C70.8153 (4)1.0642 (4)0.5093 (3)0.0423 (9)
H7A0.90591.12460.56160.051*
C80.7750 (4)1.1096 (4)0.4154 (3)0.0430 (9)
H8A0.83901.20020.40560.052*
C90.8428 (4)0.9852 (3)0.7110 (2)0.0261 (6)
H9B0.80121.06990.72530.031*
H9A0.95651.02140.70100.031*
C100.8329 (3)0.9155 (3)0.8065 (2)0.0190 (5)
C110.9563 (3)0.6601 (3)0.15137 (19)0.0181 (5)
C121.0010 (4)0.5810 (4)0.2341 (2)0.0243 (6)
H12B0.97880.47590.19880.029*
H12A1.11770.62390.26310.029*
C130.9586 (3)0.5444 (3)0.4075 (2)0.0206 (5)
C140.8822 (3)0.5722 (3)0.4975 (2)0.0232 (6)
H14A0.80280.62020.49560.028*
C151.0760 (3)0.4714 (3)0.4092 (2)0.0230 (6)
H15A1.12630.45170.34840.028*
O120.4607 (3)0.4588 (3)0.19590 (18)0.0376 (5)
H12D0.37200.39980.19340.056*
H12C0.46990.48490.25300.056*
O130.3829 (3)0.8206 (4)0.0782 (2)0.0567 (8)
H13D0.28310.80570.07270.085*
H13C0.42970.90460.11800.085*
O140.5142 (4)0.5730 (4)0.6226 (2)0.0636 (8)
H14C0.58770.65230.64930.095*
H14D0.42020.56600.59760.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.01580 (6)0.01211 (7)0.01281 (6)0.00315 (5)0.00181 (4)0.00477 (4)
O10.0278 (10)0.0177 (11)0.0276 (10)0.0072 (9)0.0128 (8)0.0058 (8)
O20.0267 (10)0.0182 (11)0.0226 (9)0.0063 (9)0.0097 (8)0.0070 (8)
O30.0216 (9)0.0332 (12)0.0170 (8)0.0080 (9)0.0051 (8)0.0121 (9)
O40.0492 (13)0.0192 (11)0.0153 (9)0.0017 (10)0.0075 (9)0.0049 (8)
O50.0204 (9)0.0196 (10)0.0136 (8)0.0039 (8)0.0023 (7)0.0033 (7)
O60.0401 (12)0.0184 (11)0.0222 (9)0.0010 (10)0.0054 (9)0.0071 (9)
O70.0259 (10)0.0254 (11)0.0203 (9)0.0089 (9)0.0066 (8)0.0128 (8)
O80.0283 (10)0.0270 (12)0.0234 (9)0.0126 (9)0.0078 (8)0.0140 (9)
O90.0357 (11)0.0370 (13)0.0191 (9)0.0213 (11)0.0086 (8)0.0164 (9)
O100.0248 (10)0.0174 (11)0.0422 (11)0.0076 (9)0.0026 (9)0.0024 (9)
O110.0191 (10)0.0379 (15)0.0471 (13)0.0097 (11)0.0015 (10)0.0118 (11)
C10.0199 (12)0.0210 (15)0.0123 (11)0.0076 (11)0.0018 (10)0.0057 (10)
C20.0336 (15)0.0248 (16)0.0195 (12)0.0145 (14)0.0110 (12)0.0110 (12)
C30.0233 (13)0.0291 (16)0.0135 (11)0.0096 (13)0.0060 (10)0.0079 (11)
C40.0394 (18)0.0275 (18)0.0242 (14)0.0007 (15)0.0117 (13)0.0069 (13)
C50.050 (2)0.0211 (17)0.0260 (14)0.0022 (15)0.0099 (14)0.0078 (13)
C60.0339 (15)0.0229 (16)0.0145 (11)0.0078 (13)0.0009 (11)0.0059 (11)
C70.0423 (19)0.042 (2)0.0264 (15)0.0108 (17)0.0125 (14)0.0158 (15)
C80.0414 (19)0.041 (2)0.0341 (17)0.0128 (17)0.0065 (15)0.0236 (17)
C90.0363 (16)0.0221 (16)0.0147 (12)0.0023 (13)0.0018 (11)0.0056 (11)
C100.0196 (13)0.0215 (15)0.0164 (11)0.0066 (12)0.0010 (10)0.0060 (11)
C110.0234 (13)0.0131 (13)0.0145 (11)0.0014 (11)0.0009 (10)0.0039 (10)
C120.0328 (15)0.0282 (17)0.0199 (12)0.0147 (14)0.0086 (12)0.0139 (12)
C130.0277 (14)0.0196 (15)0.0165 (12)0.0080 (12)0.0024 (10)0.0087 (11)
C140.0261 (14)0.0264 (16)0.0232 (13)0.0142 (13)0.0056 (11)0.0106 (12)
C150.0299 (15)0.0252 (16)0.0186 (12)0.0124 (13)0.0076 (11)0.0090 (12)
O120.0275 (11)0.0397 (15)0.0333 (11)0.0039 (11)0.0022 (9)0.0064 (11)
O130.0216 (12)0.067 (2)0.0594 (16)0.0098 (13)0.0010 (11)0.0214 (15)
O140.0631 (19)0.052 (2)0.0439 (15)0.0218 (16)0.0011 (13)0.0059 (14)
Geometric parameters (Å, º) top
Er1—O112.317 (2)C1—C21.531 (3)
Er1—O2i2.3415 (18)C2—H2B0.9700
Er1—O12.3437 (19)C2—H2A0.9700
Er1—O102.368 (2)C3—C81.366 (4)
Er1—O5ii2.381 (2)C3—C41.373 (4)
Er1—O82.3996 (18)C4—C51.383 (4)
Er1—O5iii2.4684 (19)C4—H4A0.9300
Er1—O72.4864 (19)C5—C61.376 (4)
Er1—O6iii2.529 (2)C5—H5A0.9300
Er1—C112.798 (2)C6—C71.366 (5)
Er1—C10iii2.859 (3)C7—C81.403 (4)
Er1—Er1i3.8505 (13)C7—H7A0.9300
O1—C11.240 (3)C8—H8A0.9300
O2—C11.260 (3)C9—C101.505 (3)
O2—Er1i2.3415 (18)C9—H9B0.9700
O3—C31.392 (3)C9—H9A0.9700
O3—C21.425 (3)C10—Er1iv2.859 (3)
O4—C61.388 (3)C11—C121.506 (3)
O4—C91.417 (3)C12—H12B0.9700
O5—C101.281 (3)C12—H12A0.9700
O5—Er1ii2.381 (2)C13—C141.384 (4)
O5—Er1iv2.4684 (19)C13—C151.388 (4)
O6—C101.237 (4)C14—C15v1.388 (3)
O6—Er1iv2.529 (2)C14—H14A0.9300
O7—C111.260 (3)C15—C14v1.388 (3)
O8—C111.254 (3)C15—H15A0.9300
O9—C131.378 (3)O12—H12D0.8176
O9—C121.411 (3)O12—H12C0.8196
O10—H10D0.8194O13—H13D0.8221
O10—H10C0.8213O13—H13C0.8190
O11—H11D0.8212O14—H14C0.8180
O11—H11C0.8194O14—H14D0.8188
O11—Er1—O2i140.01 (8)C10—O6—Er1iv92.30 (16)
O11—Er1—O169.84 (8)C11—O7—Er190.52 (15)
O2i—Er1—O1139.47 (7)C11—O8—Er194.74 (14)
O11—Er1—O1071.00 (8)C13—O9—C12114.6 (2)
O2i—Er1—O1084.46 (8)Er1—O10—H10D128.3
O1—Er1—O10135.94 (7)Er1—O10—H10C124.8
O11—Er1—O5ii141.78 (7)H10D—O10—H10C106.9
O2i—Er1—O5ii74.46 (7)Er1—O11—H11D130.0
O1—Er1—O5ii71.96 (7)Er1—O11—H11C124.3
O10—Er1—O5ii142.81 (7)H11D—O11—H11C105.6
O11—Er1—O882.71 (8)O1—C1—O2127.0 (2)
O2i—Er1—O8125.12 (6)O1—C1—C2118.6 (2)
O1—Er1—O874.50 (7)O2—C1—C2114.3 (2)
O10—Er1—O881.33 (8)O3—C2—C1113.5 (2)
O5ii—Er1—O886.19 (7)O3—C2—H2B108.9
O11—Er1—O5iii96.38 (8)C1—C2—H2B108.9
O2i—Er1—O5iii74.53 (6)O3—C2—H2A108.9
O1—Er1—O5iii75.37 (6)C1—C2—H2A108.9
O10—Er1—O5iii128.65 (7)H2B—C2—H2A107.7
O5ii—Er1—O5iii74.90 (7)C8—C3—C4119.4 (2)
O8—Er1—O5iii148.16 (7)C8—C3—O3124.3 (3)
O11—Er1—O7123.14 (8)C4—C3—O3116.3 (3)
O2i—Er1—O772.14 (6)C3—C4—C5120.6 (3)
O1—Er1—O7119.42 (7)C3—C4—H4A119.7
O10—Er1—O768.62 (7)C5—C4—H4A119.7
O5ii—Er1—O775.81 (7)C6—C5—C4120.1 (3)
O8—Er1—O753.28 (6)C6—C5—H5A120.0
O5iii—Er1—O7140.25 (6)C4—C5—H5A120.0
O11—Er1—O6iii72.43 (8)C7—C6—C5119.6 (3)
O2i—Er1—O6iii71.57 (7)C7—C6—O4124.5 (3)
O1—Er1—O6iii108.94 (7)C5—C6—O4115.8 (3)
O10—Er1—O6iii77.05 (8)C6—C7—C8120.0 (3)
O5ii—Er1—O6iii122.41 (7)C6—C7—H7A120.0
O8—Er1—O6iii151.20 (7)C8—C7—H7A120.0
O5iii—Er1—O6iii52.04 (7)C3—C8—C7120.2 (3)
O7—Er1—O6iii131.64 (7)C3—C8—H8A119.9
O11—Er1—C11103.21 (9)C7—C8—H8A119.9
O2i—Er1—C1198.81 (7)O4—C9—C10109.7 (2)
O1—Er1—C1197.32 (7)O4—C9—H9B109.7
O10—Er1—C1172.86 (8)C10—C9—H9B109.7
O5ii—Er1—C1180.41 (7)O4—C9—H9A109.7
O8—Er1—C1126.52 (7)C10—C9—H9A109.7
O5iii—Er1—C11155.31 (7)H9B—C9—H9A108.2
O7—Er1—C1126.77 (7)O6—C10—O5121.1 (2)
O6iii—Er1—C11149.19 (7)O6—C10—C9122.2 (2)
O11—Er1—C10iii85.37 (9)O5—C10—C9116.7 (3)
O2i—Er1—C10iii69.14 (7)O6—C10—Er1iv62.09 (14)
O1—Er1—C10iii94.05 (7)O5—C10—Er1iv59.45 (13)
O10—Er1—C10iii102.16 (8)C9—C10—Er1iv170.90 (19)
O5ii—Er1—C10iii98.49 (8)O8—C11—O7121.4 (2)
O8—Er1—C10iii165.74 (7)O8—C11—C12122.0 (2)
O5iii—Er1—C10iii26.56 (7)O7—C11—C12116.5 (2)
O7—Er1—C10iii140.92 (7)O8—C11—Er158.74 (12)
O6iii—Er1—C10iii25.61 (7)O7—C11—Er162.71 (12)
C11—Er1—C10iii167.59 (7)C12—C11—Er1178.07 (19)
O11—Er1—Er1i123.86 (7)O9—C12—C11110.6 (2)
O2i—Er1—Er1i70.32 (5)O9—C12—H12B109.5
O1—Er1—Er1i69.30 (5)C11—C12—H12B109.5
O10—Er1—Er1i153.26 (5)O9—C12—H12A109.5
O5ii—Er1—Er1i38.24 (4)C11—C12—H12A109.5
O8—Er1—Er1i120.23 (6)H12B—C12—H12A108.1
O5iii—Er1—Er1i36.66 (5)O9—C13—C14115.1 (2)
O7—Er1—Er1i109.95 (5)O9—C13—C15124.5 (2)
O6iii—Er1—Er1i86.39 (6)C14—C13—C15120.3 (2)
C11—Er1—Er1i118.65 (6)C13—C14—C15v120.2 (2)
C10iii—Er1—Er1i61.18 (7)C13—C14—H14A119.9
C1—O1—Er1137.57 (17)C15v—C14—H14A119.9
C1—O2—Er1i135.37 (17)C13—C15—C14v119.5 (2)
C3—O3—C2119.0 (2)C13—C15—H15A120.2
C6—O4—C9116.5 (2)C14v—C15—H15A120.2
C10—O5—Er1ii146.22 (17)H12D—O12—H12C116.6
C10—O5—Er1iv93.99 (16)H13D—O13—H13C108.2
Er1ii—O5—Er1iv105.10 (7)H14C—O14—H14D124.5
Symmetry codes: (i) x+2, y+2, z; (ii) x+2, y+2, z+1; (iii) x, y, z1; (iv) x, y, z+1; (v) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10D···O7vi0.822.092.880 (4)163
O10—H10C···O120.821.972.732 (4)154
O11—H11D···O130.821.822.634 (4)173
O11—H11C···O120.821.922.709 (4)161
O12—H12D···O8vii0.822.002.798 (4)167
O12—H12C···O14iii0.821.972.780 (4)172
O13—H13D···O7viii0.822.122.872 (4)151
O13—H13C···O30.822.032.804 (4)157
O14—H14C···O60.822.172.874 (4)144
Symmetry codes: (iii) x, y, z1; (vi) x+2, y+1, z; (vii) x+1, y+1, z; (viii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Er2(C10H8O6)3(H2O)4]·6H2O
Mr1187.17
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.5993 (17), 9.6356 (19), 12.689 (3)
α, β, γ (°)102.46 (3), 95.28 (3), 106.69 (3)
V3)970.0 (4)
Z1
Radiation typeMo Kα
µ (mm1)4.40
Crystal size (mm)0.43 × 0.29 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.312, 0.535
No. of measured, independent and
observed [I > 2σ(I)] reflections
9659, 4403, 4219
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.044, 1.17
No. of reflections4403
No. of parameters271
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 1.08

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10D···O7i0.822.092.880 (4)163
O10—H10C···O120.821.972.732 (4)154
O11—H11D···O130.821.822.634 (4)173
O11—H11C···O120.821.922.709 (4)161
O12—H12D···O8ii0.822.002.798 (4)167
O12—H12C···O14iii0.821.972.780 (4)172
O13—H13D···O7iv0.822.122.872 (4)151
O13—H13C···O30.822.032.804 (4)157
O14—H14C···O60.822.172.874 (4)144
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z; (iii) x, y, z1; (iv) x1, y, z.
 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund at Ningbo University and by the Zhejiang Provincial Science and Technology Agency project (2007 F70009).

References

First citationBurrows, A. D., Harrington, R. W., Mahon, M. F. & Price, C. E. (2000). J. Chem. Soc. Dalton Trans. pp. 3845–3854.  Web of Science CSD CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHong, X., -, L., Li, Y., -, Z., Hu, H. M., Pan, Y., Bai, J. F. & You, X. Z. (2006). Cryst. Growth Des. 6, 1221–1226.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, W., Xie, X. K., Cui, K., Gou, S. H. & Li, Y. Z. (2005). Inorg. Chim. Acta, 358, 875–884.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL–5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLi, X., Li, Y. Q. & Zhang, Y. B. J. (2008). J. Coord. Chem. 61, 1720–1729.  Web of Science CrossRef CAS Google Scholar
First citationMaji, T. K., Mostafa, G., Chang, H. C. & Kitagawa, S. (2005). Chem. Commun. pp. 2436–2438.  Web of Science CSD CrossRef Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). Crystal Structure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D. F., Ma, S. Q., Ke, Y. X., Collins, D. J. & Zhou, H. C. (2006). J. Am. Chem. Soc. 128, 3896–3897.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZou, R. Q., Sakurai, H. & Xu, Q. (2006). Angew. Chem., Int. Ed. 45, 2542–2546.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1551-m1552
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds