organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl­pyrazine 1,4-dioxide

aAllegheny College, Chemistry Department, 520 North Main St., Meadville, PA 16335, USA
*Correspondence e-mail: jknaust@allegheny.edu

(Received 2 November 2009; accepted 4 November 2009; online 7 November 2009)

The title compound, C5H6N2O2, was prepared from 2-methyl­pyrazine, acetic acid and hydrogen peroxide. In the crystal, ππ stacking inter­actions between neighboring mol­ecules are observed, with a centroid–centroid distance of 3.7370 Å, an inter­planar distance of 3.167 Å, and a slippage of 1.984 Å. Each mol­ecule is linked to four neighbors through C—H⋯O hydrogen-bonding inter­actions, forming one-dimensional ribbons.

Related literature

For the synthesis of 2,2′-bipyridine N,N'-dioxide, see: Simpson et al. (1963[Simpson, P. G., Vinciguerra, A. & Quagliano, J. V. (1963). Inorg. Chem. 2, 282-286.]). For the synthesis of lanthanide coordination networks with pyrazine N,N'-dioxide, see: Cardoso et al. (2001[Cardoso, M. C. C., Zinner, L. B., Zukerman-Scheptor, J., Araújo Melo, D. M. & Vincentini, G. J. (2001). J. Alloys Compd, 323-324, 22-25.]); Sun et al. (2004[Sun, H. L., Gao, S., Ma, B. Q., Chang, F. & Fu, W. F. (2004). Microporous Mesoporous Mater. 73, 89-95.]). For the use of 2-methyl­pyrazine 1,4-dioxide in the synthesis of a cadmium (II) coordination network, see: Shi et al. (2006[Shi, J. M., Zhang, F. X., Zhang, X., Xu, H. Y., Lui, L. D. & Ma, J. P. (2006). Chin. J. Struct. Chem. 20, 1238-1242.]). For the use of 2-methyl­pyrazine 1,4-dioxide in the synthesis of several mol­ecular complexes, see: Sun et al. (2005[Sun, Y.-M., Shi, J.-M. & Zhang, X. (2005). Acta Cryst. E61, m1501-m1502.]); Xu et al. (2005a[Xu, W., Shi, J. M. & Zhang, X. (2005a). Acta Cryst. E61, m854-m855.],b[Xu, W., Shi, J.-M. & Zhang, X. (2005b). Acta Cryst. E61, m2194-m2195.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6N2O2

  • Mr = 126.12

  • Orthorhombic, P b c a

  • a = 6.3953 (9) Å

  • b = 12.2472 (18) Å

  • c = 13.6613 (19) Å

  • V = 1070.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 173 K

  • 0.53 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.763, Tmax = 1.000

  • 5556 measured reflections

  • 1708 independent reflections

  • 1407 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.122

  • S = 1.07

  • 1708 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.93 2.31 3.2224 (16) 165
C2—H2⋯O2ii 0.93 2.23 3.1405 (17) 167
C3—H3⋯O1iii 0.93 2.29 3.2090 (15) 168
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) x+1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: X-SEED.

Supporting information


Comment top

The use of pyrazine N,N'-dioxide in the synthesis of lanthanide coordination networks has been of recent interest (Cardoso et al. (2001), Sun et al. (2004)). Shi et al. (2006) recently reported the use 2-methylpyrazine 1,4-dioxide in the synthesis of a cadmium (II) coordination network, and Sun et al. (2005), Xu et al. (2005a), and Xu et al. (2005b) report its use in the synthesis of several molecular complexes. The title compound was prepared using the reaction the conditions described by Simpson et al. (1963) to prepare 2,2'-bipyridine N,N'-dioxide.

The asymmetric unit of the title compound contains one 2-methylpyrazine 1,4-dioxide molecule (Figure 1). π-π stacking interactions with a centroid to centroid distance of 3.7370 Å, an interplanar distance of 3.167 Å, and a slippage of 1.984 Å. are observed between neighboring N-oxide molecules [symmetry code: -x + 1, -y + 1, -z + 1] (Figure 2). The title compound forms six C—H···O hydrogen bonds with four neighboring N-oxide molecules, and these hydrogen bonding interactions result in the formation of one-dimensional ribbons that propagate parallel to the a axis (Figure 4). As seen in the packing diagram, each one-dimensional ribbon is surrounded by six similar ribbons. (Figure 5)

Related literature top

For the synthesis of 2,2'-bipyridine N,N'-dioxide, see: Simpson et al. (1963). For the synthesis of lanthanide coordination networks with pyrazine N,N'-dioxide, see: Cardoso et al. (2001); Sun et al. (2004). For the use of 2-methylpyrazine 1,4-dioxide in the synthesis of a cadmium (II) coordination network, see: Shi et al. (2006). For the use of 2-methylpyrazine 1,4-dioxide in the synthesis of several molecular complexes, see: Sun et al. (2005); Xu et al. (2005a,b).

Experimental top

2-Methylpyrazine (5.871 ml, 64.0 mmol), acetic acid (75 ml), and 30% hydrogen peroxide (13 ml) were heated at 343–353 K for 3 h. Additional hydrogen peroxide (9 ml) was added, and heating was continued. After an additional 19 h of heating the solution was cooled to room temperature. Crystals formed upon the addition of acetone (1L) and cooling to 273 K, and were recrystallized from hot water by addition of excess acetone and cooling to 273 K.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. π-π interactions between neighboring 2-methylpyrazine 1,4-dioxide molecules.
[Figure 3] Fig. 3. C—H···O hydrogen bonding interactions between neighboring 2-methylpyrazine 1,4-dioxide molecules. Hydrogen bonds are shown as dashed lines. Symmetry codes: (i) x - 1, y, z; (ii) x - 1/2, y, -z + 3/2; (iii) x + 1, y, z; (iv) x + 1/2, y, -z + 3/2.
[Figure 4] Fig. 4. Packing of the title compound viewed down the a axis. Color scheme indicates individual C—H···O hydrogen bonded ribbons. Hydrogen bonds are shown as dashed lines
2-Methylpyrazine 1,4-dioxide top
Crystal data top
C5H6N2O2F(000) = 528
Mr = 126.12Dx = 1.566 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1890 reflections
a = 6.3953 (9) Åθ = 3.0–31.5°
b = 12.2472 (18) ŵ = 0.12 mm1
c = 13.6613 (19) ÅT = 173 K
V = 1070.0 (3) Å3Rod, colorless
Z = 80.53 × 0.20 × 0.15 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1708 independent reflections
Radiation source: fine-focus sealed tube1407 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 31.8°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 98
Tmin = 0.763, Tmax = 1.000k = 178
5556 measured reflectionsl = 1119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.6359P]
where P = (Fo2 + 2Fc2)/3
1708 reflections(Δ/σ)max < 0.001
83 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C5H6N2O2V = 1070.0 (3) Å3
Mr = 126.12Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 6.3953 (9) ŵ = 0.12 mm1
b = 12.2472 (18) ÅT = 173 K
c = 13.6613 (19) Å0.53 × 0.20 × 0.15 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1708 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1407 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 1.000Rint = 0.025
5556 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.07Δρmax = 0.45 e Å3
1708 reflectionsΔρmin = 0.31 e Å3
83 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33101 (13)0.64269 (8)0.41676 (7)0.0164 (2)
O20.99921 (14)0.59296 (8)0.64921 (7)0.0183 (2)
N10.49403 (15)0.63273 (8)0.47271 (8)0.0122 (2)
N20.83721 (15)0.60672 (9)0.59294 (8)0.0128 (2)
C10.47150 (19)0.62449 (10)0.57203 (9)0.0136 (2)
H10.33860.62790.59950.016*
C20.64141 (19)0.61132 (10)0.63137 (9)0.0142 (2)
H20.62300.60550.69870.017*
C30.86033 (18)0.61629 (10)0.49464 (9)0.0126 (2)
H30.99400.61410.46790.015*
C40.69092 (18)0.62919 (10)0.43327 (9)0.0125 (2)
C50.7106 (2)0.63969 (11)0.32565 (9)0.0165 (2)
H5A0.64390.70590.30460.025*
H5B0.64480.57830.29460.025*
H5C0.85590.64170.30800.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0092 (4)0.0223 (5)0.0177 (4)0.0005 (3)0.0044 (3)0.0008 (3)
O20.0112 (4)0.0298 (5)0.0140 (4)0.0004 (3)0.0053 (3)0.0002 (4)
N10.0090 (4)0.0139 (4)0.0138 (5)0.0001 (3)0.0009 (4)0.0004 (3)
N20.0103 (4)0.0169 (5)0.0113 (5)0.0005 (3)0.0013 (4)0.0003 (4)
C10.0118 (5)0.0155 (5)0.0136 (5)0.0000 (4)0.0027 (4)0.0001 (4)
C20.0137 (5)0.0167 (5)0.0122 (5)0.0006 (4)0.0026 (4)0.0006 (4)
C30.0097 (4)0.0160 (5)0.0120 (5)0.0007 (4)0.0013 (4)0.0006 (4)
C40.0104 (5)0.0143 (5)0.0126 (5)0.0000 (4)0.0008 (4)0.0004 (4)
C50.0142 (5)0.0242 (6)0.0112 (5)0.0008 (4)0.0007 (4)0.0015 (5)
Geometric parameters (Å, º) top
O1—N11.2985 (13)C2—H20.9300
O2—N21.3011 (13)C3—C41.3789 (16)
N1—C11.3681 (16)C3—H30.9300
N1—C41.3703 (15)C4—C51.4813 (18)
N2—C31.3561 (16)C5—H5A0.9600
N2—C21.3590 (15)C5—H5B0.9600
C1—C21.3653 (17)C5—H5C0.9600
C1—H10.9300
O1—N1—C1120.41 (10)N2—C3—C4121.75 (11)
O1—N1—C4120.62 (10)N2—C3—H3119.1
C1—N1—C4118.97 (10)C4—C3—H3119.1
O2—N2—C3120.63 (10)N1—C4—C3119.11 (11)
O2—N2—C2120.72 (10)N1—C4—C5117.75 (11)
C3—N2—C2118.65 (10)C3—C4—C5123.14 (11)
C2—C1—N1120.92 (11)C4—C5—H5A109.5
C2—C1—H1119.5C4—C5—H5B109.5
N1—C1—H1119.5H5A—C5—H5B109.5
N2—C2—C1120.59 (11)C4—C5—H5C109.5
N2—C2—H2119.7H5A—C5—H5C109.5
C1—C2—H2119.7H5B—C5—H5C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.932.313.2224 (16)165
C2—H2···O2ii0.932.233.1405 (17)167
C3—H3···O1iii0.932.293.2090 (15)168
Symmetry codes: (i) x1, y, z; (ii) x1/2, y, z+3/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC5H6N2O2
Mr126.12
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)6.3953 (9), 12.2472 (18), 13.6613 (19)
V3)1070.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.53 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.763, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5556, 1708, 1407
Rint0.025
(sin θ/λ)max1)0.742
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.122, 1.07
No. of reflections1708
No. of parameters83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.31

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.932.313.2224 (16)165.3
C2—H2···O2ii0.932.233.1405 (17)166.5
C3—H3···O1iii0.932.293.2090 (15)168.4
Symmetry codes: (i) x1, y, z; (ii) x1/2, y, z+3/2; (iii) x+1, y, z.
 

Acknowledgements

The authors are thankful to Allegheny College for providing funding in support of this research. The diffractometer was funded by the NSF (grant No. 0087210), the Ohio Board of Regents (grant No. CAP-491) and by Youngstown State University. The authors would also like to acknowledge the STaRBURSTT CyberInstrumentation Consortium for assistance with the crystallography.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.  CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCardoso, M. C. C., Zinner, L. B., Zukerman-Scheptor, J., Araújo Melo, D. M. & Vincentini, G. J. (2001). J. Alloys Compd, 323–324, 22–25.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J. M., Zhang, F. X., Zhang, X., Xu, H. Y., Lui, L. D. & Ma, J. P. (2006). Chin. J. Struct. Chem. 20, 1238–1242.  Google Scholar
First citationSimpson, P. G., Vinciguerra, A. & Quagliano, J. V. (1963). Inorg. Chem. 2, 282–286.  CrossRef CAS Web of Science Google Scholar
First citationSun, H. L., Gao, S., Ma, B. Q., Chang, F. & Fu, W. F. (2004). Microporous Mesoporous Mater. 73, 89–95.  Web of Science CSD CrossRef CAS Google Scholar
First citationSun, Y.-M., Shi, J.-M. & Zhang, X. (2005). Acta Cryst. E61, m1501–m1502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, W., Shi, J. M. & Zhang, X. (2005a). Acta Cryst. E61, m854–m855.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, W., Shi, J.-M. & Zhang, X. (2005b). Acta Cryst. E61, m2194–m2195.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds