metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1701-m1702

Di­aqua­bis­{[1-hydr­­oxy-2-(1H-imidazol-3-ium-1-yl)ethane-1,1-di­yl]bis­­(hydrogen phospho­nato)}manganese(II)

aJiangsu Key Laboratory for the Chemistry of Low-dimensional Materials, Department of Chemistry, Huaiyin Teachers College, 111 West Changjiang Road, Huaian 223300, Jiangsu, People's Republic of China
*Correspondence e-mail: overloadzz@hotmail.com

(Received 20 November 2009; accepted 24 November 2009; online 28 November 2009)

In the title compound, [Mn(C5H9N2O7P2)2(H2O)2], the MnII atom (site symmetry [\overline{1}]) is coordinated by four phos­pho­n­ate O atoms from a pair of partially deprotonated 1-hydr­oxy-2-(imidazol-3-yl)ethane-1,1-bis­phophonic acid ligands (imhedpH3) and two water mol­ecules, resulting in a slightly distorted trans-MnO6 octa­hedral geometry for the metal ion. In the ligands, the imidazole units are protonated and two of the hydr­oxy O atoms of the phospho­nate groups are deprotonated and chelate the MnII, thus forming the neutral mol­ecule of the title compound. The two protonated O atoms within the phospho­nate groups of one imhedpH3 ligand act as hydrogen-bond acceptors for a bifurcated hydrogen bond originating from the coordinated water mol­ecule. The phospho­nate units of neigboring mol­ecules are connected with their equivalents in neighboring mol­ecules via two types of inversion-symmetric hydrogen-bonding arrangements with four and two strong O—H⋯O hydrogen bonds, respectively. The two inter­actions connect mol­ecules into infinite chains along [111] and [110], in combination forming a tightly hydrogen-bonded three-dimensional supra­molecular network. This network is further stabilized by additional hydrogen bonds between the protonated imidazole units and one of the coordinated P—O O atoms and by additional O—H⋯O hydrogen bonds between the water mol­ecules and the P=O O atoms of neigboring mol­ecules.

Related literature

For a review of the structures and applications of lanthanide phospho­nates, see: Mao (2007[ Mao, J.-G. (2007). Coord. Chem. Rev. 251, 1493-1520.]). For other complexes based on the imhedpH4 ligand, see: Cao et al. (2007[ Cao, D.-K., Li, Y.-Z. & Zheng, L.-M. (2007). Inorg. Chem. 46, 7571-7578.], 2008[ Cao, D.-K., Xie, X.-J., Li, Y.-Z. & Zheng, L.-M. (2008). Dalton Trans. pp. 5008-5015.]). For the structures and properties of some metal organophospho­nates, see: Rao et al. (2004[ Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1468.]); Yang et al. (2009[ Yang, T.-H., Liao, Y., Zheng, L.-M., Dinnebier, R. E., Su, Y.-H. & Ma, J. (2009). Chem. Commun. pp. 3023-3025.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C5H9N2O7P2)2(H2O)2]

  • Mr = 633.14

  • Triclinic, [P \overline 1]

  • a = 7.4408 (17) Å

  • b = 8.566 (2) Å

  • c = 9.680 (2) Å

  • α = 105.366 (4)°

  • β = 110.865 (4)°

  • γ = 97.461 (4)°

  • V = 538.4 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 153 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[ Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.788, Tmax = 0.825

  • 2637 measured reflections

  • 1829 independent reflections

  • 1543 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.135

  • S = 0.99

  • 1829 reflections

  • 175 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4i 0.88 1.85 2.718 (5) 167
O7—H7A⋯O5ii 0.85 (5) 2.07 (5) 2.889 (4) 162 (5)
O6—H6A⋯O5ii 0.84 (5) 1.82 (5) 2.653 (4) 167 (5)
O3—H3A⋯O2iii 0.85 (5) 1.74 (5) 2.573 (4) 167 (5)
O8—H8A⋯O2iv 0.86 (6) 1.88 (6) 2.707 (5) 162 (5)
O8—H8B⋯O3 0.85 (6) 2.32 (6) 3.042 (5) 143 (5)
O8—H8B⋯O6 0.85 (6) 2.59 (6) 3.124 (5) 122 (5)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[ Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[ Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[ Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[ Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Organophosphonic acids have attracted much attention in the field of organic-inorganic hybrid materials because of their flexible coordination modes and strong coordination ability (Mao 2007; Rao et. al. 2008; Yang et al. 2009). Compared to other organophosphonic acid derivatives, there are only few complexes of metal-organic compounds with 1-hydroxy-2-(imidazol-3-yl)ethane-1,1-bisphophonic acid (imhedpH4) and its anions as the ligand (Cao et al. 2007; Cao et al. 2008). Herein, we thus report the synthesis and structure of the title compound, a manganese complex of the monoanion of the aformentioned acid.

The title compound crystallizes in the triclinic system with the space group P1. The MnII ion adopts a slightly distorted octahedral geometry and is located on a crystallographic inversion center. Two pairs of phosphonate oxygen atoms (O1, O4, O1i, O4i; symmetry code: i, –x, –y, –z) from two equivalent imhedpH3- ligands define the equatorial plane, while two equivalent water molecules (O8 and O8i) occupy the axial sites. The Mn-O bond lengths are in the range of 2.118 (3)-2.218 (3) Å. In the equatorial plane, the O—Mn—O bond angles are 88.35 (11)-91.65 (11)°. The two imhedpH3- ligands act as bidentate chelating ligands towards the Mn cation via the two deprotonated phosphonate oxygen atoms O1 and O4, while two of the remaining four phosphonate oxygens are protonated [P1—O3 = 1.565 (3) Å and P2—O6 = 1.572 (3) Å]. These two protonated O atoms O3 and O6 act as a hydrogen bond acceptors for a bifurcated H bond from the coordinated water molecule (O8, see Table 1 for numerical values).

The phosphonate units are connected with their equivalents in neighboring molecules via two types of inversion symmetric hydrogen bonding arrangements (Fig. 2). Phosphonate units of P atom P1 are connecting neighboring molecules along the diagonal of the unit cell by means of four strong O—H···O hydrogen bonds between the P—O—H (O6), C—O—H (O7) and PO units (O5) of the imhedpH3- ligands (Table 1). Dimeric P—O—H···OP connections are formed between the phosphonate units of P2 in neighboring molecules involving O2 and O3. This second interaction connects molecules along the {1 1 0} direction, and both of these strong hydrogen bonding interactions lead to the formation of infinite chains, and in combination to a tightly hydrogen bonded three-dimensional supramolecular network (Fig. 3). This network is further stabilized by additional hydrogen bonds between the protonated imidazole units towards one of the coordinated P-O oxygen atoms (O4) and by additional O—H···O hydrogen bonds between the water molecule and PO oxygen atoms (O2) of neigboring molecules (Table 1).

Related literature top

For a review of the structures and applications of lanthanide phosphonates, see: Mao (2007). For other complexes based on the imhedpH4 ligand, see: Cao et al. (2007, 2008). For the structures and properties of some metal organophosphonates, see: Rao et al. (2004); Yang et al. (2009).

Experimental top

The title compound was prepared by the hydrothermal reaction of a mixture of MnSO4 (0.1 mmol), imhedpH4 (0.1 mmol) and H2O (8.0 mL) in a Teflon-lined stainless steel autoclave (25 ml), which was heated to 413 K for 48 h. Block-shaped light-pink crystals were collected (yield: 48%, based on imhedpH4). Anal. calcd for C10H22MnN4O16P4 (633.13): C 18.97, H 3.50, N 8.85%; found: C 19.06, H 3.71, N 8.90%.

Refinement top

All non-hydrogen atoms were found in Fourier maps and were refined anisotropically. Hydrogen atoms attached to C and N atoms were positioned geometrically with bond distances of 0.95 or 0.99 Å for C—H and 0.88 Å for N—H. Water and hydroxy H atoms were located in a difference Fourier map and refined with distance restraints on all O—H bond lengths with distances of 0.85 (1) Å, and the H···H distance within the water molecule was restrained to 1.55 (2) Å. The isotropic displacement parameters of H atoms are related to the non-H atom to which they are bonded, viz. Uiso(H) = 1.2 Ueq(parent).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular view of the title compound with atomic labeling scheme (50% probability, symmetry code: i, –x, –y, –z).
[Figure 2] Fig. 2. A view of the hydrogen bonding interactions in the structure of the title compound based on its asymmetric unit. Hydrogen bonding interactions within the centrosymmetric units (see comment) are represented by black dashed lines, other as dashed yellow lines (symmetry codes: i, –x, –y, –z; ii, 1–x, 1–y, 1–z; iii, 1–x, 1–y, –z; iv, –1+x, y, z; v, 1+x, y, z; vi, 1–x, –y, 1–z).
[Figure 3] Fig. 3. Packing diagram of the title compound.
Diaquabis{[1-hydroxy-2-(1H-imidazol-3-ium-1-yl)ethane-1,1- diyl]bis(hydrogen phosphonato)}manganese(II) top
Crystal data top
[Mn(C5H9N2O7P2)2(H2O)2]Z = 1
Mr = 633.14F(000) = 323
Triclinic, P1Dx = 1.953 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4408 (17) ÅCell parameters from 584 reflections
b = 8.566 (2) Åθ = 2.4–24.6°
c = 9.680 (2) ŵ = 1.00 mm1
α = 105.366 (4)°T = 153 K
β = 110.865 (4)°Block, light pink
γ = 97.461 (4)°0.25 × 0.20 × 0.20 mm
V = 538.4 (2) Å3
Data collection top
Bruker SMART APEXII
diffractometer
1829 independent reflections
Radiation source: fine-focus sealed tube1543 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 84
Tmin = 0.788, Tmax = 0.825k = 1010
2637 measured reflectionsl = 911
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0806P)2 + 0.0364P]
where P = (Fo2 + 2Fc2)/3
1829 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Mn(C5H9N2O7P2)2(H2O)2]γ = 97.461 (4)°
Mr = 633.14V = 538.4 (2) Å3
Triclinic, P1Z = 1
a = 7.4408 (17) ÅMo Kα radiation
b = 8.566 (2) ŵ = 1.00 mm1
c = 9.680 (2) ÅT = 153 K
α = 105.366 (4)°0.25 × 0.20 × 0.20 mm
β = 110.865 (4)°
Data collection top
Bruker SMART APEXII
diffractometer
1829 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1543 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 0.825Rint = 0.029
2637 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.49 e Å3
1829 reflectionsΔρmin = 0.46 e Å3
175 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7059 (7)0.0407 (6)0.4433 (6)0.0313 (11)
H10.59570.05410.39330.038*
C20.9765 (8)0.2242 (6)0.6170 (6)0.0411 (13)
H21.08980.28120.71250.049*
C30.9192 (7)0.2695 (6)0.4880 (5)0.0330 (12)
H30.98500.36320.47430.040*
C40.6265 (7)0.1604 (6)0.2269 (5)0.0263 (10)
H4A0.52890.05110.16460.032*
H4B0.71330.17680.17190.032*
C50.5147 (6)0.2977 (5)0.2313 (5)0.0186 (9)
Mn10.00000.00000.00000.0188 (3)
N10.7483 (5)0.1543 (4)0.3809 (4)0.0231 (8)
N20.8436 (7)0.0832 (5)0.5856 (5)0.0393 (11)
H2A0.84850.02790.65110.047*
O10.2208 (4)0.1161 (3)0.0561 (3)0.0218 (7)
O20.5292 (4)0.2914 (3)0.0465 (3)0.0212 (7)
O30.2772 (4)0.4247 (4)0.0239 (4)0.0236 (7)
H3A0.355 (7)0.511 (6)0.031 (5)0.028*
O40.1983 (4)0.1153 (4)0.2449 (3)0.0256 (7)
O50.4729 (4)0.3069 (4)0.5030 (3)0.0258 (7)
O60.2356 (5)0.4203 (4)0.3166 (3)0.0258 (7)
H6A0.316 (7)0.515 (6)0.369 (6)0.031*
O70.6604 (5)0.4552 (4)0.3074 (4)0.0274 (8)
H7A0.616 (7)0.534 (6)0.347 (6)0.033*
O80.1140 (6)0.2247 (5)0.0097 (5)0.0421 (10)
H8A0.232 (9)0.226 (7)0.018 (7)0.051*
H8B0.021 (9)0.314 (7)0.028 (7)0.051*
P10.37848 (16)0.27554 (13)0.02248 (13)0.0187 (3)
P20.34950 (16)0.27977 (13)0.33400 (12)0.0203 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.032 (3)0.032 (3)0.038 (3)0.011 (2)0.017 (2)0.020 (2)
C20.041 (3)0.036 (3)0.030 (3)0.008 (3)0.003 (2)0.011 (2)
C30.031 (3)0.029 (3)0.030 (3)0.001 (2)0.004 (2)0.011 (2)
C40.027 (3)0.030 (3)0.020 (2)0.013 (2)0.008 (2)0.006 (2)
C50.015 (2)0.020 (2)0.016 (2)0.0023 (18)0.0028 (18)0.0052 (17)
Mn10.0177 (5)0.0178 (5)0.0178 (5)0.0005 (4)0.0058 (4)0.0047 (4)
N10.021 (2)0.025 (2)0.022 (2)0.0057 (16)0.0065 (17)0.0092 (16)
N20.052 (3)0.045 (3)0.031 (2)0.016 (2)0.017 (2)0.026 (2)
O10.0219 (17)0.0240 (17)0.0183 (16)0.0013 (13)0.0098 (13)0.0051 (13)
O20.0197 (16)0.0242 (16)0.0232 (16)0.0056 (13)0.0111 (13)0.0099 (13)
O30.0211 (17)0.0222 (17)0.0342 (18)0.0055 (13)0.0143 (15)0.0155 (14)
O40.0316 (18)0.0241 (17)0.0153 (16)0.0009 (14)0.0062 (14)0.0061 (13)
O50.0251 (17)0.0299 (18)0.0168 (16)0.0001 (14)0.0063 (14)0.0057 (13)
O60.0223 (18)0.0273 (18)0.0225 (17)0.0041 (14)0.0080 (14)0.0027 (14)
O70.0222 (17)0.0244 (18)0.0294 (18)0.0004 (14)0.0095 (15)0.0035 (14)
O80.023 (2)0.026 (2)0.077 (3)0.0073 (16)0.021 (2)0.0163 (19)
P10.0175 (6)0.0197 (6)0.0188 (6)0.0028 (5)0.0078 (5)0.0065 (5)
P20.0211 (6)0.0205 (6)0.0162 (6)0.0009 (5)0.0073 (5)0.0038 (5)
Geometric parameters (Å, º) top
C1—N21.309 (6)Mn1—O42.159 (3)
C1—N11.334 (6)Mn1—O4i2.159 (3)
C1—H10.9500Mn1—O8i2.213 (4)
C2—N21.345 (6)Mn1—O82.213 (4)
C2—C31.347 (6)N2—H2A0.8800
C2—H20.9500O1—P11.489 (3)
C3—N11.363 (6)O2—P11.505 (3)
C3—H30.9500O3—P11.565 (3)
C4—N11.462 (5)O3—H3A0.85 (5)
C4—C51.526 (6)O4—P21.499 (3)
C4—H4A0.9900O5—P21.499 (3)
C4—H4B0.9900O6—P21.571 (3)
C5—O71.437 (5)O6—H6A0.84 (5)
C5—P21.850 (4)O7—H7A0.85 (5)
C5—P11.854 (4)O8—H8A0.86 (6)
Mn1—O12.116 (3)O8—H8B0.85 (6)
Mn1—O1i2.116 (3)
N2—C1—N1107.7 (4)O1—Mn1—O884.33 (13)
N2—C1—H1126.2O1i—Mn1—O895.67 (13)
N1—C1—H1126.2O4—Mn1—O893.01 (13)
N2—C2—C3107.3 (4)O4i—Mn1—O886.99 (13)
N2—C2—H2126.3O8i—Mn1—O8180.0
C3—C2—H2126.3C1—N1—C3108.7 (4)
C2—C3—N1106.5 (4)C1—N1—C4125.9 (4)
C2—C3—H3126.8C3—N1—C4125.4 (4)
N1—C3—H3126.8C1—N2—C2109.9 (4)
N1—C4—C5114.6 (3)C1—N2—H2A125.1
N1—C4—H4A108.6C2—N2—H2A125.1
C5—C4—H4A108.6P1—O1—Mn1134.48 (17)
N1—C4—H4B108.6P1—O3—H3A111 (3)
C5—C4—H4B108.6P2—O4—Mn1132.06 (17)
H4A—C4—H4B107.6P2—O6—H6A110 (3)
O7—C5—C4107.3 (3)C5—O7—H7A113 (3)
O7—C5—P2111.1 (3)Mn1—O8—H8A121 (4)
C4—C5—P2112.1 (3)Mn1—O8—H8B113 (4)
O7—C5—P1108.2 (3)H8A—O8—H8B123 (5)
C4—C5—P1104.7 (3)O1—P1—O2115.48 (17)
P2—C5—P1113.0 (2)O1—P1—O3108.67 (17)
O1—Mn1—O1i180.00 (17)O2—P1—O3110.18 (16)
O1—Mn1—O488.32 (11)O1—P1—C5108.75 (17)
O1i—Mn1—O491.68 (11)O2—P1—C5107.50 (18)
O1—Mn1—O4i91.68 (11)O3—P1—C5105.82 (18)
O1i—Mn1—O4i88.32 (11)O5—P2—O4115.53 (17)
O4—Mn1—O4i180.00 (17)O5—P2—O6111.28 (17)
O1—Mn1—O8i95.67 (13)O4—P2—O6107.09 (18)
O1i—Mn1—O8i84.33 (13)O5—P2—C5109.22 (18)
O4—Mn1—O8i86.99 (13)O4—P2—C5107.87 (18)
O4i—Mn1—O8i93.01 (13)O6—P2—C5105.31 (18)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4ii0.881.852.718 (5)167
O7—H7A···O5iii0.85 (5)2.07 (5)2.889 (4)162 (5)
O6—H6A···O5iii0.84 (5)1.82 (5)2.653 (4)167 (5)
O3—H3A···O2iv0.85 (5)1.74 (5)2.573 (4)167 (5)
O8—H8A···O2v0.86 (6)1.88 (6)2.707 (5)162 (5)
O8—H8B···O30.85 (6)2.32 (6)3.042 (5)143 (5)
O8—H8B···O60.85 (6)2.59 (6)3.124 (5)122 (5)
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C5H9N2O7P2)2(H2O)2]
Mr633.14
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)7.4408 (17), 8.566 (2), 9.680 (2)
α, β, γ (°)105.366 (4), 110.865 (4), 97.461 (4)
V3)538.4 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.788, 0.825
No. of measured, independent and
observed [I > 2σ(I)] reflections
2637, 1829, 1543
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.135, 0.99
No. of reflections1829
No. of parameters175
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.46

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.881.852.718 (5)167
O7—H7A···O5ii0.85 (5)2.07 (5)2.889 (4)162 (5)
O6—H6A···O5ii0.84 (5)1.82 (5)2.653 (4)167 (5)
O3—H3A···O2iii0.85 (5)1.74 (5)2.573 (4)167 (5)
O8—H8A···O2iv0.86 (6)1.88 (6)2.707 (5)162 (5)
O8—H8B···O30.85 (6)2.32 (6)3.042 (5)143 (5)
O8—H8B···O60.85 (6)2.59 (6)3.124 (5)122 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x1, y, z.
 

References

First citation Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citation Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citation Cao, D.-K., Li, Y.-Z. & Zheng, L.-M. (2007). Inorg. Chem. 46, 7571–7578.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citation Cao, D.-K., Xie, X.-J., Li, Y.-Z. & Zheng, L.-M. (2008). Dalton Trans. pp. 5008–5015.  Web of Science CSD CrossRef Google Scholar
First citation Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Mao, J.-G. (2007). Coord. Chem. Rev. 251, 1493–1520.  Web of Science CrossRef CAS Google Scholar
First citation Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1468.  Web of Science CrossRef CAS Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Spek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Yang, T.-H., Liao, Y., Zheng, L.-M., Dinnebier, R. E., Su, Y.-H. & Ma, J. (2009). Chem. Commun. pp. 3023–3025.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1701-m1702
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds