organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cholest-5-en-3β-yl N-phenyl­carbamate

aLaboratoire de Matériaux et de Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis–El Manar, 2092 El Manar II Tunis, Tunisia, bSchool of Industrial Technology, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia, and cUnité de Recherche de Chimie des Matériaux, ISSBAT, Université Tunis–Al Manar, 9 Rue Docteur Zouheir Safi, 1006 Tunis, Tunisia
*Correspondence e-mail: mohseng2002@yahoo.fr

(Received 6 October 2009; accepted 17 November 2009; online 28 November 2009)

In the title compound, C34H51NO2, the dihedral angle between the planes of the phenyl ring and the carbonyl group is 9.30 (2)°. No significant inter­molecular inter­actions are observed in the crystal structure. The C5H11 fragment is disordered over two positions with site occupancies of 0.611 (6) and 0.389 (6).

Related literature

Cholesterol esterase is responsible for the hydrolysis of dietary cholesterol esters, fat-soluble vitamin esters, phospho­lipids and triacyl­glycerols, see: Chiou et al. (2008[Chiou, S.-Y., Lin, M.-C., Hwang, M.-T., Chang, H.-G. & Lin, G. (2008). Protein J. 27, 276-282.]). Compounds containing a carbamate functionality are characterized as good inibitors of cholesterol esterase, see: Hosie et al. (1987[Hosie, L., Sutton, L. D. & Quinn, D. M. (1987). J. Biol. Chem. 262, 260-264.]). For comparative C—N bond lengths, see: Haramura et al. (2003[Haramura, M., Tanaka, A., Akimoto, T. & Hirayama, N. (2003). Anal. Sci. 19, x77-x78.]); Hökelek & Ergün (2008[Hökelek, T. & Ergün, Y. (2008). Anal. Sci. 24, x13-x14.]).

[Scheme 1]

Experimental

Crystal data
  • C34H51NO2

  • Mr = 505.75

  • Triclinic, P 1

  • a = 6.330 (5) Å

  • b = 10.419 (5) Å

  • c = 12.028 (5) Å

  • α = 82.922 (5)°

  • β = 89.137 (5)°

  • γ = 73.141 (5)°

  • V = 753.2 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.37 × 0.32 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.955, Tmax = 0.976

  • 5215 measured reflections

  • 3264 independent reflections

  • 2578 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.152

  • S = 1.06

  • 3264 reflections

  • 361 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenberg, 1999[Brandenberg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Cholesterol esterase is responsible for the hydrolysis of dietary cholesterol esters fat soluble vitamin ester, phospholipids and triacylglycerols (Chiou et al., 2008). Compounds containing a carbamate functionality are characterized as good inibitors of cholesterol esterase (Hosie et al., 1987). The molecular structure of (I) is shown in Fig. 2. The observed values for CAr—CAr [1.379 (6) Å], Csp3—Csp3 [1.530 (9) Å], Csp3—O [1.463 (4) Å] and Csp2—O [1.204 (4) Å], are in the expected ranges. The C—N average distance [1.380 (4) Å] are well within the range found for C8H15N3O7 and C16H12N2O2 (Haramura et al., 2003; Hökelek et al., 2008). The dihedral angle between the planes of the phenyl and carbonyl group is 9.30(0.23)°. In the crystal structure, no significant intermolecular interactions are observed.

Related literature top

Cholesterol esterase is responsible for the hydrolysis of dietary cholesterol esters, fat-soluble vitamin esters, phospholipids and triacylglycerols, see: Chiou et al. (2008). Compounds containing a carbamate functionality are characterized as good inibitors of cholesterol esterase, see: Hosie et al. (1987). For comparative C—N bond lengths, see: Haramura et al. (2003); Hökelek et al. (2008)

Experimental top

A mixture of cholesterol (1.93 g m 5 mmol) and phenylisocyanate (0.60 ml, 5 mmol) were taken in 40 ml of chloroform. Catalytic amount of HCl was added to it. The reaction mixture was refluxed on water bath for two hours then distilled under reduced pressure. The crude product thus obtained was crystallized from acetone - petroleum ether (9:1) mixture to afford the compound cholesterol 3-(phenylcarbamate) (Fig.1) as shining crystals (1.50 g m), melting point 160 0 C.

Refinement top

The structure was solved by direct methods with SHELX97 program, and refined anisotropically by the full-matrix least-squares methods for all non-H atoms. The positions of the H atoms were placed at geometrically idealized positions (C–H = 0.96 Å, N–H = 0.86 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(carrier atom). The disordered model was refined by using the tools available in SHELXL97 (Sheldrick, 2008). In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Chemical pathway of the formation of the cholesterol 3-(phenylcarbamate).
[Figure 2] Fig. 2. Molecular view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at 35% probabilit level.
[Figure 3] Fig. 3. Molecular view of the title compound.
Cholest-5-en-3β-yl N-phenylcarbamate top
Crystal data top
C34H51NO2Z = 1
Mr = 505.75F(000) = 278
Triclinic, P1Dx = 1.115 Mg m3
Hall symbol: P 1Melting point: 433 K
a = 6.330 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.419 (5) Åθ = 4.5–27.0°
c = 12.028 (5) ŵ = 0.07 mm1
α = 82.922 (5)°T = 293 K
β = 89.137 (5)°Prism, colourless
γ = 73.141 (5)°0.37 × 0.32 × 0.11 mm
V = 753.2 (8) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3264 independent reflections
Radiation source: sealed tube2578 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 27.0°, θmin = 4.5°
Absorption correction: multi-scan
(Coppens et al., 1965)
h = 88
Tmin = 0.955, Tmax = 0.976k = 1313
5215 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.1011P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3264 reflectionsΔρmax = 0.25 e Å3
361 parametersΔρmin = 0.22 e Å3
13 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.23 (3)
Crystal data top
C34H51NO2γ = 73.141 (5)°
Mr = 505.75V = 753.2 (8) Å3
Triclinic, P1Z = 1
a = 6.330 (5) ÅMo Kα radiation
b = 10.419 (5) ŵ = 0.07 mm1
c = 12.028 (5) ÅT = 293 K
α = 82.922 (5)°0.37 × 0.32 × 0.11 mm
β = 89.137 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3264 independent reflections
Absorption correction: multi-scan
(Coppens et al., 1965)
2578 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.976Rint = 0.020
5215 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05513 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.06Δρmax = 0.25 e Å3
3264 reflectionsΔρmin = 0.22 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O20.2523 (4)0.0541 (2)0.1416 (2)0.0718 (7)
O10.0134 (5)0.0218 (3)0.2290 (2)0.0774 (7)
N10.1371 (5)0.0948 (3)0.0663 (3)0.0663 (7)
H70.24060.08830.02060.080*
C10.0159 (5)0.1820 (3)0.0423 (3)0.0572 (7)
C20.0865 (7)0.2584 (4)0.0441 (3)0.0719 (9)
H20.21030.25080.08390.086*
C30.0254 (8)0.3463 (4)0.0720 (3)0.0836 (12)
H30.02220.39700.13080.100*
C40.2075 (8)0.3587 (4)0.0124 (4)0.0855 (12)
H40.28240.41840.03060.103*
C50.2777 (7)0.2832 (4)0.0732 (3)0.0780 (10)
H50.40140.29140.11290.094*
C60.1677 (6)0.1945 (3)0.1019 (3)0.0669 (8)
H60.21660.14380.16070.080*
C70.1109 (5)0.0195 (3)0.1525 (3)0.0575 (7)
C80.2412 (6)0.1471 (3)0.2247 (3)0.0614 (8)
H80.18460.11270.29490.074*
C90.0919 (6)0.2844 (4)0.1824 (3)0.0667 (8)
H9A0.05750.27950.17350.080*
H9B0.14050.31530.10980.080*
C100.0950 (5)0.3847 (3)0.2650 (3)0.0598 (7)
H10A0.03250.35750.33490.072*
H10B0.00130.47330.23500.072*
C110.3262 (4)0.3957 (3)0.2896 (2)0.0467 (6)
C120.4815 (5)0.2536 (3)0.3203 (2)0.0508 (6)
C130.4731 (5)0.1510 (3)0.2437 (3)0.0603 (7)
H13A0.53560.17300.17230.072*
H13B0.56230.06220.27620.072*
C140.6185 (5)0.2199 (3)0.4074 (3)0.0606 (7)
H140.70480.13030.42100.073*
C150.6460 (6)0.3144 (3)0.4860 (3)0.0620 (8)
H15A0.80230.29990.49960.074*
H15B0.58130.29350.55710.074*
C160.5397 (4)0.4628 (3)0.4424 (2)0.0470 (6)
H160.63390.49080.38480.056*
C170.3115 (4)0.4793 (3)0.3884 (2)0.0458 (6)
H170.22740.44200.44620.055*
C180.1833 (5)0.6304 (3)0.3603 (3)0.0542 (7)
H18A0.25130.66830.29670.065*
H18B0.03340.63730.33780.065*
C190.1740 (5)0.7154 (3)0.4559 (3)0.0526 (6)
H19A0.08940.68580.51650.063*
H19B0.09900.80930.42970.063*
C200.4049 (4)0.7038 (3)0.5001 (2)0.0457 (6)
C210.5166 (5)0.5505 (3)0.5344 (2)0.0482 (6)
H210.41990.52030.58940.058*
C220.7243 (5)0.5459 (3)0.5995 (3)0.0624 (8)
H22A0.77140.46410.65210.075*
H22B0.84390.55000.54910.075*
C230.6544 (6)0.6705 (4)0.6608 (3)0.0659 (8)
H23A0.75960.72220.64850.079*
H23B0.64800.64400.74070.079*
C240.4207 (5)0.7575 (3)0.6134 (2)0.0529 (7)
H240.31090.73220.66270.063*
C250.3864 (6)0.9096 (3)0.6144 (3)0.0625 (8)
H250.49840.93440.56630.075*
C320.4123 (6)0.4624 (3)0.1839 (3)0.0598 (7)
H32A0.30080.54300.15410.072*
H32B0.44720.40060.12880.072*
H32C0.54260.48510.20310.072*
C330.5342 (5)0.7645 (3)0.4101 (3)0.0565 (7)
H33A0.67250.76480.44160.068*
H33B0.45010.85540.38350.068*
H33C0.56120.71120.34890.068*
C340.1633 (9)0.9962 (4)0.5678 (4)0.0953 (13)
H34A0.04940.96590.60650.114*
H34B0.15350.98900.48940.114*
H34C0.14521.08870.57800.114*
C260.4242 (8)0.9410 (4)0.7323 (3)0.0761 (10)
H26A0.29700.93670.77700.091*
H26B0.55130.87140.76660.091*
C27A0.460 (4)1.0713 (18)0.7362 (16)0.101 (7)0.611 (6)
H27A0.31641.13830.72870.121*0.611 (6)
H27B0.54151.08920.67000.121*0.611 (6)
C28A0.576 (2)1.0972 (12)0.8337 (10)0.085 (3)0.611 (6)
H28A0.71771.02860.84350.102*0.611 (6)
H28B0.49131.08410.89990.102*0.611 (6)
C29A0.6166 (15)1.2323 (7)0.8311 (6)0.0817 (16)0.611 (6)
H29A0.68311.25020.75890.098*0.611 (6)
C30A0.410 (5)1.347 (2)0.838 (3)0.119 (3)0.611 (6)
H30A0.35351.34180.91200.143*0.611 (6)
H30B0.30081.34070.78530.143*0.611 (6)
H30C0.44221.43140.81930.143*0.611 (6)
C31A0.783 (2)1.2299 (12)0.9221 (10)0.130 (3)0.611 (6)
H31A0.78531.32060.92820.156*0.611 (6)
H31B0.92741.17710.90300.156*0.611 (6)
H31C0.74191.19060.99240.156*0.611 (6)
C27B0.476 (4)1.0808 (18)0.737 (2)0.066 (6)0.389 (6)
H27C0.61231.08110.69950.079*0.389 (6)
H27D0.35701.15540.70130.079*0.389 (6)
C28B0.496 (4)1.092 (2)0.8641 (17)0.085 (3)0.389 (6)
H28C0.35131.10510.89670.102*0.389 (6)
H28D0.59211.00760.90030.102*0.389 (6)
C29B0.587 (2)1.2088 (12)0.8899 (9)0.0817 (16)0.389 (6)
H29B0.60201.20330.97140.098*0.389 (6)
C30B0.424 (7)1.343 (4)0.849 (6)0.119 (3)0.389 (6)
H30D0.44331.41080.89090.143*0.389 (6)
H30E0.27631.33570.85770.143*0.389 (6)
H30F0.44741.36650.77070.143*0.389 (6)
C31B0.817 (3)1.2017 (19)0.8385 (16)0.130 (3)0.389 (6)
H31D0.81091.19500.75980.156*0.389 (6)
H31E0.92591.12380.87480.156*0.389 (6)
H31F0.85571.28190.84930.156*0.389 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0795 (17)0.0731 (14)0.0795 (15)0.0423 (13)0.0218 (12)0.0269 (12)
O10.0785 (16)0.0864 (17)0.0836 (16)0.0433 (14)0.0241 (13)0.0283 (13)
N10.0663 (17)0.0631 (15)0.0789 (17)0.0292 (13)0.0182 (13)0.0213 (13)
C10.0658 (19)0.0444 (14)0.0601 (16)0.0154 (13)0.0076 (14)0.0021 (12)
C20.080 (2)0.0641 (19)0.070 (2)0.0171 (17)0.0068 (17)0.0099 (15)
C30.108 (3)0.071 (2)0.073 (2)0.024 (2)0.021 (2)0.0192 (17)
C40.106 (3)0.073 (2)0.088 (3)0.043 (2)0.026 (2)0.0040 (19)
C50.087 (3)0.071 (2)0.085 (2)0.0402 (19)0.0092 (19)0.0018 (18)
C60.074 (2)0.0590 (17)0.0726 (19)0.0268 (16)0.0010 (16)0.0072 (15)
C70.0537 (16)0.0477 (14)0.0714 (19)0.0156 (13)0.0018 (14)0.0064 (13)
C80.0650 (19)0.0624 (17)0.0655 (18)0.0292 (15)0.0138 (15)0.0162 (14)
C90.0517 (17)0.069 (2)0.084 (2)0.0194 (16)0.0026 (15)0.0239 (17)
C100.0440 (15)0.0613 (17)0.0761 (19)0.0137 (14)0.0013 (13)0.0193 (14)
C110.0404 (13)0.0464 (13)0.0523 (14)0.0131 (11)0.0025 (11)0.0015 (11)
C120.0471 (14)0.0446 (13)0.0603 (15)0.0139 (11)0.0069 (12)0.0038 (11)
C130.0587 (18)0.0479 (15)0.0745 (19)0.0152 (13)0.0049 (14)0.0093 (13)
C140.0612 (18)0.0431 (13)0.0706 (18)0.0087 (12)0.0046 (14)0.0035 (12)
C150.0665 (19)0.0474 (15)0.0658 (17)0.0106 (14)0.0158 (15)0.0053 (13)
C160.0410 (13)0.0446 (13)0.0522 (14)0.0106 (11)0.0018 (11)0.0023 (10)
C170.0374 (13)0.0484 (13)0.0523 (14)0.0152 (11)0.0028 (11)0.0019 (11)
C180.0412 (14)0.0517 (14)0.0657 (16)0.0064 (12)0.0090 (12)0.0088 (12)
C190.0400 (14)0.0542 (15)0.0632 (16)0.0111 (12)0.0010 (12)0.0118 (12)
C200.0391 (13)0.0452 (13)0.0520 (14)0.0126 (11)0.0028 (11)0.0018 (11)
C210.0450 (14)0.0492 (14)0.0501 (14)0.0177 (12)0.0036 (11)0.0053 (11)
C220.0599 (17)0.0540 (15)0.0712 (18)0.0173 (14)0.0187 (15)0.0046 (13)
C230.0672 (19)0.0666 (18)0.0647 (17)0.0229 (16)0.0189 (14)0.0001 (14)
C240.0582 (17)0.0545 (15)0.0504 (14)0.0252 (13)0.0016 (12)0.0018 (12)
C250.071 (2)0.0567 (16)0.0629 (17)0.0242 (15)0.0028 (15)0.0037 (13)
C320.0684 (18)0.0551 (15)0.0560 (15)0.0217 (14)0.0056 (13)0.0012 (13)
C330.0571 (17)0.0515 (15)0.0602 (16)0.0189 (13)0.0036 (13)0.0034 (12)
C340.102 (3)0.069 (2)0.104 (3)0.001 (2)0.023 (2)0.024 (2)
C260.106 (3)0.066 (2)0.0658 (19)0.040 (2)0.0018 (19)0.0076 (15)
C27A0.132 (13)0.097 (12)0.085 (10)0.056 (9)0.020 (8)0.005 (7)
C28A0.112 (9)0.066 (3)0.085 (7)0.036 (5)0.006 (5)0.009 (4)
C29A0.126 (5)0.078 (3)0.051 (3)0.041 (3)0.011 (4)0.016 (3)
C30A0.146 (7)0.083 (3)0.133 (9)0.030 (4)0.023 (4)0.041 (4)
C31A0.156 (8)0.125 (6)0.122 (7)0.058 (6)0.027 (7)0.022 (5)
C27B0.098 (13)0.031 (6)0.079 (12)0.030 (7)0.029 (9)0.023 (6)
C28B0.112 (9)0.066 (3)0.085 (7)0.036 (5)0.006 (5)0.009 (4)
C29B0.126 (5)0.078 (3)0.051 (3)0.041 (3)0.011 (4)0.016 (3)
C30B0.146 (7)0.083 (3)0.133 (9)0.030 (4)0.023 (4)0.041 (4)
C31B0.156 (8)0.125 (6)0.122 (7)0.058 (6)0.027 (7)0.022 (5)
Geometric parameters (Å, º) top
O2—C71.332 (4)C22—C231.523 (5)
O2—C81.463 (4)C22—H22A0.9700
O1—C71.204 (4)C22—H22B0.9700
N1—C71.356 (4)C23—C241.567 (5)
N1—C11.405 (4)C23—H23A0.9700
N1—H70.8600C23—H23B0.9700
C1—C21.377 (5)C24—C251.537 (4)
C1—C61.386 (5)C24—H240.9800
C2—C31.384 (6)C25—C341.511 (6)
C2—H20.9300C25—C261.532 (5)
C3—C41.377 (7)C25—H250.9800
C3—H30.9300C32—H32A0.9600
C4—C51.364 (6)C32—H32B0.9600
C4—H40.9300C32—H32C0.9600
C5—C61.385 (5)C33—H33A0.9600
C5—H50.9300C33—H33B0.9600
C6—H60.9300C33—H33C0.9600
C8—C91.500 (5)C34—H34A0.9600
C8—C131.502 (5)C34—H34B0.9600
C8—H80.9800C34—H34C0.9600
C9—C101.532 (4)C26—C27A1.446 (19)
C9—H9A0.9700C26—C27B1.59 (2)
C9—H9B0.9700C26—H26A0.9700
C10—C111.536 (4)C26—H26B0.9700
C10—H10A0.9700C27A—C28A1.49 (2)
C10—H10B0.9700C27A—H27A0.9700
C11—C121.526 (4)C27A—H27B0.9700
C11—C321.541 (4)C28A—C29A1.499 (13)
C11—C171.544 (4)C28A—H28A0.9700
C12—C141.317 (4)C28A—H28B0.9700
C12—C131.508 (4)C29A—C30A1.50 (2)
C13—H13A0.9700C29A—C31A1.525 (13)
C13—H13B0.9700C29A—H29A0.9800
C14—C151.492 (5)C30A—H30A0.9600
C14—H140.9300C30A—H30B0.9600
C15—C161.525 (4)C30A—H30C0.9600
C15—H15A0.9700C31A—H31A0.9600
C15—H15B0.9700C31A—H31B0.9600
C16—C211.500 (4)C31A—H31C0.9600
C16—C171.547 (4)C27B—C28B1.56 (3)
C16—H160.9800C27B—H27C0.9700
C17—C181.545 (4)C27B—H27D0.9700
C17—H170.9800C28B—C29B1.55 (2)
C18—C191.527 (4)C28B—H28C0.9700
C18—H18A0.9700C28B—H28D0.9700
C18—H18B0.9700C29B—C30B1.50 (3)
C19—C201.529 (4)C29B—C31B1.56 (2)
C19—H19A0.9700C29B—H29B0.9800
C19—H19B0.9700C30B—H30D0.9600
C20—C331.532 (4)C30B—H30E0.9600
C20—C241.551 (4)C30B—H30F0.9600
C20—C211.553 (4)C31B—H31D0.9600
C21—C221.526 (4)C31B—H31E0.9600
C21—H210.9800C31B—H31F0.9600
C7—O2—C8116.7 (2)C20—C21—H21106.0
C7—N1—C1127.9 (3)C23—C22—C21104.1 (3)
C7—N1—H7116.1C23—C22—H22A110.9
C1—N1—H7116.1C21—C22—H22A110.9
C2—C1—C6119.5 (3)C23—C22—H22B110.9
C2—C1—N1117.5 (3)C21—C22—H22B110.9
C6—C1—N1123.0 (3)H22A—C22—H22B109.0
C1—C2—C3120.4 (4)C22—C23—C24107.4 (2)
C1—C2—H2119.8C22—C23—H23A110.2
C3—C2—H2119.8C24—C23—H23A110.2
C4—C3—C2119.9 (4)C22—C23—H23B110.2
C4—C3—H3120.0C24—C23—H23B110.2
C2—C3—H3120.0H23A—C23—H23B108.5
C5—C4—C3119.7 (4)C25—C24—C20119.0 (2)
C5—C4—H4120.1C25—C24—C23112.1 (3)
C3—C4—H4120.1C20—C24—C23103.1 (2)
C4—C5—C6121.0 (4)C25—C24—H24107.4
C4—C5—H5119.5C20—C24—H24107.4
C6—C5—H5119.5C23—C24—H24107.4
C5—C6—C1119.4 (3)C34—C25—C26110.4 (3)
C5—C6—H6120.3C34—C25—C24113.3 (3)
C1—C6—H6120.3C26—C25—C24111.0 (3)
O1—C7—O2125.1 (3)C34—C25—H25107.3
O1—C7—N1126.0 (3)C26—C25—H25107.3
O2—C7—N1108.8 (3)C24—C25—H25107.3
O2—C8—C9110.1 (3)C11—C32—H32A109.5
O2—C8—C13106.7 (3)C11—C32—H32B109.5
C9—C8—C13111.5 (3)H32A—C32—H32B109.5
O2—C8—H8109.5C11—C32—H32C109.5
C9—C8—H8109.5H32A—C32—H32C109.5
C13—C8—H8109.5H32B—C32—H32C109.5
C8—C9—C10110.1 (3)C20—C33—H33A109.5
C8—C9—H9A109.6C20—C33—H33B109.5
C10—C9—H9A109.6H33A—C33—H33B109.5
C8—C9—H9B109.6C20—C33—H33C109.5
C10—C9—H9B109.6H33A—C33—H33C109.5
H9A—C9—H9B108.2H33B—C33—H33C109.5
C9—C10—C11114.1 (2)C25—C34—H34A109.5
C9—C10—H10A108.7C25—C34—H34B109.5
C11—C10—H10A108.7H34A—C34—H34B109.5
C9—C10—H10B108.7C25—C34—H34C109.5
C11—C10—H10B108.7H34A—C34—H34C109.5
H10A—C10—H10B107.6H34B—C34—H34C109.5
C12—C11—C10108.6 (2)C27A—C26—C25114.6 (8)
C12—C11—C32108.7 (2)C27A—C26—C27B2.7 (17)
C10—C11—C32109.7 (3)C25—C26—C27B115.0 (9)
C12—C11—C17110.2 (2)C27A—C26—H26A108.6
C10—C11—C17108.5 (2)C25—C26—H26A108.6
C32—C11—C17111.2 (2)C27B—C26—H26A110.6
C14—C12—C13120.6 (3)C27A—C26—H26B108.6
C14—C12—C11123.2 (3)C25—C26—H26B108.6
C13—C12—C11116.1 (2)C27B—C26—H26B106.1
C8—C13—C12111.8 (3)H26A—C26—H26B107.6
C8—C13—H13A109.2C26—C27A—C28A120.6 (14)
C12—C13—H13A109.2C26—C27A—H27A107.2
C8—C13—H13B109.2C28A—C27A—H27A107.2
C12—C13—H13B109.2C26—C27A—H27B107.2
H13A—C13—H13B107.9C28A—C27A—H27B107.2
C12—C14—C15125.0 (3)H27A—C27A—H27B106.8
C12—C14—H14117.5C27A—C28A—C29A118.3 (11)
C15—C14—H14117.5C27A—C28A—H28A107.7
C14—C15—C16113.3 (2)C29A—C28A—H28A107.7
C14—C15—H15A108.9C27A—C28A—H28B107.7
C16—C15—H15A108.9C29A—C28A—H28B107.7
C14—C15—H15B108.9H28A—C28A—H28B107.1
C16—C15—H15B108.9C28A—C29A—C30A113.7 (15)
H15A—C15—H15B107.7C28A—C29A—C31A111.1 (8)
C21—C16—C15111.2 (2)C30A—C29A—C31A110.7 (16)
C21—C16—C17110.5 (2)C28A—C29A—H29A107.0
C15—C16—C17109.3 (2)C30A—C29A—H29A107.0
C21—C16—H16108.6C31A—C29A—H29A107.0
C15—C16—H16108.6C28B—C27B—C26105.2 (15)
C17—C16—H16108.6C28B—C27B—H27C110.7
C11—C17—C18114.2 (2)C26—C27B—H27C110.7
C11—C17—C16112.8 (2)C28B—C27B—H27D110.7
C18—C17—C16110.7 (2)C26—C27B—H27D110.7
C11—C17—H17106.2H27C—C27B—H27D108.8
C18—C17—H17106.2C29B—C28B—C27B114.6 (14)
C16—C17—H17106.2C29B—C28B—H28C108.6
C19—C18—C17114.8 (2)C27B—C28B—H28C108.6
C19—C18—H18A108.6C29B—C28B—H28D108.6
C17—C18—H18A108.6C27B—C28B—H28D108.6
C19—C18—H18B108.6H28C—C28B—H28D107.6
C17—C18—H18B108.6C30B—C29B—C28B110 (2)
H18A—C18—H18B107.5C30B—C29B—C31B110 (2)
C18—C19—C20111.6 (2)C28B—C29B—C31B113.5 (11)
C18—C19—H19A109.3C30B—C29B—H29B108.0
C20—C19—H19A109.3C28B—C29B—H29B108.0
C18—C19—H19B109.3C31B—C29B—H29B108.0
C20—C19—H19B109.3C29B—C30B—H30D109.5
H19A—C19—H19B108.0C29B—C30B—H30E109.5
C19—C20—C33110.6 (2)H30D—C30B—H30E109.5
C19—C20—C24117.2 (2)C29B—C30B—H30F109.5
C33—C20—C24110.7 (2)H30D—C30B—H30F109.5
C19—C20—C21105.9 (2)H30E—C30B—H30F109.5
C33—C20—C21111.9 (2)C29B—C31B—H31D109.5
C24—C20—C2199.9 (2)C29B—C31B—H31E109.5
C16—C21—C22118.3 (2)H31D—C31B—H31E109.5
C16—C21—C20115.7 (2)C29B—C31B—H31F109.5
C22—C21—C20103.9 (2)H31D—C31B—H31F109.5
C16—C21—H21106.0H31E—C31B—H31F109.5
C22—C21—H21106.0

Experimental details

Crystal data
Chemical formulaC34H51NO2
Mr505.75
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.330 (5), 10.419 (5), 12.028 (5)
α, β, γ (°)82.922 (5), 89.137 (5), 73.141 (5)
V3)753.2 (8)
Z1
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.37 × 0.32 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Coppens et al., 1965)
Tmin, Tmax0.955, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
5215, 3264, 2578
Rint0.020
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.152, 1.06
No. of reflections3264
No. of parameters361
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenberg, 1999), WinGX (Farrugia, 1999).

 

Acknowledgements

This study was funded through Universiti Sains Malaysia (USM) short-term grant No. 1001/PTEKIND/8140152. The authors acknowledge USM for providing research facilities.

References

First citationBrandenberg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiou, S.-Y., Lin, M.-C., Hwang, M.-T., Chang, H.-G. & Lin, G. (2008). Protein J. 27, 276–282.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHaramura, M., Tanaka, A., Akimoto, T. & Hirayama, N. (2003). Anal. Sci. 19, x77–x78.  CAS Google Scholar
First citationHökelek, T. & Ergün, Y. (2008). Anal. Sci. 24, x13–x14.  Google Scholar
First citationHosie, L., Sutton, L. D. & Quinn, D. M. (1987). J. Biol. Chem. 262, 260–264.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds