metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1595-m1596

Poly[[μ2-acetato-aquadi-μ3-isonicotinato-dysprosium(III)silver(I)] perchlorate]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China
*Correspondence e-mail: licaizhu1977@yahoo.com.cn

(Received 20 October 2009; accepted 5 November 2009; online 18 November 2009)

In the title three-dimensional heterometallic complex, {[AgDy(C6H4NO2)2(C2H3O2)(H2O)]ClO4}n, the Dy(III) ion is eight-coordinated by four O atoms from four different isonicotinate ligands, three O atoms from two different acetate ligands and one O atom of water mol­ecule. The two-coordinate AgI ion is bonded to two N atoms from two different isonicotinate anions. These metal coordination units are connected by bridging isonicotinate and acetate ligands, generating a three-dimensional network. The coordinated water mol­ecules link the carboxyl­ate group and the acetate ligand by O—H⋯O hydrogen bonding. The perchlorate anion is disordered over two sites with site occupancy factors 0.508 (12) and 0.492 (12) and the methyl group of the acetate ligand is disordered over two positions of equal occupancy.

Related literature

For the applications of lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands in ion exchange, magnetism, bimetallic catalysis and as luminescent probes, see: Cheng et al. (2006[Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73-77.]); Kuang et al. (2007[Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526-m2527.]); Peng et al. (2008[Peng, G., Qiu, Y.-C., Hu, Z.-H., Li, Y.-H., Liu, B. & Deng, H. (2008). Inorg. Chem. Commun. 11, 1409-1411.]); Zhu et al. (2009[Zhu, L.-C., Zhao, Z.-G. & Yu, S.-J. (2009). Acta Cryst. E65, m1105.]).

[Scheme 1]

Experimental

Crystal data
  • [AgDy(C6H4NO2)2(C2H3O2)(H2O)]ClO4

  • Mr = 691.08

  • Monoclinic, P 21 /c

  • a = 16.1682 (15) Å

  • b = 15.1020 (14) Å

  • c = 7.9846 (7) Å

  • β = 92.845 (1)°

  • V = 1947.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.01 mm−1

  • T = 296 K

  • 0.23 × 0.20 × 0.19 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.328, Tmax = 0.386

  • 9904 measured reflections

  • 3486 independent reflections

  • 3112 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.056

  • S = 1.04

  • 3486 reflections

  • 322 parameters

  • 158 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O2i 0.79 (3) 2.21 (4) 2.925 (4) 150 (5)
O1W—H1W⋯O5ii 0.79 (3) 2.05 (4) 2.813 (4) 161 (5)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past few years, lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands are of increasing interest, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe(Cheng et al., 2006; Kuang et al., 2007; Peng et al., 2008; Zhu et al., 2009). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer, (I), has been determined which is presented in this article.

In the title compound (Fig. 1), there are one Dy(III) ion, one Ag(I) ion, two halves of acetate ligand, two isonicotinate ligands, one coordinated water molecule, and one perchlorate anion in the asymmetric unit. Each Dy(III) ion is eight-coordinated by four O atoms from four different isonicotinate ligands [Dy—O distances ranging from 2.297 (3) to 2.348 (3) Å], and three O atoms from two different acetate ligands [Dy—O distances ranging from 2.394 (3) to 2.484 (3) Å], and one O atom of water molecule [Dy—O distances 2.414 (3) Å]. The O—Dy—O bond angles are in the range from 52.70 (10) to 155.05 (10) °. The Dy center can be described as having a bicapped trigonal prism coordination geometry. The two-coordinate Ag(I) ion is bonded to two N atoms from two different isonicotinate anions [Ag—N distances 2.163 (4) Å]. Thus the Ag(I) ion is in a somewhat linear configuration with N1—Ag1—N2 angle 165.40 (17) °. These metal coordination units are connected by bridging isonicotinate and acetate ligands, generating a three-dimensional network (Fig. 2).The coordinated water molecules link the carboxylate group and acetate ligand by O—H···O hydrogen bonding (Table 1). The perchlorate anion is disordered over two sites with site occupancy factors 0.508 (12) and 0.492 (12). The methyl group of the acetate ligand is disordered over two positions of equal occupancy (0.5:0.5).

Related literature top

For the applications of lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands in ion exchange, magnetism, bimetallic catalysis and as luminescent probes, see: Cheng et al. (2006); Kuang et al. (2007); Peng et al. (2008); Zhu et al. (2009).

Experimental top

A mixture of AgNO3(0.057 g, 0.33 mmol), Dy2O3(0.116 g, 0.33 mmol), isonicotinic acid (0.164 g, 1.33 mmol), CH3COONa(0.057 g, 0.7 mmol), H2O(7 ml), and HClO4(0.257 mmol)(pH 2) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 6 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Colorless block crystals suitable for X-ray analysis were obtained.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). H atoms of water molecules were found from difference Fourier maps and refined isotropically with a restraint of O—H = 0.82 Å. The perchlorate anion is disordered over two sites with site occupancy factors 0.508 (12) and 0.492 (12). The methyl group of the acetate ligand is disordered over two positions of equal occupancy (0.5:0.5).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (A) 1 + x, 1.5 - y, -1/2 + z; (B) 1 - x, 1 - y, 2 - z; (C) x, 1.5 - y, 1/2 + z.
[Figure 2] Fig. 2. A view of the three-dimensional structure of the title compound. Hydrogen atoms are omitted for clarity.
Poly[[µ2-acetato-aquadi-µ3-isonicotinato-dysprosium(III)silver(I)] perchlorate] top
Crystal data top
[AgDy(C6H4NO2)2(C2H3O2)(H2O)]ClO4F(000) = 1316
Mr = 691.08Dx = 2.357 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5589 reflections
a = 16.1682 (15) Åθ = 2.7–27.8°
b = 15.1020 (14) ŵ = 5.01 mm1
c = 7.9846 (7) ÅT = 296 K
β = 92.845 (1)°Block, colorless
V = 1947.2 (3) Å30.23 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3486 independent reflections
Radiation source: fine-focus sealed tube3112 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scanθmax = 25.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1519
Tmin = 0.328, Tmax = 0.386k = 1817
9904 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0236P)2 + 3.5237P]
where P = (Fo2 + 2Fc2)/3
3486 reflections(Δ/σ)max = 0.002
322 parametersΔρmax = 0.66 e Å3
158 restraintsΔρmin = 0.76 e Å3
Crystal data top
[AgDy(C6H4NO2)2(C2H3O2)(H2O)]ClO4V = 1947.2 (3) Å3
Mr = 691.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.1682 (15) ŵ = 5.01 mm1
b = 15.1020 (14) ÅT = 296 K
c = 7.9846 (7) Å0.23 × 0.20 × 0.19 mm
β = 92.845 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3486 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3112 reflections with I > 2σ(I)
Tmin = 0.328, Tmax = 0.386Rint = 0.025
9904 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023158 restraints
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.66 e Å3
3486 reflectionsΔρmin = 0.76 e Å3
322 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Dy10.454540 (11)0.616178 (12)1.04948 (2)0.01852 (7)
Ag10.97316 (3)0.73989 (4)0.60071 (7)0.06665 (17)
O10.35829 (18)0.81592 (19)0.7190 (4)0.0300 (7)
O20.38143 (17)0.68117 (19)0.8281 (4)0.0263 (7)
O30.5762 (2)0.6330 (2)0.9080 (5)0.0401 (9)
O40.63060 (19)0.49745 (19)0.8632 (5)0.0403 (9)
O50.5347 (2)0.6149 (2)1.3147 (4)0.0360 (8)
O60.54781 (19)0.4970 (2)1.1607 (4)0.0320 (7)
O1W0.4979 (2)0.7687 (2)1.0758 (4)0.0358 (8)
H1W0.518 (3)0.795 (3)1.002 (6)0.054*
H2W0.475 (3)0.800 (3)1.139 (6)0.054*
N10.0943 (2)0.7527 (3)0.9981 (6)0.0404 (10)
N20.8576 (3)0.6967 (3)0.6991 (6)0.0500 (12)
C10.2516 (3)0.7494 (3)0.8695 (5)0.0231 (9)
C20.2116 (3)0.6710 (3)0.9112 (6)0.0312 (11)
H10.23720.61650.89670.037*
C30.1336 (3)0.6753 (3)0.9741 (7)0.0388 (12)
H20.10720.62291.00080.047*
C40.1333 (3)0.8284 (4)0.9589 (7)0.0446 (13)
H30.10680.88210.97600.054*
C50.2109 (3)0.8294 (3)0.8945 (6)0.0335 (11)
H40.23580.88280.86800.040*
C60.3367 (2)0.7495 (3)0.8008 (5)0.0202 (9)
C70.6332 (3)0.5809 (3)0.8637 (6)0.0303 (10)
C80.7113 (3)0.6231 (3)0.8058 (6)0.0293 (10)
C90.7156 (3)0.7123 (3)0.7613 (7)0.0410 (13)
H70.66930.74860.76680.049*
C100.7894 (3)0.7458 (4)0.7088 (8)0.0489 (15)
H80.79170.80530.67910.059*
C110.8533 (3)0.6108 (4)0.7457 (9)0.0568 (17)
H50.90090.57630.74270.068*
C120.7818 (3)0.5719 (3)0.7975 (7)0.0428 (13)
H60.78100.51230.82640.051*
C130.5697 (3)0.5411 (3)1.2898 (5)0.0276 (10)
C140.6271 (11)0.5015 (17)1.421 (3)0.045 (4)0.50
H14A0.67190.54181.44670.068*0.50
H14B0.64870.44681.38040.068*0.50
H14C0.59760.49051.52030.068*0.50
C14'0.6444 (10)0.5127 (17)1.393 (3)0.045 (4)0.50
H14D0.65030.54881.49150.068*0.50
H14E0.69260.51911.32820.068*0.50
H14F0.63850.45181.42460.068*0.50
Cl10.9165 (8)0.9620 (9)0.7618 (15)0.0633 (8)0.492 (12)
O70.9742 (9)0.8934 (9)0.785 (2)0.138 (7)0.492 (12)
O80.8752 (9)0.9496 (8)0.6037 (14)0.105 (5)0.492 (12)
O90.9544 (10)1.0465 (9)0.761 (2)0.074 (5)0.492 (12)
O100.8556 (9)0.9600 (10)0.8849 (19)0.139 (7)0.492 (12)
Cl1'0.9216 (7)0.9553 (8)0.7502 (15)0.0633 (8)0.508 (12)
O7'0.9307 (9)0.8895 (9)0.8748 (17)0.125 (6)0.508 (12)
O8'0.9565 (10)0.9226 (10)0.6054 (17)0.139 (6)0.508 (12)
O9'0.9612 (10)1.0334 (9)0.809 (2)0.090 (6)0.508 (12)
O10'0.8355 (6)0.9715 (7)0.720 (2)0.101 (5)0.508 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.01576 (11)0.01481 (11)0.02554 (12)0.00081 (7)0.00650 (8)0.00006 (8)
Ag10.0261 (2)0.0917 (4)0.0846 (4)0.0148 (2)0.0267 (2)0.0028 (3)
O10.0256 (16)0.0230 (16)0.0424 (19)0.0016 (13)0.0128 (14)0.0096 (14)
O20.0190 (15)0.0247 (15)0.0357 (18)0.0039 (12)0.0055 (13)0.0049 (13)
O30.0302 (19)0.0227 (17)0.071 (3)0.0018 (13)0.0332 (18)0.0015 (16)
O40.0337 (18)0.0193 (16)0.070 (2)0.0035 (14)0.0288 (17)0.0028 (16)
O50.044 (2)0.0315 (18)0.0319 (18)0.0101 (15)0.0040 (15)0.0092 (14)
O60.0376 (18)0.0270 (16)0.0304 (17)0.0082 (14)0.0078 (14)0.0062 (14)
O1W0.049 (2)0.0228 (17)0.038 (2)0.0094 (15)0.0213 (17)0.0029 (14)
N10.023 (2)0.049 (3)0.051 (3)0.0021 (18)0.0138 (19)0.003 (2)
N20.028 (2)0.050 (3)0.074 (3)0.009 (2)0.022 (2)0.002 (2)
C10.017 (2)0.028 (2)0.024 (2)0.0005 (17)0.0038 (17)0.0033 (17)
C20.020 (2)0.026 (2)0.049 (3)0.0004 (18)0.011 (2)0.000 (2)
C30.025 (2)0.037 (3)0.056 (3)0.006 (2)0.017 (2)0.001 (2)
C40.033 (3)0.040 (3)0.062 (4)0.013 (2)0.014 (3)0.002 (3)
C50.027 (2)0.025 (2)0.050 (3)0.0046 (19)0.012 (2)0.004 (2)
C60.016 (2)0.020 (2)0.024 (2)0.0002 (16)0.0040 (17)0.0002 (17)
C70.023 (2)0.028 (2)0.041 (3)0.0069 (19)0.016 (2)0.001 (2)
C80.023 (2)0.026 (2)0.041 (3)0.0048 (18)0.014 (2)0.003 (2)
C90.025 (3)0.029 (3)0.070 (4)0.000 (2)0.017 (2)0.004 (2)
C100.032 (3)0.036 (3)0.081 (4)0.010 (2)0.021 (3)0.007 (3)
C110.026 (3)0.047 (3)0.100 (5)0.000 (2)0.019 (3)0.004 (3)
C120.027 (3)0.031 (3)0.073 (4)0.001 (2)0.017 (3)0.001 (3)
C130.026 (2)0.032 (2)0.025 (2)0.0036 (19)0.0008 (19)0.0022 (19)
C140.046 (6)0.045 (5)0.044 (6)0.006 (5)0.012 (5)0.003 (4)
C14'0.046 (6)0.045 (5)0.044 (6)0.006 (5)0.012 (5)0.003 (4)
Cl10.0616 (15)0.0502 (16)0.0776 (16)0.0036 (11)0.0019 (11)0.0024 (12)
O70.145 (10)0.105 (8)0.162 (11)0.076 (7)0.030 (8)0.017 (7)
O80.132 (10)0.108 (8)0.072 (7)0.039 (7)0.042 (7)0.005 (6)
O90.068 (8)0.060 (7)0.094 (8)0.011 (6)0.012 (6)0.003 (6)
O100.135 (10)0.151 (10)0.136 (10)0.038 (8)0.054 (8)0.009 (8)
Cl1'0.0616 (15)0.0502 (16)0.0776 (16)0.0036 (11)0.0019 (11)0.0024 (12)
O7'0.140 (10)0.120 (9)0.112 (8)0.019 (7)0.017 (7)0.066 (7)
O8'0.163 (10)0.142 (9)0.119 (9)0.012 (8)0.063 (8)0.035 (7)
O9'0.074 (8)0.082 (9)0.115 (10)0.034 (7)0.006 (7)0.038 (7)
O10'0.055 (6)0.088 (7)0.160 (10)0.004 (5)0.008 (6)0.008 (7)
Geometric parameters (Å, º) top
Dy1—O22.297 (3)C2—C31.382 (6)
Dy1—O4i2.328 (3)C2—H10.9300
Dy1—O32.330 (3)C3—H20.9300
Dy1—O1ii2.348 (3)C4—C51.380 (6)
Dy1—O6i2.394 (3)C4—H30.9300
Dy1—O1W2.414 (3)C5—H40.9300
Dy1—O52.428 (3)C7—C81.509 (6)
Dy1—O62.484 (3)C8—C121.381 (6)
Dy1—C132.842 (4)C8—C91.395 (6)
Dy1—Dy1i3.9005 (5)C9—C101.381 (6)
Ag1—N22.163 (4)C9—H70.9300
Ag1—N1iii2.163 (4)C10—H80.9300
O1—C61.256 (5)C11—C121.379 (7)
O1—Dy1iv2.348 (3)C11—H50.9300
O2—C61.272 (5)C12—H60.9300
O3—C71.275 (5)C13—C141.490 (9)
O4—C71.261 (5)C13—C14'1.490 (9)
O4—Dy1i2.328 (3)C14—H14A0.9600
O5—C131.269 (5)C14—H14B0.9600
O6—C131.263 (5)C14—H14C0.9600
O6—Dy1i2.394 (3)C14'—H14D0.9600
O1W—H1W0.79 (3)C14'—H14E0.9600
O1W—H2W0.79 (3)C14'—H14F0.9600
N1—C31.348 (6)Cl1—O71.399 (12)
N1—C41.350 (7)Cl1—O81.411 (12)
N1—Ag1v2.163 (4)Cl1—O91.416 (11)
N2—C101.335 (7)Cl1—O101.426 (12)
N2—C111.351 (7)Cl1'—O8'1.401 (12)
C1—C51.394 (6)Cl1'—O7'1.408 (12)
C1—C21.398 (6)Cl1'—O9'1.411 (11)
C1—C61.506 (5)Cl1'—O10'1.420 (11)
O2—Dy1—O4i104.83 (12)C2—C1—C6121.9 (4)
O2—Dy1—O389.71 (12)C3—C2—C1119.1 (4)
O4i—Dy1—O3138.72 (10)C3—C2—H1120.4
O2—Dy1—O1ii85.79 (11)C1—C2—H1120.4
O4i—Dy1—O1ii74.38 (10)N1—C3—C2122.6 (4)
O3—Dy1—O1ii146.22 (10)N1—C3—H2118.7
O2—Dy1—O6i77.05 (10)C2—C3—H2118.7
O4i—Dy1—O6i72.23 (11)N1—C4—C5122.6 (4)
O3—Dy1—O6i73.89 (11)N1—C4—H3118.7
O1ii—Dy1—O6i136.70 (11)C5—C4—H3118.7
O2—Dy1—O1W78.20 (12)C4—C5—C1119.2 (4)
O4i—Dy1—O1W148.29 (11)C4—C5—H4120.4
O3—Dy1—O1W71.91 (11)C1—C5—H4120.4
O1ii—Dy1—O1W74.40 (11)O1—C6—O2124.5 (4)
O6i—Dy1—O1W137.44 (11)O1—C6—C1118.2 (3)
O2—Dy1—O5155.05 (10)O2—C6—C1117.3 (3)
O4i—Dy1—O591.77 (13)O4—C7—O3126.4 (4)
O3—Dy1—O589.81 (13)O4—C7—C8116.7 (4)
O1ii—Dy1—O580.85 (11)O3—C7—C8116.9 (4)
O6i—Dy1—O5126.52 (10)C12—C8—C9118.5 (4)
O1W—Dy1—O577.96 (12)C12—C8—C7119.0 (4)
O2—Dy1—O6149.85 (10)C9—C8—C7122.5 (4)
O4i—Dy1—O673.52 (11)C10—C9—C8119.0 (5)
O3—Dy1—O674.95 (11)C10—C9—H7120.5
O1ii—Dy1—O6121.22 (11)C8—C9—H7120.5
O6i—Dy1—O673.84 (12)N2—C10—C9122.8 (5)
O1W—Dy1—O6119.46 (12)N2—C10—H8118.6
O5—Dy1—O652.70 (10)C9—C10—H8118.6
O2—Dy1—C13169.94 (11)N2—C11—C12123.1 (5)
O4i—Dy1—C1383.17 (13)N2—C11—H5118.4
O3—Dy1—C1380.23 (13)C12—C11—H5118.4
O1ii—Dy1—C13102.45 (12)C11—C12—C8118.8 (5)
O6i—Dy1—C13100.12 (12)C11—C12—H6120.6
O1W—Dy1—C1398.28 (13)C8—C12—H6120.6
O5—Dy1—C1326.41 (11)O6—C13—O5118.8 (4)
O6—Dy1—C1326.36 (11)O6—C13—C14120.1 (11)
O2—Dy1—Dy1i114.40 (7)O5—C13—C14120.6 (11)
O4i—Dy1—Dy1i68.41 (7)O6—C13—C14'119.0 (11)
O3—Dy1—Dy1i70.39 (7)O5—C13—C14'121.4 (12)
O1ii—Dy1—Dy1i140.97 (7)C14—C13—C14'15.6 (17)
O6i—Dy1—Dy1i37.71 (7)O6—C13—Dy160.8 (2)
O1W—Dy1—Dy1i139.94 (8)O5—C13—Dy158.3 (2)
O5—Dy1—Dy1i88.82 (7)C14—C13—Dy1177.5 (10)
O6—Dy1—Dy1i36.13 (7)C14'—C13—Dy1166.7 (9)
C13—Dy1—Dy1i62.43 (9)C13—C14—H14A109.5
N2—Ag1—N1iii165.40 (17)C13—C14—H14B109.5
C6—O1—Dy1iv149.1 (3)C13—C14—H14C109.5
C6—O2—Dy1138.1 (3)C13—C14'—H14D109.5
C7—O3—Dy1134.9 (3)C13—C14'—H14E109.5
C7—O4—Dy1i139.1 (3)H14D—C14'—H14E109.5
C13—O5—Dy195.3 (3)C13—C14'—H14F109.5
C13—O6—Dy1i160.5 (3)H14D—C14'—H14F109.5
C13—O6—Dy192.8 (3)H14E—C14'—H14F109.5
Dy1i—O6—Dy1106.16 (12)O7—Cl1—O8107.5 (10)
Dy1—O1W—H1W123 (4)O7—Cl1—O9112.5 (10)
Dy1—O1W—H2W119 (4)O8—Cl1—O9107.4 (10)
H1W—O1W—H2W113 (5)O7—Cl1—O10111.9 (11)
C3—N1—C4118.2 (4)O8—Cl1—O10107.5 (10)
C3—N1—Ag1v122.7 (3)O9—Cl1—O10109.7 (10)
C4—N1—Ag1v119.1 (3)O8'—Cl1'—O7'107.6 (10)
C10—N2—C11117.6 (4)O8'—Cl1'—O9'111.8 (10)
C10—N2—Ag1125.7 (4)O7'—Cl1'—O9'109.0 (10)
C11—N2—Ag1116.5 (3)O8'—Cl1'—O10'110.8 (10)
C5—C1—C2118.3 (4)O7'—Cl1'—O10'107.9 (10)
C5—C1—C6119.8 (4)O9'—Cl1'—O10'109.6 (10)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z+1/2; (iii) x+1, y+3/2, z1/2; (iv) x, y+3/2, z1/2; (v) x1, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O2ii0.79 (3)2.21 (4)2.925 (4)150 (5)
O1W—H1W···O5iv0.79 (3)2.05 (4)2.813 (4)161 (5)
Symmetry codes: (ii) x, y+3/2, z+1/2; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[AgDy(C6H4NO2)2(C2H3O2)(H2O)]ClO4
Mr691.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.1682 (15), 15.1020 (14), 7.9846 (7)
β (°) 92.845 (1)
V3)1947.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.01
Crystal size (mm)0.23 × 0.20 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.328, 0.386
No. of measured, independent and
observed [I > 2σ(I)] reflections
9904, 3486, 3112
Rint0.025
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.056, 1.04
No. of reflections3486
No. of parameters322
No. of restraints158
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.76

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O2i0.79 (3)2.21 (4)2.925 (4)150 (5)
O1W—H1W···O5ii0.79 (3)2.05 (4)2.813 (4)161 (5)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

The author acknowledges South China Normal University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526–m2527.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeng, G., Qiu, Y.-C., Hu, Z.-H., Li, Y.-H., Liu, B. & Deng, H. (2008). Inorg. Chem. Commun. 11, 1409–1411.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, L.-C., Zhao, Z.-G. & Yu, S.-J. (2009). Acta Cryst. E65, m1105.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1595-m1596
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds