organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 9-benzyl-3-cyano-9H-pyrrolo[1,2-a]benzimidazole-1,2-di­carboxyl­ate

aDepartment of Applied Chemistry, Nanjing Normal University, Nanjing 210097, People's Republic of China
*Correspondence e-mail: wang.bingxiang@yahoo.com

(Received 4 November 2009; accepted 17 November 2009; online 21 November 2009)

The title compound, C22H17N3O4, was prepared through 1,3-dipolar cyclo­addition: the dihedral angle between the benzimidazole and benzene rings is 80.93 (6)°. The crystal structure is stabilized by weak ππ inter­actions between the planar pyrrolobenzimidazole rings (r.m.s. deviation = 0.0293 Å) of neighbouring mol­ecules, forming chains along the c axis. The perpendicular distance is 3.47 (2) Å and the centroid–centroid distances are in the range of 3.590 (3)–3.944 (3) Å.

Related literature

For the use of 1,3-dipolar cyclo­addition reactions of azomethine ylides in the construction of five-membered nitro­gen heteroaromatic ring systems, see: Berry et al. (2007[Berry, C. R., Zificsak, C. A., Gibbs, A. C. & Hlasta, D. J. (2007). Org. Lett. 9, 4099-4102.]). For the applications of nitro­gen heteroaromatic ring systems, see: Ansari & Lal (2009[Ansari, K. F. & Lal, C. (2009). Eur. J. Med. Chem. 44, 2294-2299.]); Shen et al. (2006[Shen, Y.-M., Wang, B.-X., Feng, Y.-Y., Shen, Z.-Y., Shen, J., Li, C. & Hu, H.-W. (2006). Chem. J. Chin. Univ. 27, 651-653.], 2008[Shen, Z.-Y., Wang, B.-X., Shen, J. & Hu, H.-W. (2008). Chem. J. Chin. Univ. 29, 916-918.]); Zhang et al. (2009[Zhang, D.-T., Wang, Z.-H., Xu, W.-R., Sun, F.-G., Tang, L.-D. & Wang, J.-W. (2009). Eur. J. Med. Chem. 44, 2202-2210.]). For the synthesis, see: Wang et al. (2000[Wang, B.-X., Hu, J.-X., Zhang, X.-C., Hu, Y.-F. & Hu, H.-W. (2000). J. Heterocycl. Chem. 37, 1533-1537.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17N3O4

  • Mr = 387.39

  • Monoclinic, P 21 /c

  • a = 9.8681 (15) Å

  • b = 24.766 (2) Å

  • c = 7.6551 (11) Å

  • β = 91.973 (3)°

  • V = 1869.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 291 K

  • 0.26 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.97, Tmax = 0.98

  • 13898 measured reflections

  • 3615 independent reflections

  • 2699 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.125

  • S = 1.03

  • 3615 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3-Dipolar cycloadditions of azomethine ylides are one of the most powerful methods for the construction of five membered nitrogen heteroaromatic ring systems, both inter and intramolecularly (Berry et al., 2007). Nitrogen heteroaromatic ring systems, such as benzimidazoles and indolizines, can be utilized as not only a wide variety of biologically active and medicinally significant compounds (Zhang et al., 2009; Ansari et al., 2009), but also organic fluorescence probes (Shen et al., 2006; Shen et al., 2008). In our continuing studies in organic fluorescence probes, we synthesized the title compound (I), dimethyl 4-benzyl-1-cyano-4H-pyrrolo[1, 2 - a] benzimidazole-2,3-dicarboxylate, C22H17N3O4.

The crystal structure of (I) reveals that all the bond lengths and angles have normal values. There is one title compound molecule per asymmetric unit. Each molecule contains one pyrrolo-benzimidazole ring A and one benzyl ring B (Fig 1). The rings A and B are almost perpendicular, making a dihedral angle of 80.93 (6)°.

In the crystal structure there are weak ππ interactions between the planar pyrrolo-benzimidazole rings (r.m.s. deviation of 0.0293 Å) of neighbouring molecules. The perpendicular distance is 3.47 (2) Å and the distances Cg1—Cg2i and Cg2—Cg2iii are 3.590 (3) and 3.944 (3) Å, respectively. (Cg1 is the center of ring C7/C8/C9/C10/N1 and Cg2 is the center of ring C1/C2/C3/C4/C5/C6; i: 2 - x, 2 - y, 2 - z; iii: 2 - x, 2 - y, 1 - z). Through the ππ interactions one-dimensional chains are formed along c axis.

Related literature top

For the use of 1,3-dipolar cycloaddition reactions of azomethine ylides in the construction of five-membered nitrogen heteroaromatic ring systems, see: Berry et al. (2007). For the applications of nitrogen heteroaromatic ring systems, see: Ansari & Lal (2009); Shen et al. (2006, 2008); Zhang et al. (2009). For the synthesis, see: Wang et al. (2000).

Experimental top

Dimethyl 4-benzyl-1-cyano-4H-pyrrolo[1,2-a] benzimidazole-2,3-dicarboxylate was prepared through 1,3-dipolar cycloaddition according to a procedure described in the literature (Wang et al., 2000). Colorless crystals were obtained by recrystallization from a dichloromethane solution at room temperature.

Refinement top

The H atoms were positioned geometrically and refined using a riding model (including free rotation about the ethanol C—C bond), with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. A view of the packing down b axis.
[Figure 3] Fig. 3. A view of the one-dimensional chains down b axis. Dashed lines indicate weak ππ interaction and all H atoms have been omitted for clarity (i: 2 - x, 2 - y, 2 - z; ii: x, y, 1 + z; iii: 2 - x, 2 - y, 1 - z).
Dimethyl 9-benzyl-3-cyano-9H-pyrrolo[1,2-a]benzimidazole-1,2-dicarboxylate top
Crystal data top
C22H17N3O4F(000) = 808
Mr = 387.39Dx = 1.376 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1791 reflections
a = 9.8681 (15) Åθ = 2.6–25.2°
b = 24.766 (2) ŵ = 0.10 mm1
c = 7.6551 (11) ÅT = 291 K
β = 91.973 (3)°Block, colorless
V = 1869.7 (4) Å30.26 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3615 independent reflections
Radiation source: sealed tube2699 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
phi and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1212
Tmin = 0.97, Tmax = 0.98k = 2630
13898 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.05P)2 + 0.66P]
where P = (Fo2 + 2Fc2)/3
3615 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C22H17N3O4V = 1869.7 (4) Å3
Mr = 387.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8681 (15) ŵ = 0.10 mm1
b = 24.766 (2) ÅT = 291 K
c = 7.6551 (11) Å0.26 × 0.22 × 0.20 mm
β = 91.973 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3615 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2699 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.98Rint = 0.057
13898 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
3615 reflectionsΔρmin = 0.19 e Å3
264 parameters
Special details top

Experimental. 1H-NMR (CDCl3, 400 MHz) δ: 3.81 (s, 3H, –COOCH3), 4.00 (s, 3H, –COOCH3), 5.92 (s, 2H, –CH2Ph), 7.20–7.41 (m, 8H, ArH), 8.07 (d, 1H, J = 7.9 Hz, ArH)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

-0.0001(0.0049) x + 11.1526(0.0083)y + 6.8309(0.0017) z = 16.2473 (0.0105)

* 0.0370 (0.0017) C1 * 0.0187 (0.0017) C2 * -0.0329 (0.0017) C3 * -0.0312 (0.0019) C4 * -0.0132 (0.0017) C5 * 0.0115 (0.0017) C6 * 0.0056 (0.0017) C7 * -0.0396 (0.0016) C8 * -0.0420 (0.0016) C9 * 0.0128 (0.0016) C10 * 0.0392 (0.0015) N1 * 0.0341 (0.0015) N2

Rms deviation of fitted atoms = 0.0293

7.9901(0.0063)x + 10.7417(0.0233)y - 3.2379(0.0071)z = 12.8495 (0.0190)

Angle to previous plane (with approximate e.s.d.) = 80.93 (0.06)

* 0.0109 (0.0016) C13 * -0.0131 (0.0017) C14 * 0.0058 (0.0018) C15 * 0.0036 (0.0019) C16 * -0.0055 (0.0019) C17 * -0.0016 (0.0017) C18

Rms deviation of fitted atoms = 0.0078

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0019 (2)1.00932 (8)0.7360 (3)0.0272 (4)
C21.0476 (2)1.05587 (9)0.6574 (3)0.0342 (5)
H21.13941.06340.64810.041*
C30.9480 (3)1.09034 (10)0.5935 (3)0.0403 (6)
H30.97271.12190.53670.048*
C40.8095 (2)1.07867 (9)0.6128 (3)0.0387 (6)
H40.74501.10330.57100.046*
C50.7662 (2)1.03148 (10)0.6925 (3)0.0359 (5)
H50.67461.02390.70420.043*
C60.8651 (2)0.99690 (9)0.7526 (3)0.0283 (5)
C70.9829 (2)0.92732 (8)0.8653 (3)0.0252 (4)
C81.0572 (2)0.88306 (9)0.9310 (3)0.0283 (5)
C91.1957 (2)0.89723 (9)0.9075 (3)0.0301 (5)
C101.2040 (2)0.94775 (9)0.8330 (3)0.0288 (5)
C111.3184 (2)0.97791 (9)0.7903 (3)0.0333 (5)
C120.7257 (2)0.91558 (10)0.8516 (3)0.0326 (5)
H12A0.65090.94020.86920.039*
H12B0.73250.89130.95090.039*
C130.69949 (19)0.88336 (9)0.6848 (3)0.0292 (5)
C140.6168 (2)0.90361 (10)0.5555 (3)0.0394 (6)
H140.57470.93680.57060.047*
C150.5946 (3)0.87514 (11)0.4004 (3)0.0463 (7)
H150.54030.88980.31080.056*
C160.6539 (3)0.82453 (12)0.3795 (3)0.0493 (7)
H160.63820.80550.27610.059*
C170.7340 (3)0.80288 (12)0.5082 (3)0.0466 (6)
H170.77290.76900.49440.056*
C180.7576 (2)0.83240 (10)0.6629 (3)0.0411 (6)
H180.81250.81790.75210.049*
C191.0032 (2)0.83746 (9)1.0316 (3)0.0336 (5)
C201.0629 (3)0.76423 (12)1.2133 (4)0.0577 (8)
H20A1.00480.77781.30130.087*
H20B1.14200.74821.26820.087*
H20C1.01500.73761.14410.087*
C211.3202 (2)0.86405 (10)0.9391 (3)0.0376 (5)
C221.4343 (3)0.78357 (12)0.8747 (4)0.0528 (7)
H22A1.50760.79610.80610.079*
H22B1.41020.74750.84000.079*
H22C1.46190.78380.99620.079*
N11.07206 (16)0.96508 (7)0.8086 (2)0.0243 (4)
N20.85368 (17)0.94658 (7)0.8381 (2)0.0278 (4)
N31.41453 (19)1.00265 (9)0.7614 (3)0.0411 (5)
O11.10343 (16)0.80841 (7)1.1015 (2)0.0403 (4)
O20.88636 (17)0.82715 (7)1.0552 (2)0.0449 (5)
O31.31742 (17)0.81903 (7)0.8471 (2)0.0451 (5)
O41.4114 (2)0.87751 (9)1.0281 (3)0.0648 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0323 (11)0.0244 (11)0.0247 (10)0.0022 (9)0.0037 (8)0.0041 (8)
C20.0466 (13)0.0273 (12)0.0285 (11)0.0057 (10)0.0002 (10)0.0019 (9)
C30.0513 (15)0.0310 (13)0.0385 (13)0.0007 (11)0.0013 (11)0.0045 (10)
C40.0433 (14)0.0249 (12)0.0473 (14)0.0040 (10)0.0059 (11)0.0014 (10)
C50.0323 (12)0.0352 (13)0.0399 (13)0.0041 (10)0.0055 (10)0.0037 (10)
C60.0274 (10)0.0230 (11)0.0343 (11)0.0022 (9)0.0014 (9)0.0041 (9)
C70.0232 (10)0.0269 (11)0.0254 (10)0.0068 (8)0.0006 (8)0.0034 (8)
C80.0264 (10)0.0329 (12)0.0257 (10)0.0025 (9)0.0022 (8)0.0034 (9)
C90.0301 (11)0.0342 (13)0.0255 (10)0.0010 (9)0.0045 (9)0.0033 (9)
C100.0238 (10)0.0337 (13)0.0284 (10)0.0024 (9)0.0040 (8)0.0013 (9)
C110.0260 (11)0.0289 (12)0.0448 (13)0.0028 (9)0.0003 (10)0.0014 (10)
C120.0189 (10)0.0365 (13)0.0428 (13)0.0071 (9)0.0074 (9)0.0026 (10)
C130.0175 (9)0.0341 (12)0.0361 (12)0.0056 (9)0.0054 (8)0.0021 (9)
C140.0381 (13)0.0348 (13)0.0444 (13)0.0044 (10)0.0116 (10)0.0010 (11)
C150.0522 (15)0.0540 (17)0.0316 (13)0.0098 (13)0.0143 (11)0.0006 (11)
C160.0535 (16)0.0536 (17)0.0406 (14)0.0132 (13)0.0033 (12)0.0178 (12)
C170.0485 (15)0.0460 (15)0.0457 (15)0.0021 (12)0.0038 (12)0.0133 (12)
C180.0398 (13)0.0361 (14)0.0466 (14)0.0050 (11)0.0073 (11)0.0077 (11)
C190.0377 (13)0.0303 (13)0.0321 (12)0.0005 (10)0.0074 (10)0.0015 (9)
C200.076 (2)0.0544 (18)0.0425 (15)0.0009 (15)0.0044 (14)0.0349 (13)
C210.0348 (12)0.0373 (14)0.0403 (13)0.0018 (10)0.0031 (10)0.0009 (11)
C220.0480 (15)0.0571 (18)0.0535 (16)0.0282 (13)0.0064 (13)0.0133 (13)
N10.0211 (8)0.0270 (9)0.0249 (9)0.0030 (7)0.0014 (7)0.0028 (7)
N20.0221 (8)0.0295 (10)0.0319 (9)0.0045 (7)0.0000 (7)0.0004 (7)
N30.0303 (10)0.0528 (14)0.0404 (11)0.0052 (10)0.0049 (8)0.0129 (10)
O10.0418 (9)0.0435 (10)0.0356 (9)0.0077 (8)0.0030 (7)0.0184 (7)
O20.0395 (10)0.0547 (11)0.0399 (9)0.0098 (8)0.0049 (7)0.0225 (8)
O30.0467 (10)0.0461 (11)0.0422 (9)0.0157 (8)0.0041 (8)0.0152 (8)
O40.0576 (12)0.0899 (16)0.0452 (11)0.0140 (11)0.0211 (10)0.0184 (11)
Geometric parameters (Å, º) top
C1—C21.384 (3)C12—H12B0.9700
C1—C61.394 (3)C13—C141.357 (3)
C1—N11.401 (3)C13—C181.398 (3)
C2—C31.379 (3)C14—C151.392 (3)
C2—H20.9300C14—H140.9300
C3—C41.410 (4)C15—C161.395 (4)
C3—H30.9300C15—H150.9300
C4—C51.392 (3)C16—C171.352 (4)
C4—H40.9300C16—H160.9300
C5—C61.366 (3)C17—C181.405 (3)
C5—H50.9300C17—H170.9300
C6—N21.414 (3)C18—H180.9300
C7—N11.365 (3)C19—O21.201 (3)
C7—N21.371 (3)C19—O11.321 (3)
C7—C81.402 (3)C20—O11.454 (3)
C8—C91.429 (3)C20—H20A0.9600
C8—C191.477 (3)C20—H20B0.9600
C9—C101.378 (3)C20—H20C0.9600
C9—C211.491 (3)C21—O41.159 (3)
C10—N11.378 (3)C21—O31.318 (3)
C10—C111.401 (3)C22—O31.459 (3)
C11—N31.157 (3)C22—H22A0.9600
C12—N21.485 (3)C22—H22B0.9600
C12—C131.520 (3)C22—H22C0.9600
C12—H12A0.9700
C2—C1—C6123.7 (2)C13—C14—H14119.7
C2—C1—N1131.3 (2)C15—C14—H14119.7
C6—C1—N1104.97 (17)C14—C15—C16119.9 (2)
C3—C2—C1115.5 (2)C14—C15—H15120.0
C3—C2—H2122.2C16—C15—H15120.0
C1—C2—H2122.2C17—C16—C15120.7 (2)
C2—C3—C4121.2 (2)C17—C16—H16119.7
C2—C3—H3119.4C15—C16—H16119.7
C4—C3—H3119.4C16—C17—C18118.9 (3)
C5—C4—C3122.1 (2)C16—C17—H17120.5
C5—C4—H4118.9C18—C17—H17120.5
C3—C4—H4118.9C13—C18—C17121.0 (2)
C6—C5—C4116.5 (2)C13—C18—H18119.5
C6—C5—H5121.7C17—C18—H18119.5
C4—C5—H5121.7O2—C19—O1122.2 (2)
C5—C6—C1120.9 (2)O2—C19—C8127.4 (2)
C5—C6—N2129.9 (2)O1—C19—C8110.4 (2)
C1—C6—N2109.22 (17)O1—C20—H20A109.5
N1—C7—N2108.65 (18)O1—C20—H20B109.5
N1—C7—C8108.36 (18)H20A—C20—H20B109.5
N2—C7—C8142.99 (19)O1—C20—H20C109.5
C7—C8—C9104.67 (19)H20A—C20—H20C109.5
C7—C8—C19126.24 (19)H20B—C20—H20C109.5
C9—C8—C19128.1 (2)O4—C21—O3124.0 (2)
C10—C9—C8110.22 (19)O4—C21—C9123.7 (2)
C10—C9—C21120.5 (2)O3—C21—C9112.17 (19)
C8—C9—C21129.1 (2)O3—C22—H22A109.5
N1—C10—C9105.65 (18)O3—C22—H22B109.5
N1—C10—C11124.6 (2)H22A—C22—H22B109.5
C9—C10—C11129.77 (19)O3—C22—H22C109.5
N3—C11—C10177.5 (2)H22A—C22—H22C109.5
N2—C12—C13109.47 (17)H22B—C22—H22C109.5
N2—C12—H12A109.8C7—N1—C10111.09 (17)
C13—C12—H12A109.8C7—N1—C1110.29 (17)
N2—C12—H12B109.8C10—N1—C1138.55 (18)
C13—C12—H12B109.8C7—N2—C6106.77 (16)
H12A—C12—H12B108.2C7—N2—C12126.79 (18)
C14—C13—C18119.0 (2)C6—N2—C12124.71 (17)
C14—C13—C12120.0 (2)C19—O1—C20115.5 (2)
C18—C13—C12121.1 (2)C21—O3—C22115.44 (19)
C13—C14—C15120.6 (2)

Experimental details

Crystal data
Chemical formulaC22H17N3O4
Mr387.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)9.8681 (15), 24.766 (2), 7.6551 (11)
β (°) 91.973 (3)
V3)1869.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.26 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.97, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
13898, 3615, 2699
Rint0.057
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.125, 1.03
No. of reflections3615
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
C1—N11.401 (3)C10—N11.378 (3)
C6—N21.414 (3)C11—N31.157 (3)
C7—N11.365 (3)C12—N21.485 (3)
C7—N21.371 (3)
C2—C1—N1131.3 (2)N1—C10—C11124.6 (2)
C6—C1—N1104.97 (17)N3—C11—C10177.5 (2)
N1—C7—N2108.65 (18)N2—C12—C13109.47 (17)
N1—C7—C8108.36 (18)N2—C12—H12A109.8
N2—C7—C8142.99 (19)N2—C12—H12B109.8
N1—C10—C9105.65 (18)
 

Acknowledgements

We thank the Natural Science Foundation of Jiangsu Province of China (grant No. BK2008435) and the Natural Science Foundation of the Jiangsu Higher Education Insti­tutions of China (grant No. 07KJD150101) for financial support.

References

First citationAnsari, K. F. & Lal, C. (2009). Eur. J. Med. Chem. 44, 2294–2299.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBerry, C. R., Zificsak, C. A., Gibbs, A. C. & Hlasta, D. J. (2007). Org. Lett. 9, 4099–4102.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Y.-M., Wang, B.-X., Feng, Y.-Y., Shen, Z.-Y., Shen, J., Li, C. & Hu, H.-W. (2006). Chem. J. Chin. Univ. 27, 651–653.  CAS Google Scholar
First citationShen, Z.-Y., Wang, B.-X., Shen, J. & Hu, H.-W. (2008). Chem. J. Chin. Univ. 29, 916–918.  CAS Google Scholar
First citationWang, B.-X., Hu, J.-X., Zhang, X.-C., Hu, Y.-F. & Hu, H.-W. (2000). J. Heterocycl. Chem. 37, 1533–1537.  CrossRef CAS Google Scholar
First citationZhang, D.-T., Wang, Z.-H., Xu, W.-R., Sun, F.-G., Tang, L.-D. & Wang, J.-W. (2009). Eur. J. Med. Chem. 44, 2202–2210.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds