organic compounds
(E)-1-Bromo-4-(2-nitroprop-1-enyl)benzene
aDepartment of Pharmaceutical and Chemical Engineering, Taizhou College, Linhai, Zhejiang 317000, People's Republic of China
*Correspondence e-mail: bailinli1972@gmail.com
The title compound, C9H8BrNO2, which was synthesized by the condensation of 4-bromobenzaldehyde with nitroethane, possesses a trans configuration. The dihedral angle between the benzene ring and the mean plane of the double bond is 7.31 (3)°. The is stabilized by short intermolecular Br⋯O contacts [3.168 (4) Å].
Related literature
For general background to nitroalkenes as intermediates in the preparation of numerous products including insecticides and pharmacologically active substances, see: Boelle et al. (1998); Vallejos et al. (2005). For related structures, see: Boys et al. (1993); Mugnoli et al. (1991).
Experimental
Crystal data
|
Data collection: PROCESS-AUTO (Rigaku, 2006); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809048910/zq2017sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809048910/zq2017Isup2.hkl
To a solution of 4-bromobenzaldehyde (50 mmol) in AcOH (25 ml), nitroethane (75 mmol) was added, followed by butylamine (100 mmol, 7.4 ml). The mixture was sonicated at 333 K, until TLC showed full conversion of aldehyde. The mixture was poured into ice water, the precipitate was filtered off, washed with water and recrystallized from EtOH to give (E)-1-bromo-4-(2-nitroprop-1-enyl)benzene. Suitable crystals of the title compound were obtained by slow evaporation of an ethanol solution at room temperature.
All carbon-bonded H atoms were placed in calculated positions with C—H = 0.93 Å (aromatic), C—H = 0.96 Å (sp) and refined using a riding model, with Uiso(H) = 1.2eq(C).
Data collection: PROCESS-AUTO (Rigaku, 2006); cell
PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C9H8BrNO2 | Z = 2 |
Mr = 242.07 | F(000) = 240 |
Triclinic, P1 | Dx = 1.728 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.9787 (5) Å | Cell parameters from 3184 reflections |
b = 7.4123 (5) Å | θ = 3.1–27.4° |
c = 9.7659 (6) Å | µ = 4.38 mm−1 |
α = 105.435 (2)° | T = 296 K |
β = 95.087 (2)° | Platelet, yellow |
γ = 104.323 (2)° | 0.21 × 0.19 × 0.08 mm |
V = 465.31 (5) Å3 |
Rigaku R-AXIS RAPID diffractometer | 2112 independent reflections |
Radiation source: rolling anode | 1303 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 10.00 pixels mm-1 | θmax = 27.4°, θmin = 3.1° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −9→8 |
Tmin = 0.388, Tmax = 0.703 | l = −12→12 |
4605 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.012P)2 + 0.950P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
2112 reflections | Δρmax = 0.46 e Å−3 |
120 parameters | Δρmin = −0.71 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0149 (13) |
C9H8BrNO2 | γ = 104.323 (2)° |
Mr = 242.07 | V = 465.31 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.9787 (5) Å | Mo Kα radiation |
b = 7.4123 (5) Å | µ = 4.38 mm−1 |
c = 9.7659 (6) Å | T = 296 K |
α = 105.435 (2)° | 0.21 × 0.19 × 0.08 mm |
β = 95.087 (2)° |
Rigaku R-AXIS RAPID diffractometer | 2112 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1303 reflections with I > 2σ(I) |
Tmin = 0.388, Tmax = 0.703 | Rint = 0.027 |
4605 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.46 e Å−3 |
2112 reflections | Δρmin = −0.71 e Å−3 |
120 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.90197 (7) | 0.24927 (9) | 0.09032 (5) | 0.0754 (2) | |
N1 | 0.2076 (6) | 0.2311 (6) | 0.7592 (4) | 0.0660 (10) | |
O1 | 0.2341 (5) | 0.2609 (6) | 0.8891 (4) | 0.0937 (12) | |
O2 | 0.0411 (5) | 0.1719 (7) | 0.6875 (4) | 0.1038 (14) | |
C8 | 0.3870 (6) | 0.2659 (6) | 0.6875 (4) | 0.0514 (9) | |
C1 | 0.7334 (6) | 0.2408 (6) | 0.2327 (4) | 0.0567 (10) | |
C5 | 0.4097 (6) | 0.1824 (7) | 0.2989 (4) | 0.0631 (12) | |
H5 | 0.2712 | 0.1456 | 0.2720 | 0.076* | |
C7 | 0.3513 (6) | 0.2154 (7) | 0.5461 (4) | 0.0594 (11) | |
H7 | 0.2165 | 0.1633 | 0.5051 | 0.071* | |
C4 | 0.4907 (6) | 0.2283 (6) | 0.4430 (4) | 0.0524 (10) | |
C3 | 0.6976 (6) | 0.2770 (8) | 0.4767 (5) | 0.0776 (15) | |
H3 | 0.7569 | 0.3055 | 0.5720 | 0.093* | |
C9 | 0.5777 (7) | 0.3501 (9) | 0.7900 (5) | 0.0825 (16) | |
H9A | 0.6349 | 0.2476 | 0.7987 | 0.099* | |
H9B | 0.5528 | 0.4165 | 0.8825 | 0.099* | |
H9C | 0.6694 | 0.4409 | 0.7555 | 0.099* | |
C2 | 0.8179 (6) | 0.2840 (8) | 0.3723 (5) | 0.0742 (14) | |
H2 | 0.9565 | 0.3183 | 0.3976 | 0.089* | |
C6 | 0.5299 (6) | 0.1901 (7) | 0.1943 (4) | 0.0680 (13) | |
H6 | 0.4727 | 0.1609 | 0.0985 | 0.082* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0560 (3) | 0.1058 (5) | 0.0598 (3) | 0.0136 (2) | 0.0153 (2) | 0.0237 (3) |
N1 | 0.055 (2) | 0.081 (3) | 0.055 (2) | 0.0147 (19) | 0.0103 (18) | 0.014 (2) |
O1 | 0.076 (2) | 0.142 (4) | 0.056 (2) | 0.019 (2) | 0.0205 (17) | 0.025 (2) |
O2 | 0.0467 (19) | 0.173 (4) | 0.074 (2) | 0.017 (2) | 0.0114 (17) | 0.020 (2) |
C8 | 0.045 (2) | 0.056 (3) | 0.050 (2) | 0.0112 (18) | 0.0092 (17) | 0.0142 (19) |
C1 | 0.052 (2) | 0.066 (3) | 0.052 (2) | 0.013 (2) | 0.0100 (19) | 0.019 (2) |
C5 | 0.042 (2) | 0.087 (3) | 0.050 (2) | 0.012 (2) | −0.0015 (18) | 0.012 (2) |
C7 | 0.043 (2) | 0.077 (3) | 0.051 (2) | 0.015 (2) | 0.0032 (17) | 0.012 (2) |
C4 | 0.042 (2) | 0.064 (3) | 0.048 (2) | 0.0140 (19) | 0.0039 (16) | 0.013 (2) |
C3 | 0.050 (2) | 0.134 (5) | 0.044 (2) | 0.024 (3) | −0.0013 (19) | 0.022 (3) |
C9 | 0.052 (3) | 0.122 (5) | 0.055 (3) | 0.008 (3) | 0.003 (2) | 0.015 (3) |
C2 | 0.038 (2) | 0.123 (4) | 0.055 (3) | 0.018 (2) | 0.0015 (19) | 0.022 (3) |
C6 | 0.047 (2) | 0.103 (4) | 0.045 (2) | 0.013 (2) | 0.0013 (18) | 0.017 (2) |
Br1—C1 | 1.902 (4) | C7—C4 | 1.466 (5) |
N1—O2 | 1.214 (5) | C7—H7 | 0.9300 |
N1—O1 | 1.217 (4) | C4—C3 | 1.385 (6) |
N1—C8 | 1.488 (5) | C3—C2 | 1.380 (6) |
C8—C7 | 1.314 (5) | C3—H3 | 0.9300 |
C8—C9 | 1.478 (6) | C9—H9A | 0.9600 |
C1—C2 | 1.357 (6) | C9—H9B | 0.9600 |
C1—C6 | 1.366 (6) | C9—H9C | 0.9600 |
C5—C6 | 1.381 (6) | C2—H2 | 0.9300 |
C5—C4 | 1.388 (5) | C6—H6 | 0.9300 |
C5—H5 | 0.9300 | ||
O2—N1—O1 | 122.1 (4) | C5—C4—C7 | 117.7 (4) |
O2—N1—C8 | 119.7 (4) | C2—C3—C4 | 121.6 (4) |
O1—N1—C8 | 118.2 (4) | C2—C3—H3 | 119.2 |
C7—C8—C9 | 130.9 (4) | C4—C3—H3 | 119.2 |
C7—C8—N1 | 115.8 (4) | C8—C9—H9A | 109.5 |
C9—C8—N1 | 113.2 (3) | C8—C9—H9B | 109.5 |
C2—C1—C6 | 120.5 (4) | H9A—C9—H9B | 109.5 |
C2—C1—Br1 | 119.2 (3) | C8—C9—H9C | 109.5 |
C6—C1—Br1 | 120.3 (3) | H9A—C9—H9C | 109.5 |
C6—C5—C4 | 121.6 (4) | H9B—C9—H9C | 109.5 |
C6—C5—H5 | 119.2 | C1—C2—C3 | 119.9 (4) |
C4—C5—H5 | 119.2 | C1—C2—H2 | 120.0 |
C8—C7—C4 | 130.1 (4) | C3—C2—H2 | 120.0 |
C8—C7—H7 | 115.0 | C1—C6—C5 | 119.5 (4) |
C4—C7—H7 | 115.0 | C1—C6—H6 | 120.2 |
C3—C4—C5 | 116.9 (4) | C5—C6—H6 | 120.2 |
C3—C4—C7 | 125.4 (4) | ||
O2—N1—C8—C7 | −4.8 (6) | C8—C7—C4—C5 | −173.5 (5) |
O1—N1—C8—C7 | 174.2 (5) | C5—C4—C3—C2 | 1.5 (8) |
O2—N1—C8—C9 | 176.1 (5) | C7—C4—C3—C2 | 179.4 (5) |
O1—N1—C8—C9 | −4.9 (6) | C6—C1—C2—C3 | −0.1 (8) |
C9—C8—C7—C4 | −0.7 (9) | Br1—C1—C2—C3 | −179.5 (4) |
N1—C8—C7—C4 | −179.7 (4) | C4—C3—C2—C1 | −0.6 (8) |
C6—C5—C4—C3 | −1.8 (7) | C2—C1—C6—C5 | −0.2 (8) |
C6—C5—C4—C7 | −179.8 (4) | Br1—C1—C6—C5 | 179.2 (4) |
C8—C7—C4—C3 | 8.7 (8) | C4—C5—C6—C1 | 1.1 (8) |
Experimental details
Crystal data | |
Chemical formula | C9H8BrNO2 |
Mr | 242.07 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 6.9787 (5), 7.4123 (5), 9.7659 (6) |
α, β, γ (°) | 105.435 (2), 95.087 (2), 104.323 (2) |
V (Å3) | 465.31 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 4.38 |
Crystal size (mm) | 0.21 × 0.19 × 0.08 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.388, 0.703 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4605, 2112, 1303 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.094, 1.00 |
No. of reflections | 2112 |
No. of parameters | 120 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.46, −0.71 |
Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku/MSC, 2007), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
References
Boelle, J., Schneider, R., Gerardin, P., Loubinoux, B., Maienfish, P. & Rindlisbacher, A. (1998). Pestic. Sci. 54, 304–307. CrossRef CAS Google Scholar
Boys, D., Manríquez, V. & Cassels, B. K. (1993). Acta Cryst. C49, 387–388. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Mugnoli, A., Pani, M., Carnasciali, M. M. & Speranza, G. (1991). Z. Kristallogr. 196, 291–293. CrossRef CAS Google Scholar
Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vallejos, G., Fierro, A., Rezende, M. C., Sepulveda-Boza, S. & Reyes-Parada, M. (2005). Bioorg. Med. Chem. 13, 4450–4457. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nitroalkenes are valuable intermediates for preparation of numerous products including insecticides and pharmacologically active substances (Boelle et al., 1998 and Vallejos et al., 2005) in which the nitro group can be easily transformed into a variety of groups with different functionalities, such as amine, carbonyl groups, etc.. In this article, the crystal structure of the title compound (E)-1-bromo-4-(2-nitroprop-1-enyl)benzene is presented (Fig. 1). The dihedral angle between the benzene ring and the mean plan of the double bond H7/C7/C8/C9 is 7.31 (3) °. The crystal structure is stabilized by short intermolecular Br—O contacts [3.168 (4) Å].