metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,3-di­ethyl­benzimidazolium) tetra­bromidomercurate(II)

aTianjin Key Laboratory of Structure and Performance of Functional Molecules, College of Chemistry and Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China, and bState Key Laboratory of Element-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: qxliu@eyou.com

(Received 27 October 2009; accepted 10 November 2009; online 21 November 2009)

In the title compound, (C11H15N2)2[HgBr4], the tetra­coordinated HgII center of the complex anion adopts a distorted tetra­hedral geometry [Hg—Br = 2.5755 (8)–2.623 (11) Å and Br—Hg—Br = 103.78 (19)–116.4 (3)°]. One of the Br atoms is disordered over two sites [site-occupancy factors = 0.51 (6) and 0.49 (6)]. The N—C—N angles in the cations are 110.7 (6) and 111.4 (7)°. In the crystal packing, a supra­molecular chain is formed via both weak inter­molecular C—H⋯Br hydrogen bonds and ππ aromatic ring stacking inter­actions [centroid–centroid separation = 3.803 (1) Å].

Related literature

For background to the chemistry of imidazolium compounds, see: Bourissou et al. (2000[Bourissou, D., Guerret, O., Gabba, F. & Bertrand, G. (2000). Chem. Rev. 100, 39-92.]); Garrison & Youngs (2005[Garrison, J. C. & Youngs, W. J. (2005). Chem. Rev. 105, 3978-4008.]); Hunter & Sanders (1990[Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5528.]); Jacobsen et al. (2009[Jacobsen, H., Correa, A., Poater, A., Costabile, C. & Cavallo, L. (2009). Coord. Chem. Rev. 253, 687-703.]); Juan & Lee (1999[Juan, C. R. M. & Lee, B. (1999). Coord. Chem. Rev. 183, 43-80.]). For a related structure, see: Liu et al. (2003[Liu, Q. X., Xu, F. B., Li, Q. S., Zeng, X. S., Leng, X. B., Chou, Y. L. & Zhang, Z. Z. (2003). Organometallics, 22, 309-314.]).

[Scheme 1]

Experimental

Crystal data
  • (C11H15N2)2[HgBr4]

  • Mr = 870.73

  • Triclinic, [P \overline 1]

  • a = 8.4334 (15) Å

  • b = 9.9989 (16) Å

  • c = 18.328 (3) Å

  • α = 85.060 (3)°

  • β = 81.684 (3)°

  • γ = 67.250 (2)°

  • V = 1409.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 11.15 mm−1

  • T = 296 K

  • 0.25 × 0.24 × 0.23 mm

Data collection
  • Bruker MART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.047, Tmax = 0.077

  • 7102 measured reflections

  • 4923 independent reflections

  • 3711 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.081

  • S = 1.03

  • 4923 reflections

  • 294 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯Br1′ 0.97 2.73 3.69 (2) 175
C8—H8B⋯Br4i 0.97 2.86 3.755 (8) 153
C28—H28⋯Br1′ 0.93 2.84 3.59 (2) 139
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last two decades, the complexes of N-heterocyclic carbenes (NHCs) have experienced a rapid development and been used in many fields of chemistry (Garrison & Youngs, 2005). Because N-heterocyclic carbenes (NHCs) are strong sigma-donors, they have been found to be more effective ligands for organometallic catalysis than other two-electron donor ligands such as phosphines (Bourissou et al., 2000). To date, a number of NHC-metal complexes have been synthesized, and some of these have been used in a broad spectrum of catalytic reactions (Jacobsen et al., 2009). Herein, we report the synthesis and crystal structure of bis(1,3-diethylbenzimidazolium) tetrabromidomercurate(II) 2(C11H15N2)+ [HgBr4]2- (I) (Fig. 1). In the title compound, the N1—C7, N2—C7 and N3–C28 and N4–C28 bond distances in the two anion are 1.325 (8), 1.301 (8) Å and 1.322 (9), 1.306 (9) Å respectively, and the N1—C7—N2 and N3–C28–N4 bond angles are 110.7 (6) and 111.4 (7)° respectively. These values are similar to those found in 1-(9-anthracenylmethyl)-3-ethylimidazolium iodide (Liu et al., 2003). In the [HgBr4]2- complex anion, the tetra-coordinated mercury(II) center adopts a distorted tetrahedral geometry [Hg—Br bond distance range, 2.5755 (8)–2.623 (11) Å; Br–Hg–Br bond angle range, 103.78 (19)–116.4 (3)°]. One of the Br atoms is disordered over two close sites: Br1/Br1' [occupancy factors 0.49 (6), 0.51 (6)]. In the crystal packing of title compound (Fig. 2), a one-dimensional supramolecular chain is formed via both weak intermolecular C—H···Br hydrogen bonds (Table 1) (Juan & Lee, 1999), and π-π benzimidazole ring stacking interactions (interplanar centroid-to-centroid separation, 3.803 (1) Å] (Hunter & Sanders, 1990). .

Related literature top

For background to the chemistry of imidazolium compounds, see: Bourissou et al. (2000); Garrison & Youngs (2005); Hunter & Sanders (1990); Jacobsen et al. (2009); Juan & Lee (1999). For a related structure, see: Liu et al. (2003).

Experimental top

A solution of 1-ethylbenzimidazole (2.00 g, 13.7 mmol) and ethyl bromide (1.64 g, 15.0 mmol) in THF (100 ml) was stirred for three days under reflux, and a white precipitate was formed. The product, 1,3-diethylbenzimidazolium bromide was filtred and washed with THF. Yield: 2.552 g (73%). A suspension of this product (0.200 g, 0.8 mmol) and mercury(II) bromide (0.288 g, 0.8 mmol) in DMSO (5 ml) and acetonitrile (30 ml) was refluxed for 18 h, and a pale yellow solution was formed. Water (30 ml) was added the then extracted with CH2Cl2 (30 ml). The extract was dried with anhydrous MgSO4 and After removing CH2Cl2, a white powder of the title compound (I) was obtained. Yield, 0.187 g (55%); m.p. 196–198° C; 1H NMR (300 MHZ, DMSO-d6): 1.54 (t, J = 4.2, 6H, CH3), 3.72 (q, J = 4.2, 4H, CH2), 7.35 (m, 2H, PhH), 7.83 (d, J = 6.3, 2H, PhH), 9.22 (s, 1H, 2-bimiH) (bimi = benzimidazole).

Refinement top

All H atoms were initially located in a difference Fourier map. These were then placed in geometrically idealized positions and constrained to ride on their parent atoms, with Csp3—H = 0.97 Å,Csp2—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). One of the bromide atoms was found to be disordered over two close sites: Br1/ Br1' [occupancy factors 0.49 (6)/0.51 (6)]. One reflection was considered to be affected by the beamstop.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Atom naming scheme for the title compound (I), with displacement ellipsoids drawn at the 30% probability level. All H atoms have been omitted.
[Figure 2] Fig. 2. The one-dimensional supramolecular chain of the title compound formed via C—H···Br hydrogen bonds and π-π interactions. The non-interactive H atoms have been omitted.
[Figure 3] Fig. 3. The formation of the title compound.
Bis(1,3-diethylbenzimidazolium) tetrabromidomercurate(II) top
Crystal data top
(C11H15N2)2[HgBr4]Z = 2
Mr = 870.73F(000) = 820
Triclinic, P1Dx = 2.052 Mg m3
Hall symbol: -P 1Melting point = 469–471 K
a = 8.4334 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9989 (16) ÅCell parameters from 3130 reflections
c = 18.328 (3) Åθ = 2.5–25.5°
α = 85.060 (3)°µ = 11.15 mm1
β = 81.684 (3)°T = 296 K
γ = 67.250 (2)°Block, colourless
V = 1409.5 (4) Å30.25 × 0.24 × 0.23 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4923 independent reflections
Radiation source: fine-focus sealed tube3711 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.0°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 107
Tmin = 0.047, Tmax = 0.077k = 1111
7102 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0369P)2 + 1.1891P]
where P = (Fo2 + 2Fc2)/3
4923 reflections(Δ/σ)max = 0.002
294 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
(C11H15N2)2[HgBr4]γ = 67.250 (2)°
Mr = 870.73V = 1409.5 (4) Å3
Triclinic, P1Z = 2
a = 8.4334 (15) ÅMo Kα radiation
b = 9.9989 (16) ŵ = 11.15 mm1
c = 18.328 (3) ÅT = 296 K
α = 85.060 (3)°0.25 × 0.24 × 0.23 mm
β = 81.684 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4923 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3711 reflections with I > 2σ(I)
Tmin = 0.047, Tmax = 0.077Rint = 0.019
7102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.03Δρmax = 0.78 e Å3
4923 reflectionsΔρmin = 0.57 e Å3
294 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Hg10.92830 (4)0.40323 (3)0.751796 (14)0.05906 (11)
N10.6000 (7)0.0822 (6)0.8460 (3)0.0596 (14)
N20.3689 (7)0.2297 (6)0.9074 (3)0.0557 (13)
N30.4560 (9)0.7998 (6)0.6180 (3)0.0778 (18)
N40.5979 (8)0.7150 (6)0.5126 (3)0.0657 (15)
C10.5169 (9)0.0033 (7)0.8841 (3)0.0531 (16)
C20.3671 (9)0.0921 (7)0.9230 (3)0.0557 (16)
C30.2517 (9)0.0427 (9)0.9661 (4)0.0670 (19)
H30.15100.10630.99170.080*
C40.2912 (12)0.1027 (10)0.9697 (4)0.079 (2)
H40.21620.13960.99840.095*
C50.4422 (12)0.1974 (9)0.9311 (4)0.077 (2)
H50.46520.29630.93520.092*
C60.5578 (10)0.1508 (7)0.8874 (4)0.0655 (19)
H60.65790.21490.86160.079*
C70.5054 (10)0.2196 (7)0.8613 (4)0.0616 (18)
H70.53290.29800.84180.074*
C80.7646 (12)0.0302 (9)0.7957 (4)0.088 (3)
H8A0.76800.10840.76120.106*
H8B0.76690.04850.76750.106*
C90.9214 (12)0.0215 (11)0.8349 (6)0.117 (3)
H9A0.91240.05090.86820.175*
H9B1.02240.03860.79960.175*
H9C0.93050.11000.86220.175*
C100.2278 (10)0.3638 (8)0.9367 (4)0.077 (2)
H10A0.11710.36010.93090.093*
H10B0.23260.36720.98900.093*
C110.2388 (12)0.4979 (8)0.8993 (5)0.101 (3)
H11A0.34160.50840.90980.151*
H11B0.13890.58020.91680.151*
H11C0.24320.49200.84700.151*
C120.3604 (10)0.8877 (7)0.5645 (4)0.0619 (18)
C130.4523 (9)0.8350 (7)0.4965 (4)0.0545 (16)
C140.3935 (11)0.9000 (8)0.4311 (4)0.072 (2)
H140.45370.86440.38580.086*
C150.2428 (12)1.0190 (10)0.4362 (5)0.087 (2)
H150.19961.06690.39320.104*
C160.1514 (11)1.0707 (9)0.5050 (6)0.087 (3)
H160.04781.15110.50630.104*
C170.2093 (10)1.0075 (8)0.5694 (5)0.077 (2)
H170.14931.04360.61470.092*
C180.4168 (17)0.8111 (10)0.6994 (4)0.126 (4)
H18A0.51890.80920.71860.151*
H18B0.32540.90480.71020.151*
C190.3668 (13)0.7051 (11)0.7371 (5)0.116 (3)
H19A0.27070.70050.71650.174*
H19B0.33320.72820.78820.174*
H19C0.46190.61290.73270.174*
C200.7368 (11)0.6199 (9)0.4597 (5)0.094 (3)
H20A0.75250.67680.41560.113*
H20B0.84450.58220.48150.113*
C210.6995 (15)0.5009 (11)0.4393 (6)0.131 (4)
H21A0.68150.44520.48280.197*
H21B0.79500.44020.40660.197*
H21C0.59680.53740.41490.197*
C280.5942 (12)0.6992 (8)0.5842 (4)0.082 (2)
H280.67820.62630.60840.099*
Br10.7857 (14)0.3331 (10)0.6509 (7)0.068 (2)0.49 (6)
Br1'0.745 (4)0.3411 (16)0.6681 (16)0.096 (3)0.51 (6)
Br21.23998 (10)0.21193 (8)0.74047 (4)0.0769 (2)
Br30.77611 (10)0.41151 (9)0.88750 (4)0.0735 (2)
Br40.92020 (11)0.66240 (8)0.71463 (5)0.0789 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.06174 (18)0.05316 (17)0.06080 (17)0.01868 (13)0.01052 (12)0.00390 (12)
N10.075 (4)0.053 (3)0.053 (3)0.029 (3)0.006 (3)0.002 (3)
N20.064 (4)0.053 (3)0.052 (3)0.022 (3)0.017 (3)0.000 (3)
N30.113 (5)0.057 (4)0.051 (3)0.021 (4)0.004 (4)0.000 (3)
N40.076 (4)0.054 (3)0.059 (4)0.022 (3)0.005 (3)0.003 (3)
C10.070 (5)0.059 (4)0.040 (3)0.034 (4)0.013 (3)0.002 (3)
C20.065 (4)0.059 (4)0.050 (4)0.027 (4)0.022 (3)0.001 (3)
C30.064 (5)0.084 (5)0.065 (4)0.043 (4)0.008 (4)0.007 (4)
C40.098 (6)0.098 (6)0.069 (5)0.067 (6)0.020 (5)0.016 (5)
C50.108 (7)0.070 (5)0.071 (5)0.052 (5)0.023 (5)0.003 (4)
C60.094 (6)0.055 (4)0.054 (4)0.031 (4)0.019 (4)0.003 (3)
C70.081 (5)0.058 (4)0.055 (4)0.037 (4)0.011 (4)0.002 (3)
C80.123 (8)0.065 (5)0.067 (5)0.039 (5)0.033 (5)0.009 (4)
C90.072 (6)0.111 (7)0.147 (9)0.022 (6)0.035 (6)0.037 (7)
C100.064 (5)0.068 (5)0.091 (5)0.012 (4)0.020 (4)0.002 (4)
C110.112 (7)0.052 (5)0.135 (8)0.027 (5)0.015 (6)0.004 (5)
C120.075 (5)0.046 (4)0.068 (5)0.028 (4)0.001 (4)0.007 (3)
C130.063 (4)0.051 (4)0.057 (4)0.032 (3)0.003 (3)0.000 (3)
C140.094 (6)0.074 (5)0.060 (4)0.043 (5)0.021 (4)0.002 (4)
C150.102 (7)0.090 (6)0.085 (6)0.047 (6)0.047 (5)0.016 (5)
C160.066 (5)0.069 (5)0.128 (8)0.022 (4)0.023 (5)0.021 (5)
C170.074 (5)0.071 (5)0.081 (6)0.023 (4)0.002 (4)0.016 (4)
C180.211 (12)0.091 (7)0.059 (5)0.045 (8)0.008 (6)0.011 (5)
C190.137 (9)0.141 (9)0.079 (6)0.075 (7)0.040 (6)0.030 (6)
C200.093 (6)0.092 (6)0.085 (6)0.031 (5)0.019 (5)0.013 (5)
C210.144 (10)0.132 (9)0.118 (8)0.063 (8)0.055 (7)0.066 (7)
C280.118 (7)0.054 (5)0.059 (5)0.018 (5)0.004 (5)0.002 (4)
Br10.083 (3)0.054 (3)0.073 (3)0.024 (3)0.031 (2)0.003 (2)
Br1'0.135 (8)0.088 (4)0.097 (7)0.065 (4)0.065 (6)0.026 (3)
Br20.0681 (5)0.0800 (5)0.0583 (4)0.0027 (4)0.0134 (4)0.0127 (4)
Br30.0739 (5)0.0840 (5)0.0668 (4)0.0379 (4)0.0083 (4)0.0146 (4)
Br40.0853 (6)0.0524 (4)0.0948 (6)0.0268 (4)0.0065 (4)0.0060 (4)
Geometric parameters (Å, º) top
Hg1—Br22.5755 (8)C9—H9B0.9600
Hg1—Br1'2.594 (11)C9—H9C0.9600
Hg1—Br42.5994 (9)C10—C111.482 (10)
Hg1—Br32.6211 (8)C10—H10A0.9700
Hg1—Br12.623 (11)C10—H10B0.9700
N1—C71.325 (8)C11—H11A0.9600
N1—C11.389 (8)C11—H11B0.9600
N1—C81.482 (9)C11—H11C0.9600
N2—C71.301 (8)C12—C171.368 (10)
N2—C21.386 (8)C12—C131.396 (9)
N2—C101.485 (8)C13—C141.376 (9)
N3—C281.322 (9)C14—C151.362 (11)
N3—C121.385 (9)C14—H140.9300
N3—C181.484 (10)C15—C161.406 (12)
N4—C281.306 (9)C15—H150.9300
N4—C131.392 (8)C16—C171.353 (11)
N4—C201.478 (9)C16—H160.9300
C1—C61.377 (9)C17—H170.9300
C1—C21.393 (9)C18—C191.384 (12)
C2—C31.377 (9)C18—H18A0.9700
C3—C41.358 (10)C18—H18B0.9700
C3—H30.9300C19—H19A0.9600
C4—C51.393 (11)C19—H19B0.9600
C4—H40.9300C19—H19C0.9600
C5—C61.367 (10)C20—C211.434 (12)
C5—H50.9300C20—H20A0.9700
C6—H60.9300C20—H20B0.9700
C7—H70.9300C21—H21A0.9600
C8—C91.488 (12)C21—H21B0.9600
C8—H8A0.9700C21—H21C0.9600
C8—H8B0.9700C28—H280.9300
C9—H9A0.9600
Br2—Hg1—Br1'110.3 (7)N2—C10—H10A109.0
Br2—Hg1—Br4111.94 (3)C11—C10—H10B109.0
Br1'—Hg1—Br4108.4 (3)N2—C10—H10B109.0
Br2—Hg1—Br3111.20 (3)H10A—C10—H10B107.8
Br1'—Hg1—Br3107.5 (8)C10—C11—H11A109.5
Br4—Hg1—Br3107.32 (3)C10—C11—H11B109.5
Br2—Hg1—Br1103.78 (19)H11A—C11—H11B109.5
Br4—Hg1—Br1106.1 (3)C10—C11—H11C109.5
Br3—Hg1—Br1116.4 (3)H11A—C11—H11C109.5
C7—N1—C1108.2 (6)H11B—C11—H11C109.5
C7—N1—C8125.5 (6)C17—C12—N3131.7 (7)
C1—N1—C8126.3 (6)C17—C12—C13121.8 (7)
C7—N2—C2108.9 (6)N3—C12—C13106.4 (6)
C7—N2—C10127.7 (6)C14—C13—N4132.6 (7)
C2—N2—C10123.3 (6)C14—C13—C12121.4 (7)
C28—N3—C12107.9 (6)N4—C13—C12106.0 (6)
C28—N3—C18124.0 (7)C15—C14—C13116.7 (7)
C12—N3—C18128.1 (7)C15—C14—H14121.7
C28—N4—C13108.2 (6)C13—C14—H14121.7
C28—N4—C20124.3 (7)C14—C15—C16121.2 (7)
C13—N4—C20127.5 (6)C14—C15—H15119.4
C6—C1—N1132.2 (7)C16—C15—H15119.4
C6—C1—C2121.9 (6)C17—C16—C15122.2 (8)
N1—C1—C2105.9 (6)C17—C16—H16118.9
C3—C2—N2132.6 (7)C15—C16—H16118.9
C3—C2—C1121.2 (6)C16—C17—C12116.6 (7)
N2—C2—C1106.2 (6)C16—C17—H17121.7
C4—C3—C2117.3 (7)C12—C17—H17121.7
C4—C3—H3121.4C19—C18—N3116.4 (8)
C2—C3—H3121.4C19—C18—H18A108.2
C3—C4—C5121.1 (7)N3—C18—H18A108.2
C3—C4—H4119.4C19—C18—H18B108.2
C5—C4—H4119.4N3—C18—H18B108.2
C6—C5—C4122.7 (7)H18A—C18—H18B107.3
C6—C5—H5118.7C18—C19—H19A109.5
C4—C5—H5118.7C18—C19—H19B109.5
C5—C6—C1115.9 (7)H19A—C19—H19B109.5
C5—C6—H6122.1C18—C19—H19C109.5
C1—C6—H6122.1H19A—C19—H19C109.5
N2—C7—N1110.7 (6)H19B—C19—H19C109.5
N2—C7—H7124.6C21—C20—N4112.5 (7)
N1—C7—H7124.6C21—C20—H20A109.1
N1—C8—C9113.4 (7)N4—C20—H20A109.1
N1—C8—H8A108.9C21—C20—H20B109.1
C9—C8—H8A108.9N4—C20—H20B109.1
N1—C8—H8B108.9H20A—C20—H20B107.8
C9—C8—H8B108.9C20—C21—H21A109.5
H8A—C8—H8B107.7C20—C21—H21B109.5
C8—C9—H9A109.5H21A—C21—H21B109.5
C8—C9—H9B109.5C20—C21—H21C109.5
H9A—C9—H9B109.5H21A—C21—H21C109.5
C8—C9—H9C109.5H21B—C21—H21C109.5
H9A—C9—H9C109.5N4—C28—N3111.4 (7)
H9B—C9—H9C109.5N4—C28—H28124.3
C11—C10—N2113.0 (6)N3—C28—H28124.3
C11—C10—H10A109.0
C7—N1—C1—C6179.5 (7)C28—N3—C12—C17179.0 (8)
C8—N1—C1—C60.5 (11)C18—N3—C12—C171.1 (14)
C7—N1—C1—C20.0 (7)C28—N3—C12—C131.2 (8)
C8—N1—C1—C2179.1 (7)C18—N3—C12—C13178.8 (8)
C7—N2—C2—C3178.2 (7)C28—N4—C13—C14179.4 (8)
C10—N2—C2—C31.6 (10)C20—N4—C13—C140.0 (12)
C7—N2—C2—C11.6 (7)C28—N4—C13—C120.9 (8)
C10—N2—C2—C1178.2 (6)C20—N4—C13—C12179.7 (7)
C6—C1—C2—C30.7 (9)C17—C12—C13—C141.0 (10)
N1—C1—C2—C3178.9 (6)N3—C12—C13—C14179.0 (6)
C6—C1—C2—N2179.4 (5)C17—C12—C13—N4179.3 (6)
N1—C1—C2—N21.0 (6)N3—C12—C13—N41.3 (7)
N2—C2—C3—C4179.5 (6)N4—C13—C14—C15179.6 (7)
C1—C2—C3—C40.7 (10)C12—C13—C14—C150.8 (10)
C2—C3—C4—C50.2 (11)C13—C14—C15—C160.9 (11)
C3—C4—C5—C60.4 (12)C14—C15—C16—C171.3 (13)
C4—C5—C6—C10.4 (11)C15—C16—C17—C121.4 (12)
N1—C1—C6—C5179.3 (6)N3—C12—C17—C16178.7 (8)
C2—C1—C6—C50.2 (9)C13—C12—C17—C161.3 (11)
C2—N2—C7—N11.7 (7)C28—N3—C18—C1971.1 (14)
C10—N2—C7—N1178.1 (6)C12—N3—C18—C19108.8 (11)
C1—N1—C7—N21.1 (7)C28—N4—C20—C2191.6 (11)
C8—N1—C7—N2179.8 (7)C13—N4—C20—C2189.0 (10)
C7—N1—C8—C997.9 (9)C13—N4—C28—N30.2 (9)
C1—N1—C8—C983.2 (9)C20—N4—C28—N3179.6 (7)
C7—N2—C10—C119.0 (10)C12—N3—C28—N40.7 (10)
C2—N2—C10—C11166.8 (6)C18—N3—C28—N4179.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···Br10.972.733.69 (2)175
C8—H8B···Br4i0.972.863.755 (8)153
C28—H28···Br10.932.843.59 (2)139
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formula(C11H15N2)2[HgBr4]
Mr870.73
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.4334 (15), 9.9989 (16), 18.328 (3)
α, β, γ (°)85.060 (3), 81.684 (3), 67.250 (2)
V3)1409.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)11.15
Crystal size (mm)0.25 × 0.24 × 0.23
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.047, 0.077
No. of measured, independent and
observed [I > 2σ(I)] reflections
7102, 4923, 3711
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.081, 1.03
No. of reflections4923
No. of parameters294
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.57

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···Br1'0.972.733.69 (2)175
C8—H8B···Br4i0.972.863.755 (8)153
C28—H28···Br1'0.932.843.59 (2)139
Symmetry code: (i) x, y1, z.
 

Acknowledgements

This project was supported by the National Science Foundation of China (Project Grant No. 20872111) and the Natural Science Foundation of Tianjin (07JCYBJC00300).

References

First citationBourissou, D., Guerret, O., Gabba, F. & Bertrand, G. (2000). Chem. Rev. 100, 39–92.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarrison, J. C. & Youngs, W. J. (2005). Chem. Rev. 105, 3978–4008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5528.  CrossRef CAS Web of Science Google Scholar
First citationJacobsen, H., Correa, A., Poater, A., Costabile, C. & Cavallo, L. (2009). Coord. Chem. Rev. 253, 687–703.  Web of Science CrossRef CAS Google Scholar
First citationJuan, C. R. M. & Lee, B. (1999). Coord. Chem. Rev. 183, 43–80.  Google Scholar
First citationLiu, Q. X., Xu, F. B., Li, Q. S., Zeng, X. S., Leng, X. B., Chou, Y. L. & Zhang, Z. Z. (2003). Organometallics, 22, 309–314.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds