metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(6-Acetyl-1,3,7-tri­methyl­lumazine-κ3O4,N5,O6)bis­­(tri­phenyl­phosphine-κP)copper(I) hexa­fluorido­phosphate

aDepartamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Campus Universitario Las Lagunillas (B3), Universidad de Jaén, 23071 Jaén, Spain
*Correspondence e-mail: mmoreno@ujaen.es

(Received 1 December 2009; accepted 6 January 2010; online 13 January 2010)

The title compound, [Cu(C11H12N4O3)(C18H15P)2]PF6, is the third example reported in the literature of a five-coordinated CuIP2NO2 system. The metal is coordinated to both PPh3 mol­ecules through the P atoms and to the pyrazine ring of the lumazine mol­ecule through an N atom in a trigonal–planar arrangement; two additional coordinated O atoms, at Cu—O distances longer than 2.46 Å, complete the coordination. The coordination environment can be described as an inter­mediate square-pyramidal/trigonal–bipyramidal (SP/TBP) polyhedron.

Related literature

For related literature on the coordination behaviour of pteridine and related ligands, see: Jiménez Pulido et al. (2001[Jiménez Pulido, S. B., Sieger, M., Knödler, A., Heilmann, O., Wanner, M., Schwederski, B., Fiedler, J., Moreno-Carretero, M. N. & Kaim, W. (2001). Inorg. Chim. Acta, 325, 65-72.], 2008[Jiménez-Pulido, S. B., Linares-Ordóñez, F. M., Moreno-Carretero, M. N. & Quirós-Olozábal, M. (2008). Inorg. Chem. 47, 1096-1106.]); Acuña-Cueva et al. (2003[Acuña-Cueva, E. R., Faure, R., Illán-Cabeza, N. A., Jiménez-Pulido, S. B., Moreno-Carretero, M. N. & Quirós-Olozábal, M. (2003). Inorg. Chim. Acta, 351, 356-362.]); Hueso-Ureña et al. (2008[Hueso-Ureña, F., Jiménez-Pulido, S. B., Fernández-Liencres, M. P., Fernández-Gómez, M. & Moreno-Carretero, M. N. (2008). Dalton Trans. pp. 6461-6466.]). For related literature on similar CuI coordination environments, see: Wanner et al. (1999[Wanner, M., Sixt, T., Klinkhammer, K. W. & Kaim, W. (1999). Inorg. Chem. 38, 2753-2755.]); Hueso-Ureña et al. (2008[Hueso-Ureña, F., Jiménez-Pulido, S. B., Fernández-Liencres, M. P., Fernández-Gómez, M. & Moreno-Carretero, M. N. (2008). Dalton Trans. pp. 6461-6466.]). For additional structural details quoted in the comment, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]); Muetterties & Guggenberger (1974[Muetterties, E. L. & Guggenberger, L. J. (1974). J. Am. Chem. Soc. 96, 1748-1751.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C11H12N4O3)(C18H15P)2]PF6

  • Mr = 981.3

  • Monoclinic, C c

  • a = 10.2627 (13) Å

  • b = 26.890 (3) Å

  • c = 15.5387 (15) Å

  • β = 92.666 (10)°

  • V = 4283.5 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 293 K

  • 0.26 × 0.14 × 0.14 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.840, Tmax = 0.909

  • 32442 measured reflections

  • 9626 independent reflections

  • 6616 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.113

  • S = 1.04

  • 9626 reflections

  • 581 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.45 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: 0.05 (2)

Table 1
Selected bond lengths (Å)

Cu—N5 2.036 (3)
Cu—P2 2.212 (1)
Cu—P1 2.238 (1)
Cu—O4 2.466 (3)
Cu—O61 2.529 (3)

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Five-coordinated copper(I) complexes are very rare as contrasted with the copper(II) ones. A bibliographical survey using the CCDC database indicates only two previously reported CuIP2NO2 examples: the Cu(I) complex with the 2',7',9'-trimethylesther of pyrroloquinoline-quinone (Wanner et al., 1999) and the isostructural perchlorate salt of the title compound (Hueso-Ureña et al., 2008). The title compound shows a salt-like structure containing [Cu(DLMAceM)(PPh3)2]+ cations (DLMAceM = 6-acetyl-1,3,7-trimethylpteridine-2,4(1H,3H)-dione, see Scheme 1) and octahedral hexafluorophosphate anions (Fig. 1).

Within the relative arrangement of the acetyl group and the pteridine moiety (N5—C6—C61—O61 torsion: 166.5 (2)°), the free DLMAceM (Hueso-Ureña et al., 2008) is not able to act as tridentate ligand through the O4, N5 and O61 atoms; however, the energy difference between the metal-free conformation and the Cu(I)-coordinated one (N5—C6—C61—O61 torsion, 31.9 (7)°), in which the acetyl mean plane is turned off by ca133° around the C6—C61 bond, is not large enough to avoid the formation of M—L bonds, despite the steric hindrances between C62 and C71 methyl groups. Due to the coordination steric requirements, both rings of the pteridine moiety are slightly angled (7.4 (2)°). The two five-membered chelates are also angled to each other by 10.3 (2)°. Despite the fact that the Cremer and Pople's ring puckering analysis (Cremer & Pople, 1975) may be dubious since the bond distance range/average is higher than 25%, the closest description of the chelate-rings could be as a half-chair twisted on N5—Cu (Cu—N5—C4A—C4—O4, Φ=169.3° and k=4.20) and an envelope on C61 (Cu—N5—C6—C61—O61, Φ=253.9° and k=7.05). The metal is trigonal-planar three-coordinated with atoms P1, P2 and N5 (Cu—P1, 2.238 (1); Cu—P2, 2.212 (1); Cu—N5, 2.036 (3) Å). The metal center lies only slightly out of the plane defined by the three donor atoms (0.021 Å); despite bond angles around the metal (N5—Cu—P1, 108.2 (1); N5—Cu—P2, 121.1 (1); P1—Cu—P2, 130.68 (4)°) deviate by a little extent from the ideal value (120°), their sum is 360.0°.

The lumazine ligand is arranged in a roughly perpendicular fashion (81.0°) to the above-mentioned trigonal plane, the metal ion lying 0.41 Å out of this plane; in this plane, there are two additional and very long Cu···O4 and Cu···O61 (2.466 (3) and 2.529 (3) Å, respectively). The final coordination polyhedron can be defined as an intermediate TBP/SP shaped polyhedron, since Addison's τ criterion (Addison et al., 1984) indicates a distorted square-pyramid (τ= 1/5, apical atom N5), whereas Muetterties and Guggenberger's calculation (Muetterties & Guggenberger, 1974) shows a distorted trigonal-bipyramid (Δ = 1/5) with an P1/P2/N5 equatorial plane and a skewed O61···Cu···O4 axis due the restricted bite of tridentate DLMAceM. This description is coincident with those previously reported for the related perchlorate compound (Hueso-Ureña et al., 2008).

A close comparison of the coordination environments of the title compound and its related perchlorate one (Hueso-Ureña et al., 2008) with the Cu(I) complex of the 2',7',9'-trimethylesther of pyrroloquinoline-quinone (Wanner et al., 1999) indicates that both DLMAceM Cu(I) complexes show a little more unsymmetrical PPh3 groups with a P1 atom occupying a somewhat more apical position than P2; thus, the difference between both Cu—P bond lengths in the DLMAceM complexes (0.034 Å for Cu/DLMAceM/ClO4 and 0.026 Å for the title compound) is higher than in those reported by Kaim (0.014 Å) (Wanner et al., 1999). In addition to this, whereas the exocyclic carbonyl Cu···O distances are similar (2.559 (5) and 2.529 (3) Å for Cu/DLMAceM/ClO4 and the title compound and 2.579 (4)Å for the Wanner's compound), the endocyclic ones are quiet different (2.479 (5), 2.466 (3) Å and 2.254 (4) Å, respectively), the very weak O4-DLMAceM semicoordinative behaviour being in according with previously reported results for analogous lumazine derivatives (Acuña-Cueva et al., 2003; Jiménez-Pulido et al., 2008).

The analysis of short π-π ring interactions, made with PLATON (Spek, 2009), in the crystal structure does not indicate the existence of any significative π-stacking interaction. Only the interaction between both pyrimidine and pyrazine rings from DLMAceM and the P phenyl ring from PPh3 could be cited, but despite distances between centroids (3.696 (3) and 4.039 (3) Å) lies in the range accepted for these interactions (3.4–4.6 Å), the interplanar dihedral angles α (15.6 and 14.7°, respectively) clearly show both rings of each couple are far to be parallel enough to consider the existence of π-stacking (Janiak, 2000).

The packing structure indicates that hexafluorophosphate anions are placed in cavities and held in place by a large number of F···H—C interactions at distances smaller than the sum of the Van der Waals' radii (2.67 Å), F···H lengths ranging from 2.46 to 2.55 Å and F···H—C angles, from 118 to 144°; the arrangement of the counteranions is similar than in the crystal structure of the related perchlorate compound (Hueso-Ureña et al., 2008), but in the latter one there are fewer interactions, which justifies the disorder of these anions. Finally, in both structures, unit cell contains no additional residual solvent accessible voids.

The structure of the Cu(I) complex cation in this hexafluorophosphate salt is similar to the previously reported for the perchlorate analog (Hueso-Ureña et al., 2008), in which the nature of the metal-ligand bonds, especially in regard to the semicoordinated oxygen atoms, was defined using an AIM topological analysis of the electron density. The results indicated that Cu—X (X = N, O, P) bonds are weakly closed-shell interactions (Hueso-Ureña et al., 2008). On the other hand, the delocalization indices for the Cu···O bonds are lower than the Cu—P values, which is related to the higher covalent character of the Cu—P bonds versus the Cu···O interactions, the Cu—N interaction being intermediate between both.

Related literature top

For related literature on the coordination behaviour of pteridine and related ligands, see: Jiménez Pulido et al. (2001); Acuña-Cueva et al. (2003); Hueso-Ureña et al. (2008); Jiménez-Pulido et al. (2008).

For related literature on similar CuI coordination environments, see: Wanner et al. (1999); Hueso-Ureña et al. (2008).

For additional structural details quoted in the comment, see: Addison et al. (1984); Cremer & Pople (1975); Janiak (2000); Muetterties & Guggenberger (1974); Spek (2009).

Experimental top

Single-crystals of the title compound were easily obtained by adding sodium hexafluorophosphate (2 mmol) to an aqueous solution (40 ml) of the isomorphic bis-triphenylphosphine-(N5,O4,O61)-6-acetyl-1,3,7-trimethyl-pteridine-2,4(1H,3H)-dione-copper(I) perchlorate (1 mmol), previously synthesized and characterized (Hueso-Ureña et al., 2008).

Refinement top

All H atoms were treated as riding, with C—H (methyl) = 0.96 Å (Uĩso~(H) = 1.5U~eq~(C)) and C—H (aromatic) = 0.93 Å (Uĩso~(H) = 1.2U~eq~(C)).

Structure description top

xxxxxxxxxxxxxxxxxxxxxxxx

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the molecular unit of [Cu(DLMAceM)(PPh3)2]PF6 (ellipsoids at 50% probability). Atoms from the pteridine moiety have been labelled following IUPAC numbering system. For clarity, H atoms have been ommited. In each phenyl ring, only the C3 atom has been labelled, the C1 being bound to phosphorus.
(6-Acetyl-1,3,7-trimethyllumazine- κ3O4,N5,O6)bis(triphenylphosphine- κP)copper(I) hexafluorophosphate top
Crystal data top
[Cu(C11H12N4O3)(C18H15P)2]PF6F(000) = 2016
Mr = 981.3Dx = 1.522 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 54 reflections
a = 10.2627 (13) Åθ = 1.5–27.5°
b = 26.890 (3) ŵ = 0.70 mm1
c = 15.5387 (15) ÅT = 293 K
β = 92.666 (10)°Prism, red
V = 4283.5 (8) Å30.26 × 0.14 × 0.14 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
9626 independent reflections
Radiation source: Enraf–Nonius FR5906616 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 1.5°
CCD rotation images, thick slices scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 3434
Tmin = 0.840, Tmax = 0.909l = 2020
32442 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0499P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
9626 reflectionsΔρmax = 0.44 e Å3
581 parametersΔρmin = 0.45 e Å3
2 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (2)
Crystal data top
[Cu(C11H12N4O3)(C18H15P)2]PF6V = 4283.5 (8) Å3
Mr = 981.3Z = 4
Monoclinic, CcMo Kα radiation
a = 10.2627 (13) ŵ = 0.70 mm1
b = 26.890 (3) ÅT = 293 K
c = 15.5387 (15) Å0.26 × 0.14 × 0.14 mm
β = 92.666 (10)°
Data collection top
Nonius KappaCCD
diffractometer
9626 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
6616 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.909Rint = 0.066
32442 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.113Δρmax = 0.44 e Å3
S = 1.04Δρmin = 0.45 e Å3
9626 reflectionsAbsolute structure: Flack (1983)
581 parametersAbsolute structure parameter: 0.05 (2)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.22607 (4)0.126244 (17)0.60587 (3)0.02174 (14)
N10.2716 (3)0.06843 (13)0.5940 (2)0.0202 (8)
C10.3402 (5)0.11563 (17)0.5769 (3)0.0339 (13)
C20.1484 (4)0.07141 (17)0.6241 (3)0.0238 (10)
O20.0929 (3)0.11007 (12)0.6336 (2)0.0290 (8)
N30.0876 (3)0.02665 (13)0.6427 (2)0.0207 (8)
C30.0435 (4)0.03073 (18)0.6760 (3)0.0285 (11)
C40.1403 (4)0.01970 (16)0.6319 (3)0.0199 (10)
O40.0815 (3)0.05801 (11)0.6478 (2)0.0250 (7)
C4A0.2728 (4)0.01959 (16)0.6034 (3)0.0170 (9)
N50.3348 (3)0.06312 (13)0.6001 (2)0.0203 (8)
C60.4595 (4)0.06272 (16)0.5819 (3)0.0193 (9)
C610.5246 (4)0.11170 (17)0.5938 (3)0.0230 (10)
O610.4605 (3)0.14889 (11)0.5807 (2)0.0284 (7)
C620.6600 (4)0.11408 (18)0.6316 (3)0.0355 (12)
C70.5198 (4)0.01815 (17)0.5577 (3)0.0230 (10)
C710.6574 (4)0.01566 (18)0.5317 (3)0.0330 (12)
N80.4553 (4)0.02503 (14)0.5563 (2)0.0238 (9)
C8A0.3351 (4)0.02434 (16)0.5839 (3)0.0202 (10)
P10.11399 (10)0.13528 (4)0.47983 (7)0.0193 (2)
C1P0.0969 (4)0.07510 (15)0.4299 (3)0.0192 (9)
C2P0.0028 (4)0.04297 (16)0.4482 (3)0.0256 (11)
C3P0.0016 (5)0.00556 (17)0.4194 (3)0.0316 (12)
C4P0.0995 (5)0.02251 (17)0.3736 (3)0.0298 (11)
C5P0.2003 (4)0.00815 (17)0.3557 (3)0.0271 (11)
C6P0.1985 (4)0.05694 (16)0.3826 (3)0.0243 (10)
C1Q0.1852 (4)0.17328 (15)0.3980 (3)0.0205 (10)
C2Q0.2899 (4)0.20335 (16)0.4201 (3)0.0237 (10)
C3Q0.3385 (4)0.23579 (18)0.3614 (3)0.0300 (11)
C4Q0.2840 (4)0.23803 (17)0.2787 (3)0.0289 (11)
C5Q0.1812 (4)0.20761 (17)0.2558 (3)0.0274 (11)
C6Q0.1318 (4)0.17536 (16)0.3149 (3)0.0231 (10)
C1R0.0479 (4)0.16222 (16)0.4829 (3)0.0191 (9)
C2R0.1535 (4)0.14940 (18)0.4283 (3)0.0264 (11)
C3R0.2694 (4)0.17489 (18)0.4320 (3)0.0315 (12)
C4R0.2812 (5)0.21349 (17)0.4890 (3)0.0326 (12)
C5R0.1797 (4)0.22681 (17)0.5421 (3)0.0278 (11)
C6R0.0628 (4)0.20129 (16)0.5402 (3)0.0256 (10)
P20.23582 (10)0.17405 (4)0.72188 (7)0.0191 (2)
C1S0.2300 (4)0.24038 (15)0.6999 (3)0.0205 (9)
C2S0.3286 (5)0.26168 (17)0.6541 (3)0.0287 (11)
C3S0.3284 (5)0.31132 (18)0.6367 (3)0.0357 (12)
C4S0.2258 (5)0.34057 (17)0.6621 (3)0.0365 (12)
C5S0.1278 (5)0.31999 (17)0.7051 (3)0.0317 (12)
C6S0.1294 (4)0.27024 (17)0.7250 (3)0.0267 (11)
C1T0.1076 (4)0.16277 (15)0.7964 (3)0.0195 (9)
C2T0.0107 (4)0.14380 (16)0.7660 (3)0.0228 (10)
C3T0.1053 (4)0.13098 (17)0.8232 (3)0.0260 (10)
C4T0.0799 (4)0.13703 (17)0.9103 (3)0.0291 (11)
C5T0.0370 (4)0.15600 (17)0.9411 (3)0.0278 (11)
C6T0.1297 (4)0.16895 (15)0.8839 (3)0.0228 (10)
C1U0.3795 (4)0.16716 (16)0.7928 (3)0.0207 (10)
C2U0.4230 (4)0.11905 (17)0.8091 (3)0.0252 (10)
C3U0.5174 (5)0.10979 (19)0.8722 (3)0.0338 (12)
C4U0.5729 (4)0.1486 (2)0.9180 (3)0.0333 (12)
C5U0.5342 (4)0.19633 (19)0.9008 (3)0.0318 (12)
C6U0.4372 (4)0.20573 (17)0.8385 (3)0.0260 (11)
P30.58388 (12)0.03276 (5)0.78832 (8)0.0276 (3)
F10.6892 (3)0.00507 (12)0.82619 (19)0.0503 (8)
F20.6615 (3)0.07689 (12)0.8341 (2)0.0613 (10)
F30.6624 (3)0.04046 (13)0.70555 (19)0.0535 (9)
F40.5035 (3)0.02591 (12)0.87252 (18)0.0495 (8)
F50.5034 (3)0.01136 (10)0.74542 (18)0.0427 (8)
F60.4772 (3)0.07066 (11)0.7511 (2)0.0519 (8)
H1A0.33120.12330.51660.051*
H1B0.30290.1420.60940.051*
H1C0.4310.11220.59370.051*
H3A0.07550.00180.6890.043*
H3B0.03990.05060.72740.043*
H3C0.1010.04610.63340.043*
H62A0.72040.11360.58630.053*
H62B0.67590.0860.66870.053*
H62C0.67130.14420.66440.053*
H71A0.7150.01610.58220.05*
H71B0.67560.04380.49610.05*
H71C0.67040.01440.50.05*
H2P0.07130.05410.48020.031*
H3P0.07010.02680.43120.038*
H4P0.09970.05530.35450.036*
H5P0.26990.00380.32540.033*
H6P0.26620.07810.36890.029*
H2Q0.32820.20170.47550.028*
H3Q0.40850.25630.37750.036*
H4Q0.31670.260.23890.035*
H5Q0.14460.20870.19990.033*
H6Q0.06190.15480.29870.028*
H2R0.14590.12350.38910.032*
H3R0.34020.16590.39580.038*
H4R0.35980.23060.4910.039*
H5R0.18820.25320.58010.033*
H6R0.00650.21040.57760.031*
H2S0.39560.24180.63510.034*
H3S0.39670.32550.6080.043*
H4S0.22440.37440.64960.044*
H5S0.05870.33970.72140.038*
H6S0.06220.25660.75560.032*
H2T0.02720.13960.70710.027*
H3T0.18520.11840.80270.031*
H4T0.14280.12810.94870.035*
H5T0.05350.160110.033*
H6T0.20880.18210.90470.027*
H2U0.38760.09280.77680.03*
H3U0.54380.07730.8840.041*
H4U0.63710.14230.96090.04*
H5U0.57340.22260.93120.038*
H6U0.41080.23830.82730.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0251 (3)0.0193 (3)0.0208 (3)0.0017 (3)0.0003 (2)0.0014 (3)
P10.0198 (6)0.0182 (6)0.0201 (6)0.0016 (5)0.0019 (5)0.0011 (5)
P30.0303 (7)0.0282 (7)0.0240 (7)0.0092 (6)0.0019 (5)0.0004 (6)
P20.0207 (6)0.0170 (6)0.0197 (6)0.0007 (5)0.0016 (5)0.0002 (5)
F50.0552 (18)0.0388 (18)0.0334 (17)0.0198 (15)0.0044 (14)0.0035 (14)
F40.0354 (17)0.085 (2)0.0288 (16)0.0019 (16)0.0031 (13)0.0025 (16)
O20.0344 (19)0.0212 (17)0.0312 (19)0.0059 (16)0.0004 (15)0.0040 (15)
F30.0449 (18)0.077 (2)0.0400 (19)0.0188 (17)0.0119 (15)0.0074 (17)
F10.0419 (18)0.058 (2)0.050 (2)0.0132 (16)0.0049 (14)0.0048 (17)
O40.0258 (17)0.0189 (17)0.0309 (19)0.0019 (14)0.0061 (14)0.0000 (14)
F20.074 (2)0.047 (2)0.061 (2)0.0180 (18)0.0148 (19)0.0068 (17)
O610.0243 (17)0.0264 (18)0.035 (2)0.0006 (15)0.0027 (14)0.0011 (15)
F60.0561 (19)0.0426 (19)0.056 (2)0.0042 (15)0.0058 (17)0.0024 (15)
N30.021 (2)0.018 (2)0.023 (2)0.0033 (16)0.0001 (16)0.0019 (16)
N10.0220 (19)0.0152 (19)0.024 (2)0.0008 (15)0.0026 (16)0.0012 (16)
N80.027 (2)0.027 (2)0.018 (2)0.0007 (18)0.0017 (16)0.0039 (17)
N50.0235 (19)0.021 (2)0.0162 (19)0.0047 (17)0.0012 (16)0.0013 (16)
C8A0.023 (2)0.023 (3)0.015 (2)0.000 (2)0.0001 (18)0.0029 (19)
C6U0.022 (2)0.025 (3)0.031 (3)0.006 (2)0.006 (2)0.007 (2)
C2U0.025 (2)0.028 (3)0.023 (2)0.002 (2)0.002 (2)0.002 (2)
C70.022 (2)0.033 (3)0.014 (2)0.005 (2)0.0009 (18)0.004 (2)
C1Q0.018 (2)0.021 (2)0.023 (2)0.0025 (19)0.0026 (18)0.0007 (19)
C1U0.019 (2)0.024 (2)0.020 (2)0.0006 (19)0.0050 (18)0.002 (2)
C1R0.018 (2)0.022 (2)0.018 (2)0.0008 (19)0.0022 (18)0.0086 (19)
C1P0.018 (2)0.022 (2)0.018 (2)0.0010 (19)0.0003 (18)0.0009 (19)
C5S0.043 (3)0.027 (3)0.025 (3)0.009 (2)0.002 (2)0.002 (2)
C2T0.022 (2)0.020 (2)0.026 (3)0.0031 (19)0.001 (2)0.0044 (19)
C4A0.017 (2)0.020 (2)0.013 (2)0.0008 (18)0.0021 (18)0.0005 (18)
C40.025 (2)0.021 (2)0.013 (2)0.001 (2)0.0026 (18)0.0015 (19)
C710.022 (2)0.041 (3)0.036 (3)0.003 (2)0.003 (2)0.001 (2)
C6Q0.026 (2)0.021 (2)0.022 (3)0.0061 (19)0.0000 (19)0.0009 (19)
C2Q0.021 (2)0.025 (2)0.025 (2)0.001 (2)0.0004 (19)0.004 (2)
C6R0.030 (3)0.023 (2)0.024 (3)0.003 (2)0.000 (2)0.004 (2)
C20.031 (3)0.024 (3)0.017 (2)0.002 (2)0.003 (2)0.002 (2)
C3Q0.030 (3)0.029 (3)0.031 (3)0.011 (2)0.005 (2)0.001 (2)
C1T0.021 (2)0.014 (2)0.024 (2)0.0045 (18)0.0005 (18)0.0039 (19)
C5Q0.034 (3)0.028 (3)0.020 (2)0.003 (2)0.003 (2)0.002 (2)
C6S0.028 (2)0.022 (3)0.029 (3)0.001 (2)0.003 (2)0.003 (2)
C5R0.034 (3)0.024 (2)0.026 (3)0.007 (2)0.010 (2)0.004 (2)
C4T0.023 (2)0.035 (3)0.030 (3)0.006 (2)0.010 (2)0.007 (2)
C2S0.033 (3)0.026 (3)0.028 (3)0.000 (2)0.008 (2)0.005 (2)
C5T0.027 (3)0.036 (3)0.020 (2)0.008 (2)0.004 (2)0.003 (2)
C60.017 (2)0.026 (2)0.015 (2)0.0037 (19)0.0016 (17)0.0050 (19)
C1S0.022 (2)0.019 (2)0.020 (2)0.0030 (19)0.0022 (18)0.0006 (18)
C6T0.023 (2)0.021 (2)0.025 (2)0.0044 (19)0.0020 (19)0.001 (2)
C620.028 (3)0.032 (3)0.046 (3)0.008 (2)0.008 (2)0.008 (2)
C10.036 (3)0.018 (3)0.048 (3)0.006 (2)0.005 (2)0.002 (2)
C3P0.027 (3)0.030 (3)0.038 (3)0.008 (2)0.004 (2)0.003 (2)
C4Q0.029 (3)0.025 (3)0.034 (3)0.004 (2)0.010 (2)0.005 (2)
C2P0.024 (2)0.024 (3)0.029 (3)0.002 (2)0.007 (2)0.002 (2)
C4R0.034 (3)0.028 (3)0.037 (3)0.012 (2)0.009 (2)0.012 (2)
C5U0.021 (2)0.039 (3)0.035 (3)0.007 (2)0.001 (2)0.005 (2)
C4P0.038 (3)0.019 (2)0.032 (3)0.000 (2)0.001 (2)0.006 (2)
C3T0.019 (2)0.026 (3)0.034 (3)0.0033 (19)0.0042 (19)0.000 (2)
C30.020 (2)0.028 (3)0.038 (3)0.002 (2)0.004 (2)0.004 (2)
C3S0.042 (3)0.024 (3)0.041 (3)0.007 (2)0.006 (2)0.004 (2)
C6P0.023 (2)0.022 (2)0.027 (3)0.002 (2)0.000 (2)0.001 (2)
C4U0.019 (2)0.050 (3)0.030 (3)0.005 (2)0.003 (2)0.001 (2)
C4S0.060 (3)0.016 (3)0.033 (3)0.004 (3)0.005 (3)0.001 (2)
C3U0.036 (3)0.035 (3)0.030 (3)0.014 (2)0.000 (2)0.002 (2)
C5P0.026 (3)0.025 (3)0.030 (3)0.002 (2)0.001 (2)0.007 (2)
C3R0.020 (2)0.038 (3)0.036 (3)0.003 (2)0.001 (2)0.009 (2)
C2R0.027 (3)0.028 (3)0.024 (3)0.001 (2)0.001 (2)0.000 (2)
C610.023 (2)0.027 (3)0.019 (2)0.000 (2)0.0045 (19)0.003 (2)
Geometric parameters (Å, º) top
Cu—N52.036 (3)C2Q—C3Q1.372 (6)
Cu—P22.212 (1)C2Q—H2Q0.93
Cu—P12.238 (1)C6R—C5R1.383 (6)
Cu—O42.466 (3)C6R—H6R0.93
Cu—O612.529 (3)C3Q—C4Q1.379 (7)
P1—C1P1.800 (4)C3Q—H3Q0.93
P1—C1Q1.812 (4)C1T—C6T1.378 (6)
P1—C1R1.815 (4)C5Q—C4Q1.369 (6)
P3—F31.563 (3)C5Q—H5Q0.93
P3—F51.576 (3)C6S—C1S1.378 (6)
P3—F11.578 (3)C6S—H6S0.93
P3—F21.580 (3)C5R—C4R1.346 (7)
P3—F61.585 (3)C5R—H5R0.93
P3—F41.590 (3)C4T—C5T1.369 (6)
P2—C1U1.809 (4)C4T—C3T1.376 (6)
P2—C1S1.817 (4)C4T—H4T0.93
P2—C1T1.818 (4)C2S—C3S1.362 (6)
O2—C21.198 (5)C2S—C1S1.387 (6)
O4—C41.225 (5)C2S—H2S0.93
O61—C611.209 (5)C5T—C6T1.377 (6)
N3—C41.372 (5)C5T—H5T0.93
N3—C21.392 (6)C6—C611.485 (6)
N3—C31.468 (6)C6T—H6T0.93
N1—C8A1.366 (5)C62—C611.485 (6)
N1—C21.370 (5)C62—H62A0.96
N1—C11.481 (6)C62—H62B0.96
N8—C8A1.325 (5)C62—H62C0.96
N8—C71.336 (6)C1—H1A0.96
N5—C61.324 (5)C1—H1B0.96
N5—C4A1.334 (5)C1—H1C0.96
C8A—C4A1.384 (6)C3P—C4P1.363 (7)
C6U—C1U1.375 (6)C3P—C2P1.380 (6)
C6U—C5U1.380 (6)C3P—H3P0.93
C6U—H6U0.93C4Q—H4Q0.93
C2U—C3U1.369 (6)C2P—H2P0.93
C2U—C1U1.388 (6)C4R—C3R1.373 (6)
C2U—H2U0.93C4R—H4R0.93
C7—C61.408 (6)C5U—C4U1.367 (7)
C7—C711.489 (6)C5U—H5U0.93
C1Q—C2Q1.375 (6)C4P—C5P1.361 (6)
C1Q—C6Q1.380 (6)C4P—H4P0.93
C1R—C2R1.388 (6)C3T—H3T0.93
C1R—C6R1.390 (6)C3—H3A0.96
C1P—C2P1.378 (6)C3—H3B0.96
C1P—C6P1.392 (6)C3—H3C0.96
C5S—C4S1.352 (7)C3S—C4S1.387 (7)
C5S—C6S1.373 (6)C3S—H3S0.93
C5S—H5S0.93C6P—C5P1.377 (6)
C2T—C1T1.380 (6)C6P—H6P0.93
C2T—C3T1.389 (6)C4U—C3U1.371 (7)
C2T—H2T0.93C4U—H4U0.93
C4A—C41.449 (6)C4S—H4S0.93
C71—H71A0.96C3U—H3U0.93
C71—H71B0.96C5P—H5P0.93
C71—H71C0.96C3R—C2R1.377 (6)
C6Q—C5Q1.377 (6)C3R—H3R0.93
C6Q—H6Q0.93C2R—H2R0.93
P2—Cu—P1130.68 (4)N1—C2—N3116.7 (4)
P1—Cu—O491.13 (9)C2Q—C3Q—C4Q120.2 (4)
P1—Cu—O61107.04 (8)C2Q—C3Q—H3Q119.9
N5—Cu—P1108.2 (1)C4Q—C3Q—H3Q119.9
P2—Cu—O4102.85 (9)C6T—C1T—C2T119.0 (4)
P2—Cu—O6188.81 (8)C6T—C1T—P2121.1 (3)
N5—Cu—P2121.1 (1)C2T—C1T—P2119.7 (3)
O4—Cu—O61143.9 (1)C4Q—C5Q—C6Q120.4 (4)
O4—Cu—N574.3 (1)C4Q—C5Q—H5Q119.8
O61—Cu—N570.5 (1)C6Q—C5Q—H5Q119.8
C1P—P1—C1Q103.8 (2)C5S—C6S—C1S120.3 (5)
C1P—P1—C1R107.41 (19)C5S—C6S—H6S119.8
C1Q—P1—C1R101.13 (19)C1S—C6S—H6S119.8
C1P—P1—Cu108.38 (14)C4R—C5R—C6R120.1 (4)
C1Q—P1—Cu117.90 (14)C4R—C5R—H5R119.9
C1R—P1—Cu117.02 (14)C6R—C5R—H5R119.9
F3—P3—F591.82 (17)C5T—C4T—C3T120.7 (4)
F3—P3—F191.25 (18)C5T—C4T—H4T119.7
F5—P3—F190.51 (17)C3T—C4T—H4T119.7
F3—P3—F290.15 (18)C3S—C2S—C1S120.8 (5)
F5—P3—F2178.02 (19)C3S—C2S—H2S119.6
F1—P3—F289.66 (18)C1S—C2S—H2S119.6
F3—P3—F689.31 (18)C4T—C5T—C6T119.3 (4)
F5—P3—F689.44 (17)C4T—C5T—H5T120.3
F1—P3—F6179.4 (2)C6T—C5T—H5T120.3
F2—P3—F690.37 (17)N5—C6—C7120.4 (4)
F3—P3—F4179.0 (2)N5—C6—C61113.6 (4)
F5—P3—F488.81 (16)C7—C6—C61126.0 (4)
F1—P3—F489.51 (17)C6S—C1S—C2S118.6 (4)
F2—P3—F489.22 (18)C6S—C1S—P2122.5 (3)
F6—P3—F489.94 (17)C2S—C1S—P2118.9 (3)
C1U—P2—C1S103.53 (19)C5T—C6T—C1T121.3 (4)
C1U—P2—C1T100.84 (19)C5T—C6T—H6T119.4
C1S—P2—C1T105.4 (2)C1T—C6T—H6T119.4
C1U—P2—Cu116.22 (14)C61—C62—H62A109.5
C1S—P2—Cu114.68 (14)C61—C62—H62B109.5
C1T—P2—Cu114.54 (14)H62A—C62—H62B109.5
C4—N3—C2125.2 (4)C61—C62—H62C109.5
C4—N3—C3119.0 (4)H62A—C62—H62C109.5
C2—N3—C3115.8 (4)H62B—C62—H62C109.5
C8A—N1—C2122.9 (4)N1—C1—H1A109.5
C8A—N1—C1119.3 (4)N1—C1—H1B109.5
C2—N1—C1117.7 (4)H1A—C1—H1B109.5
C8A—N8—C7116.8 (4)N1—C1—H1C109.5
C6—N5—C4A117.9 (4)H1A—C1—H1C109.5
C6—N5—Cu123.6 (3)H1B—C1—H1C109.5
C4A—N5—Cu117.8 (3)C4P—C3P—C2P120.2 (4)
N8—C8A—N1118.8 (4)C4P—C3P—H3P119.9
N8—C8A—C4A122.0 (4)C2P—C3P—H3P119.9
N1—C8A—C4A119.2 (4)C5Q—C4Q—C3Q119.4 (4)
C1U—C6U—C5U120.2 (4)C5Q—C4Q—H4Q120.3
C1U—C6U—H6U119.9C3Q—C4Q—H4Q120.3
C5U—C6U—H6U119.9C1P—C2P—C3P120.6 (4)
C3U—C2U—C1U120.8 (4)C1P—C2P—H2P119.7
C3U—C2U—H2U119.6C3P—C2P—H2P119.7
C1U—C2U—H2U119.6C5R—C4R—C3R120.5 (4)
N8—C7—C6121.4 (4)C5R—C4R—H4R119.8
N8—C7—C71115.6 (4)C3R—C4R—H4R119.8
C6—C7—C71123.0 (4)C4U—C5U—C6U120.2 (5)
C2Q—C1Q—C6Q118.8 (4)C4U—C5U—H5U119.9
C2Q—C1Q—P1119.5 (3)C6U—C5U—H5U119.9
C6Q—C1Q—P1121.6 (3)C5P—C4P—C3P120.6 (4)
C6U—C1U—C2U118.8 (4)C5P—C4P—H4P119.7
C6U—C1U—P2123.8 (3)C3P—C4P—H4P119.7
C2U—C1U—P2116.9 (3)C4T—C3T—C2T119.6 (4)
C2R—C1R—C6R118.2 (4)C4T—C3T—H3T120.2
C2R—C1R—P1125.1 (3)C2T—C3T—H3T120.2
C6R—C1R—P1116.5 (3)N3—C3—H3A109.5
C2P—C1P—C6P118.0 (4)N3—C3—H3B109.5
C2P—C1P—P1122.2 (3)H3A—C3—H3B109.5
C6P—C1P—P1118.9 (3)N3—C3—H3C109.5
C4S—C5S—C6S120.6 (5)H3A—C3—H3C109.5
C4S—C5S—H5S119.7H3B—C3—H3C109.5
C6S—C5S—H5S119.7C2S—C3S—C4S119.5 (5)
C1T—C2T—C3T120.2 (4)C2S—C3S—H3S120.2
C1T—C2T—H2T119.9C4S—C3S—H3S120.2
C3T—C2T—H2T119.9C5P—C6P—C1P121.0 (4)
N5—C4A—C8A121.0 (4)C5P—C6P—H6P119.5
N5—C4A—C4117.8 (4)C1P—C6P—H6P119.5
C8A—C4A—C4121.2 (4)C5U—C4U—C3U120.2 (4)
O4—C4—N3122.6 (4)C5U—C4U—H4U119.9
O4—C4—C4A122.8 (4)C3U—C4U—H4U119.9
N3—C4—C4A114.6 (4)C5S—C4S—C3S120.1 (4)
C7—C71—H71A109.5C5S—C4S—H4S120
C7—C71—H71B109.5C3S—C4S—H4S120
H71A—C71—H71B109.5C2U—C3U—C4U119.8 (5)
C7—C71—H71C109.5C2U—C3U—H3U120.1
H71A—C71—H71C109.5C4U—C3U—H3U120.1
H71B—C71—H71C109.5C4P—C5P—C6P119.6 (4)
C5Q—C6Q—C1Q120.5 (4)C4P—C5P—H5P120.2
C5Q—C6Q—H6Q119.8C6P—C5P—H5P120.2
C1Q—C6Q—H6Q119.8C4R—C3R—C2R120.3 (5)
C3Q—C2Q—C1Q120.8 (4)C4R—C3R—H3R119.8
C3Q—C2Q—H2Q119.6C2R—C3R—H3R119.8
C1Q—C2Q—H2Q119.6C3R—C2R—C1R120.2 (4)
C5R—C6R—C1R120.6 (4)C3R—C2R—H2R119.9
C5R—C6R—H6R119.7C1R—C2R—H2R119.9
C1R—C6R—H6R119.7O61—C61—C6118.3 (4)
O2—C2—N1122.9 (4)O61—C61—C62121.5 (4)
O2—C2—N3120.3 (4)C6—C61—C62119.7 (4)
N5—Cu—P1—C1P23.80 (18)C2R—C1R—C6R—C5R0.4 (6)
P2—Cu—P1—C1P158.14 (15)P1—C1R—C6R—C5R174.7 (3)
N5—Cu—P1—C1Q93.63 (19)C8A—N1—C2—O2179.4 (4)
P2—Cu—P1—C1Q84.43 (17)C1—N1—C2—O23.1 (6)
N5—Cu—P1—C1R145.35 (19)C8A—N1—C2—N31.4 (5)
P2—Cu—P1—C1R36.59 (17)C1—N1—C2—N3177.7 (4)
N5—Cu—P2—C1U20.5 (2)C4—N3—C2—O2178.0 (4)
P1—Cu—P2—C1U157.32 (16)C3—N3—C2—O21.6 (6)
N5—Cu—P2—C1S141.42 (19)C4—N3—C2—N11.2 (6)
P1—Cu—P2—C1S36.43 (17)C3—N3—C2—N1179.2 (3)
N5—Cu—P2—C1T96.56 (18)C1Q—C2Q—C3Q—C4Q1.0 (7)
P1—Cu—P2—C1T85.59 (15)C3T—C2T—C1T—C6T0.3 (6)
P2—Cu—N5—C680.8 (3)C3T—C2T—C1T—P2174.4 (3)
P1—Cu—N5—C697.5 (3)C1U—P2—C1T—C6T22.1 (4)
P2—Cu—N5—C4A108.6 (3)C1S—P2—C1T—C6T85.3 (4)
P1—Cu—N5—C4A73.1 (3)Cu—P2—C1T—C6T147.7 (3)
C7—N8—C8A—N1171.8 (4)C1U—P2—C1T—C2T152.5 (3)
C7—N8—C8A—C4A7.7 (6)C1S—P2—C1T—C2T100.1 (4)
C2—N1—C8A—N8178.5 (4)Cu—P2—C1T—C2T26.9 (4)
C1—N1—C8A—N82.2 (6)C1Q—C6Q—C5Q—C4Q0.0 (7)
C2—N1—C8A—C4A1.0 (6)C4S—C5S—C6S—C1S1.2 (7)
C1—N1—C8A—C4A177.3 (4)C1R—C6R—C5R—C4R1.0 (7)
C8A—N8—C7—C64.2 (6)C3T—C4T—C5T—C6T0.2 (7)
C8A—N8—C7—C71176.2 (4)C4A—N5—C6—C76.7 (6)
C1P—P1—C1Q—C2Q133.2 (4)Cu—N5—C6—C7163.9 (3)
C1R—P1—C1Q—C2Q115.6 (4)C4A—N5—C6—C61170.6 (4)
Cu—P1—C1Q—C2Q13.3 (4)Cu—N5—C6—C6118.8 (5)
C1P—P1—C1Q—C6Q51.2 (4)N8—C7—C6—N53.1 (6)
C1R—P1—C1Q—C6Q60.1 (4)C71—C7—C6—N5176.5 (4)
Cu—P1—C1Q—C6Q171.0 (3)N8—C7—C6—C61173.8 (4)
C5U—C6U—C1U—C2U1.7 (6)C71—C7—C6—C616.6 (7)
C5U—C6U—C1U—P2170.3 (3)C5S—C6S—C1S—C2S0.2 (7)
C3U—C2U—C1U—C6U3.0 (6)C5S—C6S—C1S—P2178.5 (4)
C3U—C2U—C1U—P2169.5 (4)C3S—C2S—C1S—C6S2.1 (7)
C1S—P2—C1U—C6U18.9 (4)C3S—C2S—C1S—P2179.6 (4)
C1T—P2—C1U—C6U90.0 (4)C1U—P2—C1S—C6S116.1 (4)
Cu—P2—C1U—C6U145.5 (3)C1T—P2—C1S—C6S10.7 (4)
C1S—P2—C1U—C2U169.0 (3)Cu—P2—C1S—C6S116.2 (4)
C1T—P2—C1U—C2U82.1 (4)C1U—P2—C1S—C2S65.6 (4)
Cu—P2—C1U—C2U42.4 (4)C1T—P2—C1S—C2S171.1 (3)
C1P—P1—C1R—C2R23.5 (4)Cu—P2—C1S—C2S62.0 (4)
C1Q—P1—C1R—C2R84.9 (4)C4T—C5T—C6T—C1T0.6 (7)
Cu—P1—C1R—C2R145.6 (3)C2T—C1T—C6T—C5T0.8 (6)
C1P—P1—C1R—C6R161.7 (3)P2—C1T—C6T—C5T173.8 (3)
C1Q—P1—C1R—C6R89.8 (4)C6Q—C5Q—C4Q—C3Q0.6 (7)
Cu—P1—C1R—C6R39.6 (4)C2Q—C3Q—C4Q—C5Q0.1 (7)
C1Q—P1—C1P—C2P148.2 (4)C6P—C1P—C2P—C3P0.6 (6)
C1R—P1—C1P—C2P41.6 (4)P1—C1P—C2P—C3P169.8 (4)
Cu—P1—C1P—C2P85.7 (4)C4P—C3P—C2P—C1P1.1 (7)
C1Q—P1—C1P—C6P42.7 (4)C6R—C5R—C4R—C3R0.7 (7)
C1R—P1—C1P—C6P149.3 (3)C1U—C6U—C5U—C4U0.4 (7)
Cu—P1—C1P—C6P83.4 (3)C2P—C3P—C4P—C5P0.1 (7)
C6—N5—C4A—C8A3.3 (6)C5T—C4T—C3T—C2T0.7 (7)
Cu—N5—C4A—C8A167.9 (3)C1T—C2T—C3T—C4T0.4 (6)
C6—N5—C4A—C4173.8 (4)C1S—C2S—C3S—C4S2.5 (7)
Cu—N5—C4A—C415.0 (5)C2P—C1P—C6P—C5P0.8 (6)
N8—C8A—C4A—N54.2 (6)P1—C1P—C6P—C5P168.8 (3)
N1—C8A—C4A—N5175.3 (4)C6U—C5U—C4U—C3U1.3 (7)
N8—C8A—C4A—C4178.8 (4)C6S—C5S—C4S—C3S0.8 (7)
N1—C8A—C4A—C41.7 (6)C2S—C3S—C4S—C5S1.1 (8)
C2—N3—C4—O4178.5 (4)C1U—C2U—C3U—C4U2.2 (7)
C3—N3—C4—O41.1 (6)C5U—C4U—C3U—C2U0.0 (7)
C2—N3—C4—C4A3.7 (6)C3P—C4P—C5P—C6P1.3 (7)
C3—N3—C4—C4A176.7 (3)C1P—C6P—C5P—C4P1.7 (7)
N5—C4A—C4—O44.6 (6)C5R—C4R—C3R—C2R0.2 (7)
C8A—C4A—C4—O4178.3 (4)C4R—C3R—C2R—C1R0.7 (7)
N5—C4A—C4—N3173.2 (4)C6R—C1R—C2R—C3R0.4 (6)
C8A—C4A—C4—N33.9 (5)P1—C1R—C2R—C3R175.1 (4)
C2Q—C1Q—C6Q—C5Q1.1 (6)N5—C6—C61—O6131.9 (6)
P1—C1Q—C6Q—C5Q174.6 (3)C7—C6—C61—O61151.0 (4)
C6Q—C1Q—C2Q—C3Q1.6 (7)N5—C6—C61—C62140.4 (4)
P1—C1Q—C2Q—C3Q174.2 (3)C7—C6—C61—C6236.8 (6)

Experimental details

Crystal data
Chemical formula[Cu(C11H12N4O3)(C18H15P)2]PF6
Mr981.3
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)10.2627 (13), 26.890 (3), 15.5387 (15)
β (°) 92.666 (10)
V3)4283.5 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.26 × 0.14 × 0.14
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.840, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
32442, 9626, 6616
Rint0.066
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.113, 1.04
No. of reflections9626
No. of parameters581
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.45
Absolute structureFlack (1983)
Absolute structure parameter0.05 (2)

Computer programs: COLLECT (Nonius, 1998), DIRAX/LSQ (Duisenberg, 1992), EVALCCD (Duisenberg et al., 2003), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cu—N52.036 (3)Cu—O42.466 (3)
Cu—P22.212 (1)Cu—O612.529 (3)
Cu—P12.238 (1)
 

Acknowledgements

Thanks are due to Plan de Apoyo a la Investigación, al Desarrollo Tecnológico y a la Innovación de la Universidad de Jaén (project RFC/PP2008/UJA-08–16-08) and Junta de Andalucía (FQM-273) for financial support.

References

First citationAcuña-Cueva, E. R., Faure, R., Illán-Cabeza, N. A., Jiménez-Pulido, S. B., Moreno-Carretero, M. N. & Quirós-Olozábal, M. (2003). Inorg. Chim. Acta, 351, 356–362.  Google Scholar
First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHueso-Ureña, F., Jiménez-Pulido, S. B., Fernández-Liencres, M. P., Fernández-Gómez, M. & Moreno-Carretero, M. N. (2008). Dalton Trans. pp. 6461–6466.  Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationJiménez-Pulido, S. B., Linares-Ordóñez, F. M., Moreno-Carretero, M. N. & Quirós-Olozábal, M. (2008). Inorg. Chem. 47, 1096–1106.  Web of Science PubMed Google Scholar
First citationJiménez Pulido, S. B., Sieger, M., Knödler, A., Heilmann, O., Wanner, M., Schwederski, B., Fiedler, J., Moreno-Carretero, M. N. & Kaim, W. (2001). Inorg. Chim. Acta, 325, 65–72.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMuetterties, E. L. & Guggenberger, L. J. (1974). J. Am. Chem. Soc. 96, 1748–1751.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWanner, M., Sixt, T., Klinkhammer, K. W. & Kaim, W. (1999). Inorg. Chem. 38, 2753–2755.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds