organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Di­butanoyl-1,1′-(o-phenyl­ene)di­thio­urea

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 11 December 2009; accepted 14 January 2010; online 23 January 2010)

The mol­ecular conformation of the title compound, C16H22N4O2S2, is stabilized by two intramolecular N—H⋯O hydrogen bonds. The crystal packing shows N—H⋯O and N—H⋯S hydrogen bonds.

Related literature

For details of the biological activity of bisthio­ureas, see: Berkessel et al. (2006[Berkessel, A., Roland, K. & Neudorfl, J. M. (2006). Org. Lett. 8, 4195-4198.]); Moloto et al. (2004[Moloto, M. L. & Revaprasadu, N. (2004). J. Mater. Sci. 15, 313-316.]). For their applications, see: Atia et al. (2005[Atia, A. A. (2005). Hydrometallurgy, 80, 98-106.]); Hu et al. (2009[Hu, C., He, Y., Chen, Z. & Huang, X. (2009). Tetrahedron Asymmetry, 20, 98-106.]); Phetsuksiri et al. (2003[Phetsuksiri, B., Jackson, M., Scherman, H., McNeil, M., Besra, G. S., Baulard, A. R., Slayden, R. A., DeBarber, A. E., Barry, C. E., Baird, M. S., Crick, D. C. & Brennan, P. J. (2003). J. Biol. Chem. 278, 53123-53130.]). For the synthesis of the title compound, see: Succaw et al. (2005[Succaw, G. L., Weakley, T. J. R., Han, H. & Doxsee, K. M. (2005). Cryst. Growth Des. 5, 2288-2298.]).

[Scheme 1]

Experimental

Crystal data
  • C16H22N4O2S2

  • Mr = 366.50

  • Monoclinic, P 21 /n

  • a = 8.8099 (5) Å

  • b = 16.4925 (7) Å

  • c = 12.3923 (8) Å

  • β = 91.949 (5)°

  • V = 1799.53 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 173 K

  • 0.28 × 0.28 × 0.23 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.918, Tmax = 0.932

  • 22483 measured reflections

  • 3360 independent reflections

  • 2890 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.095

  • S = 1.04

  • 3360 reflections

  • 229 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O1 0.86 (2) 1.90 (2) 2.6336 (17) 142.6 (17)
N12—H12⋯O2i 0.84 (2) 2.19 (2) 3.0309 (18) 175.3 (19)
N21—H21⋯O2 0.83 (2) 1.98 (2) 2.6616 (18) 139.1 (18)
N22—H22⋯S1ii 0.87 (2) 2.75 (2) 3.6147 (14) 172.0 (17)
Symmetry codes: (i) x-1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Various bisthiourea derivatives have attracted much attention due to their variety of applications and bioactivities. The presence of multivalent binding sites in bis thioureas provide a multitude of bonding possibilities. Urea and thiourea functionalities, presenting opportunities for the formation of diverse hydrogen bonded networks, represent powerful crystal engineering building blocks (Succaw et al., 2005). The fluorinated bis-thiourea derivative are used as organocatalyst in Morita-Baylis-Hillman reaction (Berkessel et al., 2006). N-alkyl thiourea Cadmium(II) complex as precursor for CdS-nanoparticle synthesis (Moloto et al., 2004). BINOL (1,1'-Bi-2-naphthol) bis thiourea derivatives act as chemosensors (Hu et al.,2009). Bis-thiourea resins have been used for adsorption of silver(I) and gold(II) for application to retrieval of silver ions from processed photo films (Atia et al., 2005). Diisoamyloxydiphenylthioureas are effective anti-tuberculosis agents (Phetsuksiri et al. (2003).

The molecular conformation of the title compound is stabilized by two N—H···O hydrogen bonds. The crystal packing shows N—H···O and N—H···S hydrogen bonds.

Related literature top

For details of the biological activity of bis thioureas, see: Berkessel et al. (2006); Moloto et al. (2004). For their applications, see: Atia et al. (2005); Hu et al. (2009); Phetsuksiri et al. (2003). For the synthesis of the title compound, see: Succaw et al. (2005).

Experimental top

The compound was prepared acc ording to lierature procedure (Succaw et al., 2005) and Recrystallized from methanol as colourless crystals: Anal. calcd.for C16H22N4O2S2: C, 52.43; H, 6.05; N, 15.29; S, 17.50%; found: C, 52.31; H, 6.19; N, 15.41; S, 17.62.

Refinement top

H atoms attached to C were geometrically positioned and refined using a riding model with C—H(aromatic) = 0.95 Å, CH(methyl) = 0.98 Å, or CH(methylene) = 0.99 Å, respectively. The position of the amino H atoms were freely refined. In all cases fixed individual displacement parameters

[U(H) = 1.2 Ueq(Caromatic), 1.2 Ueq(N); 1.5 Ueq(Cmethyl)] were used.

Structure description top

Various bisthiourea derivatives have attracted much attention due to their variety of applications and bioactivities. The presence of multivalent binding sites in bis thioureas provide a multitude of bonding possibilities. Urea and thiourea functionalities, presenting opportunities for the formation of diverse hydrogen bonded networks, represent powerful crystal engineering building blocks (Succaw et al., 2005). The fluorinated bis-thiourea derivative are used as organocatalyst in Morita-Baylis-Hillman reaction (Berkessel et al., 2006). N-alkyl thiourea Cadmium(II) complex as precursor for CdS-nanoparticle synthesis (Moloto et al., 2004). BINOL (1,1'-Bi-2-naphthol) bis thiourea derivatives act as chemosensors (Hu et al.,2009). Bis-thiourea resins have been used for adsorption of silver(I) and gold(II) for application to retrieval of silver ions from processed photo films (Atia et al., 2005). Diisoamyloxydiphenylthioureas are effective anti-tuberculosis agents (Phetsuksiri et al. (2003).

The molecular conformation of the title compound is stabilized by two N—H···O hydrogen bonds. The crystal packing shows N—H···O and N—H···S hydrogen bonds.

For details of the biological activity of bis thioureas, see: Berkessel et al. (2006); Moloto et al. (2004). For their applications, see: Atia et al. (2005); Hu et al. (2009); Phetsuksiri et al. (2003). For the synthesis of the title compound, see: Succaw et al. (2005).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.
3,3'-Dibutanoyl-1,1'-(o-phenylene)dithiourea top
Crystal data top
C16H22N4O2S2F(000) = 776
Mr = 366.50Dx = 1.353 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 20465 reflections
a = 8.8099 (5) Åθ = 3.4–26.0°
b = 16.4925 (7) ŵ = 0.31 mm1
c = 12.3923 (8) ÅT = 173 K
β = 91.949 (5)°Block, colourless
V = 1799.53 (17) Å30.28 × 0.28 × 0.23 mm
Z = 4
Data collection top
Stoe IPDS II two-circle
diffractometer
3360 independent reflections
Radiation source: fine-focus sealed tube2890 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ω scansθmax = 25.6°, θmin = 3.4°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 1010
Tmin = 0.918, Tmax = 0.932k = 1918
22483 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.139P]
where P = (Fo2 + 2Fc2)/3
3360 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C16H22N4O2S2V = 1799.53 (17) Å3
Mr = 366.50Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.8099 (5) ŵ = 0.31 mm1
b = 16.4925 (7) ÅT = 173 K
c = 12.3923 (8) Å0.28 × 0.28 × 0.23 mm
β = 91.949 (5)°
Data collection top
Stoe IPDS II two-circle
diffractometer
3360 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
2890 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.932Rint = 0.087
22483 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.23 e Å3
3360 reflectionsΔρmin = 0.33 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.07444 (5)0.68569 (3)0.35994 (3)0.02446 (14)
S20.47542 (5)0.79179 (3)0.52094 (3)0.02947 (14)
O10.38901 (14)0.53284 (9)0.57778 (9)0.0278 (3)
O20.83408 (13)0.59749 (8)0.58037 (9)0.0224 (3)
C10.42857 (18)0.65251 (9)0.31239 (12)0.0152 (3)
C20.57714 (18)0.67920 (9)0.33537 (12)0.0154 (3)
C30.66576 (19)0.70843 (10)0.25383 (13)0.0206 (3)
H30.76740.72490.26950.025*
C40.6054 (2)0.71355 (11)0.14871 (13)0.0228 (4)
H40.66540.73420.09270.027*
C50.4579 (2)0.68847 (10)0.12589 (12)0.0211 (4)
H50.41700.69240.05420.025*
C60.36860 (19)0.65746 (10)0.20698 (12)0.0180 (3)
H60.26780.63990.19060.022*
N110.34909 (15)0.61572 (8)0.39740 (10)0.0160 (3)
H110.401 (2)0.5867 (12)0.4430 (16)0.019*
C110.20588 (17)0.62849 (10)0.42462 (12)0.0159 (3)
N120.16371 (16)0.58921 (8)0.51872 (10)0.0168 (3)
H120.072 (2)0.5945 (12)0.5357 (15)0.020*
C120.25388 (19)0.54519 (10)0.59085 (12)0.0195 (3)
C130.1723 (2)0.51260 (12)0.68687 (14)0.0272 (4)
H13A0.13160.45810.66910.033*
H13B0.08520.54840.70170.033*
C140.2751 (2)0.50692 (12)0.78795 (14)0.0285 (4)
H14A0.22060.47760.84460.034*
H14B0.36630.47480.77110.034*
C150.3251 (3)0.58888 (14)0.83166 (17)0.0447 (5)
H15A0.39120.58120.89610.054*
H15B0.23570.62050.85060.054*
H15C0.38090.61790.77650.054*
N210.64067 (16)0.67101 (9)0.44277 (10)0.0170 (3)
H210.708 (2)0.6374 (13)0.4558 (15)0.020*
C210.59630 (17)0.71486 (10)0.52676 (12)0.0171 (3)
N220.65944 (15)0.69253 (8)0.62711 (11)0.0172 (3)
H220.630 (2)0.7231 (13)0.6794 (16)0.021*
C220.77077 (18)0.63670 (10)0.65070 (12)0.0178 (3)
C230.8064 (2)0.62499 (11)0.76915 (12)0.0223 (4)
H23A0.74620.66360.81140.027*
H23B0.91540.63610.78470.027*
C240.7692 (2)0.53829 (12)0.80244 (14)0.0308 (4)
H24A0.66170.52640.78250.037*
H24B0.83350.50000.76270.037*
C250.7954 (4)0.52563 (15)0.92284 (17)0.0580 (8)
H25A0.76940.46970.94150.070*
H25B0.73140.56320.96230.070*
H25C0.90240.53580.94240.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0188 (2)0.0308 (3)0.0237 (2)0.00497 (16)0.00078 (16)0.01004 (17)
S20.0334 (3)0.0301 (3)0.0245 (2)0.01694 (19)0.00509 (18)0.00387 (18)
O10.0216 (6)0.0399 (8)0.0223 (6)0.0105 (5)0.0046 (5)0.0104 (5)
O20.0225 (6)0.0264 (7)0.0184 (6)0.0085 (5)0.0012 (4)0.0018 (5)
C10.0168 (7)0.0135 (8)0.0153 (7)0.0021 (6)0.0025 (6)0.0011 (6)
C20.0181 (8)0.0137 (8)0.0144 (7)0.0028 (6)0.0005 (6)0.0001 (6)
C30.0182 (8)0.0201 (9)0.0236 (8)0.0003 (6)0.0022 (6)0.0020 (6)
C40.0268 (9)0.0219 (9)0.0200 (8)0.0017 (7)0.0073 (6)0.0058 (7)
C50.0289 (9)0.0213 (9)0.0130 (7)0.0052 (7)0.0006 (6)0.0007 (6)
C60.0191 (8)0.0172 (8)0.0175 (7)0.0012 (6)0.0026 (6)0.0011 (6)
N110.0152 (6)0.0189 (7)0.0138 (6)0.0005 (5)0.0007 (5)0.0040 (5)
C110.0175 (8)0.0155 (8)0.0145 (7)0.0034 (6)0.0010 (6)0.0020 (6)
N120.0137 (7)0.0200 (7)0.0168 (6)0.0006 (5)0.0021 (5)0.0035 (5)
C120.0216 (8)0.0201 (8)0.0169 (7)0.0026 (6)0.0017 (6)0.0010 (6)
C130.0256 (9)0.0324 (10)0.0242 (8)0.0047 (7)0.0063 (7)0.0108 (7)
C140.0391 (10)0.0280 (10)0.0187 (8)0.0083 (8)0.0043 (7)0.0074 (7)
C150.0663 (16)0.0377 (12)0.0303 (10)0.0012 (11)0.0033 (10)0.0059 (9)
N210.0153 (7)0.0195 (7)0.0159 (6)0.0045 (5)0.0027 (5)0.0006 (5)
C210.0147 (7)0.0185 (8)0.0180 (7)0.0001 (6)0.0001 (6)0.0006 (6)
N220.0190 (7)0.0177 (7)0.0148 (6)0.0015 (5)0.0010 (5)0.0029 (5)
C220.0186 (8)0.0168 (8)0.0178 (7)0.0021 (6)0.0028 (6)0.0003 (6)
C230.0296 (9)0.0203 (9)0.0167 (8)0.0036 (7)0.0047 (6)0.0010 (6)
C240.0442 (11)0.0265 (10)0.0215 (8)0.0072 (8)0.0001 (8)0.0024 (7)
C250.115 (2)0.0344 (13)0.0240 (10)0.0185 (14)0.0110 (12)0.0085 (9)
Geometric parameters (Å, º) top
S1—C111.6763 (16)C13—H13A0.9900
S2—C211.6566 (16)C13—H13B0.9900
O1—C121.224 (2)C14—C151.516 (3)
O2—C221.234 (2)C14—H14A0.9900
C1—C61.395 (2)C14—H14B0.9900
C1—C21.401 (2)C15—H15A0.9800
C1—N111.4207 (19)C15—H15B0.9800
C2—C31.385 (2)C15—H15C0.9800
C2—N211.4325 (19)N21—C211.337 (2)
C3—C41.393 (2)N21—H210.83 (2)
C3—H30.9500C21—N221.395 (2)
C4—C51.384 (3)N22—C221.370 (2)
C4—H40.9500N22—H220.87 (2)
C5—C61.394 (2)C22—C231.503 (2)
C5—H50.9500C23—C241.527 (3)
C6—H60.9500C23—H23A0.9900
N11—C111.334 (2)C23—H23B0.9900
N11—H110.86 (2)C24—C251.516 (3)
C11—N121.395 (2)C24—H24A0.9900
N12—C121.382 (2)C24—H24B0.9900
N12—H120.84 (2)C25—H25A0.9800
C12—C131.510 (2)C25—H25B0.9800
C13—C141.524 (3)C25—H25C0.9800
C6—C1—C2119.57 (14)C15—C14—H14B108.9
C6—C1—N11122.61 (14)C13—C14—H14B108.9
C2—C1—N11117.65 (13)H14A—C14—H14B107.7
C3—C2—C1120.47 (14)C14—C15—H15A109.5
C3—C2—N21119.91 (14)C14—C15—H15B109.5
C1—C2—N21119.48 (14)H15A—C15—H15B109.5
C2—C3—C4119.80 (15)C14—C15—H15C109.5
C2—C3—H3120.1H15A—C15—H15C109.5
C4—C3—H3120.1H15B—C15—H15C109.5
C5—C4—C3119.94 (15)C21—N21—C2123.85 (14)
C5—C4—H4120.0C21—N21—H21116.0 (13)
C3—C4—H4120.0C2—N21—H21120.1 (13)
C4—C5—C6120.74 (15)N21—C21—N22115.68 (14)
C4—C5—H5119.6N21—C21—S2125.81 (12)
C6—C5—H5119.6N22—C21—S2118.52 (12)
C5—C6—C1119.45 (15)C22—N22—C21128.97 (14)
C5—C6—H6120.3C22—N22—H22117.5 (13)
C1—C6—H6120.3C21—N22—H22113.1 (13)
C11—N11—C1127.91 (14)O2—C22—N22122.64 (14)
C11—N11—H11114.1 (12)O2—C22—C23122.56 (15)
C1—N11—H11117.4 (13)N22—C22—C23114.77 (14)
N11—C11—N12114.78 (14)C22—C23—C24110.15 (14)
N11—C11—S1127.73 (12)C22—C23—H23A109.6
N12—C11—S1117.49 (11)C24—C23—H23A109.6
C12—N12—C11128.39 (14)C22—C23—H23B109.6
C12—N12—H12115.2 (13)C24—C23—H23B109.6
C11—N12—H12116.3 (13)H23A—C23—H23B108.1
O1—C12—N12122.84 (14)C25—C24—C23111.58 (16)
O1—C12—C13122.44 (15)C25—C24—H24A109.3
N12—C12—C13114.71 (14)C23—C24—H24A109.3
C12—C13—C14112.57 (15)C25—C24—H24B109.3
C12—C13—H13A109.1C23—C24—H24B109.3
C14—C13—H13A109.1H24A—C24—H24B108.0
C12—C13—H13B109.1C24—C25—H25A109.5
C14—C13—H13B109.1C24—C25—H25B109.5
H13A—C13—H13B107.8H25A—C25—H25B109.5
C15—C14—C13113.35 (16)C24—C25—H25C109.5
C15—C14—H14A108.9H25A—C25—H25C109.5
C13—C14—H14A108.9H25B—C25—H25C109.5
C6—C1—C2—C31.7 (2)C11—N12—C12—O12.4 (3)
N11—C1—C2—C3173.81 (15)C11—N12—C12—C13178.22 (16)
C6—C1—C2—N21177.47 (14)O1—C12—C13—C1431.9 (2)
N11—C1—C2—N212.0 (2)N12—C12—C13—C14148.67 (15)
C1—C2—C3—C41.9 (2)C12—C13—C14—C1567.2 (2)
N21—C2—C3—C4177.67 (15)C3—C2—N21—C21113.70 (18)
C2—C3—C4—C50.8 (3)C1—C2—N21—C2170.5 (2)
C3—C4—C5—C60.4 (3)C2—N21—C21—N22173.38 (14)
C4—C5—C6—C10.6 (2)C2—N21—C21—S26.7 (2)
C2—C1—C6—C50.4 (2)N21—C21—N22—C226.5 (2)
N11—C1—C6—C5174.83 (15)S2—C21—N22—C22173.42 (13)
C6—C1—N11—C1149.1 (2)C21—N22—C22—O21.0 (3)
C2—C1—N11—C11135.57 (16)C21—N22—C22—C23177.18 (15)
C1—N11—C11—N12174.00 (14)O2—C22—C23—C2461.4 (2)
C1—N11—C11—S15.6 (2)N22—C22—C23—C24116.77 (17)
N11—C11—N12—C126.0 (2)C22—C23—C24—C25176.8 (2)
S1—C11—N12—C12173.65 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O10.86 (2)1.90 (2)2.6336 (17)142.6 (17)
N12—H12···O2i0.84 (2)2.19 (2)3.0309 (18)175.3 (19)
N21—H21···O20.83 (2)1.98 (2)2.6616 (18)139.1 (18)
N22—H22···S1ii0.87 (2)2.75 (2)3.6147 (14)172.0 (17)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H22N4O2S2
Mr366.50
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)8.8099 (5), 16.4925 (7), 12.3923 (8)
β (°) 91.949 (5)
V3)1799.53 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.28 × 0.28 × 0.23
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.918, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
22483, 3360, 2890
Rint0.087
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.095, 1.04
No. of reflections3360
No. of parameters229
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.33

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O10.86 (2)1.90 (2)2.6336 (17)142.6 (17)
N12—H12···O2i0.84 (2)2.19 (2)3.0309 (18)175.3 (19)
N21—H21···O20.83 (2)1.98 (2)2.6616 (18)139.1 (18)
N22—H22···S1ii0.87 (2)2.75 (2)3.6147 (14)172.0 (17)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

NA gratefully acknowledges a research scholarship from the HEC Islamabad under the HEC Indigenous PhD Schol­arship 5000 Scheme

References

First citationAtia, A. A. (2005). Hydrometallurgy, 80, 98–106.  Web of Science CrossRef CAS Google Scholar
First citationBerkessel, A., Roland, K. & Neudorfl, J. M. (2006). Org. Lett. 8, 4195–4198.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHu, C., He, Y., Chen, Z. & Huang, X. (2009). Tetrahedron Asymmetry, 20, 98–106.  Google Scholar
First citationMoloto, M. L. & Revaprasadu, N. (2004). J. Mater. Sci. 15, 313–316.  CAS Google Scholar
First citationPhetsuksiri, B., Jackson, M., Scherman, H., McNeil, M., Besra, G. S., Baulard, A. R., Slayden, R. A., DeBarber, A. E., Barry, C. E., Baird, M. S., Crick, D. C. & Brennan, P. J. (2003). J. Biol. Chem. 278, 53123–53130.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuccaw, G. L., Weakley, T. J. R., Han, H. & Doxsee, K. M. (2005). Cryst. Growth Des. 5, 2288–2298.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds