organic compounds
3,3′-Dibutanoyl-1,1′-(o-phenylene)dithiourea
aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: aamersaeed@yahoo.com
The molecular conformation of the title compound, C16H22N4O2S2, is stabilized by two intramolecular N—H⋯O hydrogen bonds. The crystal packing shows N—H⋯O and N—H⋯S hydrogen bonds.
Related literature
For details of the biological activity of bisthioureas, see: Berkessel et al. (2006); Moloto et al. (2004). For their applications, see: Atia et al. (2005); Hu et al. (2009); Phetsuksiri et al. (2003). For the synthesis of the title compound, see: Succaw et al. (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2001); cell X-AREA; data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810001789/bg2318sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810001789/bg2318Isup2.hkl
The compound was prepared acc ording to lierature procedure (Succaw et al., 2005) and Recrystallized from methanol as colourless crystals: Anal. calcd.for C16H22N4O2S2: C, 52.43; H, 6.05; N, 15.29; S, 17.50%; found: C, 52.31; H, 6.19; N, 15.41; S, 17.62.
H atoms attached to C were geometrically positioned and refined using a riding model with C—H(aromatic) = 0.95 Å, C—H(methyl) = 0.98 Å, or C—H(methylene) = 0.99 Å, respectively. The position of the amino H atoms were freely refined. In all cases fixed individual displacement parameters
[U(H) = 1.2 Ueq(Caromatic), 1.2 Ueq(N); 1.5 Ueq(Cmethyl)] were used.
Various bisthiourea derivatives have attracted much attention due to their variety of applications and bioactivities. The presence of multivalent binding sites in bis thioureas provide a multitude of bonding possibilities. Urea and thiourea functionalities, presenting opportunities for the formation of diverse hydrogen bonded networks, represent powerful crystal engineering building blocks (Succaw et al., 2005). The fluorinated bis-thiourea derivative are used as organocatalyst in Morita-Baylis-Hillman reaction (Berkessel et al., 2006). N-alkyl thiourea Cadmium(II) complex as precursor for CdS-nanoparticle synthesis (Moloto et al., 2004). BINOL (1,1'-Bi-2-naphthol) bis thiourea derivatives act as chemosensors (Hu et al.,2009). Bis-thiourea resins have been used for adsorption of silver(I) and gold(II) for application to retrieval of silver ions from processed photo films (Atia et al., 2005). Diisoamyloxydiphenylthioureas are effective anti-tuberculosis agents (Phetsuksiri et al. (2003).
The
of the title compound is stabilized by two N—H···O hydrogen bonds. The crystal packing shows N—H···O and N—H···S hydrogen bonds.For details of the biological activity of bis thioureas, see: Berkessel et al. (2006); Moloto et al. (2004). For their applications, see: Atia et al. (2005); Hu et al. (2009); Phetsuksiri et al. (2003). For the synthesis of the title compound, see: Succaw et al. (2005).
Data collection: X-AREA (Stoe & Cie, 2001); cell
X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level. |
C16H22N4O2S2 | F(000) = 776 |
Mr = 366.50 | Dx = 1.353 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 20465 reflections |
a = 8.8099 (5) Å | θ = 3.4–26.0° |
b = 16.4925 (7) Å | µ = 0.31 mm−1 |
c = 12.3923 (8) Å | T = 173 K |
β = 91.949 (5)° | Block, colourless |
V = 1799.53 (17) Å3 | 0.28 × 0.28 × 0.23 mm |
Z = 4 |
Stoe IPDS II two-circle diffractometer | 3360 independent reflections |
Radiation source: fine-focus sealed tube | 2890 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.087 |
ω scans | θmax = 25.6°, θmin = 3.4° |
Absorption correction: multi-scan (MULABS; Spek, 2009; Blessing, 1995) | h = −10→10 |
Tmin = 0.918, Tmax = 0.932 | k = −19→18 |
22483 measured reflections | l = −15→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0595P)2 + 0.139P] where P = (Fo2 + 2Fc2)/3 |
3360 reflections | (Δ/σ)max = 0.001 |
229 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
C16H22N4O2S2 | V = 1799.53 (17) Å3 |
Mr = 366.50 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.8099 (5) Å | µ = 0.31 mm−1 |
b = 16.4925 (7) Å | T = 173 K |
c = 12.3923 (8) Å | 0.28 × 0.28 × 0.23 mm |
β = 91.949 (5)° |
Stoe IPDS II two-circle diffractometer | 3360 independent reflections |
Absorption correction: multi-scan (MULABS; Spek, 2009; Blessing, 1995) | 2890 reflections with I > 2σ(I) |
Tmin = 0.918, Tmax = 0.932 | Rint = 0.087 |
22483 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.095 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.23 e Å−3 |
3360 reflections | Δρmin = −0.33 e Å−3 |
229 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.07444 (5) | 0.68569 (3) | 0.35994 (3) | 0.02446 (14) | |
S2 | 0.47542 (5) | 0.79179 (3) | 0.52094 (3) | 0.02947 (14) | |
O1 | 0.38901 (14) | 0.53284 (9) | 0.57778 (9) | 0.0278 (3) | |
O2 | 0.83408 (13) | 0.59749 (8) | 0.58037 (9) | 0.0224 (3) | |
C1 | 0.42857 (18) | 0.65251 (9) | 0.31239 (12) | 0.0152 (3) | |
C2 | 0.57714 (18) | 0.67920 (9) | 0.33537 (12) | 0.0154 (3) | |
C3 | 0.66576 (19) | 0.70843 (10) | 0.25383 (13) | 0.0206 (3) | |
H3 | 0.7674 | 0.7249 | 0.2695 | 0.025* | |
C4 | 0.6054 (2) | 0.71355 (11) | 0.14871 (13) | 0.0228 (4) | |
H4 | 0.6654 | 0.7342 | 0.0927 | 0.027* | |
C5 | 0.4579 (2) | 0.68847 (10) | 0.12589 (12) | 0.0211 (4) | |
H5 | 0.4170 | 0.6924 | 0.0542 | 0.025* | |
C6 | 0.36860 (19) | 0.65746 (10) | 0.20698 (12) | 0.0180 (3) | |
H6 | 0.2678 | 0.6399 | 0.1906 | 0.022* | |
N11 | 0.34909 (15) | 0.61572 (8) | 0.39740 (10) | 0.0160 (3) | |
H11 | 0.401 (2) | 0.5867 (12) | 0.4430 (16) | 0.019* | |
C11 | 0.20588 (17) | 0.62849 (10) | 0.42462 (12) | 0.0159 (3) | |
N12 | 0.16371 (16) | 0.58921 (8) | 0.51872 (10) | 0.0168 (3) | |
H12 | 0.072 (2) | 0.5945 (12) | 0.5357 (15) | 0.020* | |
C12 | 0.25388 (19) | 0.54519 (10) | 0.59085 (12) | 0.0195 (3) | |
C13 | 0.1723 (2) | 0.51260 (12) | 0.68687 (14) | 0.0272 (4) | |
H13A | 0.1316 | 0.4581 | 0.6691 | 0.033* | |
H13B | 0.0852 | 0.5484 | 0.7017 | 0.033* | |
C14 | 0.2751 (2) | 0.50692 (12) | 0.78795 (14) | 0.0285 (4) | |
H14A | 0.2206 | 0.4776 | 0.8446 | 0.034* | |
H14B | 0.3663 | 0.4748 | 0.7711 | 0.034* | |
C15 | 0.3251 (3) | 0.58888 (14) | 0.83166 (17) | 0.0447 (5) | |
H15A | 0.3912 | 0.5812 | 0.8961 | 0.054* | |
H15B | 0.2357 | 0.6205 | 0.8506 | 0.054* | |
H15C | 0.3809 | 0.6179 | 0.7765 | 0.054* | |
N21 | 0.64067 (16) | 0.67101 (9) | 0.44277 (10) | 0.0170 (3) | |
H21 | 0.708 (2) | 0.6374 (13) | 0.4558 (15) | 0.020* | |
C21 | 0.59630 (17) | 0.71486 (10) | 0.52676 (12) | 0.0171 (3) | |
N22 | 0.65944 (15) | 0.69253 (8) | 0.62711 (11) | 0.0172 (3) | |
H22 | 0.630 (2) | 0.7231 (13) | 0.6794 (16) | 0.021* | |
C22 | 0.77077 (18) | 0.63670 (10) | 0.65070 (12) | 0.0178 (3) | |
C23 | 0.8064 (2) | 0.62499 (11) | 0.76915 (12) | 0.0223 (4) | |
H23A | 0.7462 | 0.6636 | 0.8114 | 0.027* | |
H23B | 0.9154 | 0.6361 | 0.7847 | 0.027* | |
C24 | 0.7692 (2) | 0.53829 (12) | 0.80244 (14) | 0.0308 (4) | |
H24A | 0.6617 | 0.5264 | 0.7825 | 0.037* | |
H24B | 0.8335 | 0.5000 | 0.7627 | 0.037* | |
C25 | 0.7954 (4) | 0.52563 (15) | 0.92284 (17) | 0.0580 (8) | |
H25A | 0.7694 | 0.4697 | 0.9415 | 0.070* | |
H25B | 0.7314 | 0.5632 | 0.9623 | 0.070* | |
H25C | 0.9024 | 0.5358 | 0.9424 | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0188 (2) | 0.0308 (3) | 0.0237 (2) | 0.00497 (16) | 0.00078 (16) | 0.01004 (17) |
S2 | 0.0334 (3) | 0.0301 (3) | 0.0245 (2) | 0.01694 (19) | −0.00509 (18) | −0.00387 (18) |
O1 | 0.0216 (6) | 0.0399 (8) | 0.0223 (6) | 0.0105 (5) | 0.0046 (5) | 0.0104 (5) |
O2 | 0.0225 (6) | 0.0264 (7) | 0.0184 (6) | 0.0085 (5) | −0.0012 (4) | −0.0018 (5) |
C1 | 0.0168 (7) | 0.0135 (8) | 0.0153 (7) | 0.0021 (6) | 0.0025 (6) | 0.0011 (6) |
C2 | 0.0181 (8) | 0.0137 (8) | 0.0144 (7) | 0.0028 (6) | −0.0005 (6) | −0.0001 (6) |
C3 | 0.0182 (8) | 0.0201 (9) | 0.0236 (8) | 0.0003 (6) | 0.0022 (6) | 0.0020 (6) |
C4 | 0.0268 (9) | 0.0219 (9) | 0.0200 (8) | 0.0017 (7) | 0.0073 (6) | 0.0058 (7) |
C5 | 0.0289 (9) | 0.0213 (9) | 0.0130 (7) | 0.0052 (7) | 0.0006 (6) | 0.0007 (6) |
C6 | 0.0191 (8) | 0.0172 (8) | 0.0175 (7) | 0.0012 (6) | −0.0026 (6) | −0.0011 (6) |
N11 | 0.0152 (6) | 0.0189 (7) | 0.0138 (6) | 0.0005 (5) | −0.0007 (5) | 0.0040 (5) |
C11 | 0.0175 (8) | 0.0155 (8) | 0.0145 (7) | −0.0034 (6) | −0.0010 (6) | −0.0020 (6) |
N12 | 0.0137 (7) | 0.0200 (7) | 0.0168 (6) | 0.0006 (5) | 0.0021 (5) | 0.0035 (5) |
C12 | 0.0216 (8) | 0.0201 (8) | 0.0169 (7) | 0.0026 (6) | 0.0017 (6) | 0.0010 (6) |
C13 | 0.0256 (9) | 0.0324 (10) | 0.0242 (8) | 0.0047 (7) | 0.0063 (7) | 0.0108 (7) |
C14 | 0.0391 (10) | 0.0280 (10) | 0.0187 (8) | 0.0083 (8) | 0.0043 (7) | 0.0074 (7) |
C15 | 0.0663 (16) | 0.0377 (12) | 0.0303 (10) | 0.0012 (11) | 0.0033 (10) | −0.0059 (9) |
N21 | 0.0153 (7) | 0.0195 (7) | 0.0159 (6) | 0.0045 (5) | −0.0027 (5) | −0.0006 (5) |
C21 | 0.0147 (7) | 0.0185 (8) | 0.0180 (7) | −0.0001 (6) | 0.0001 (6) | 0.0006 (6) |
N22 | 0.0190 (7) | 0.0177 (7) | 0.0148 (6) | 0.0015 (5) | −0.0010 (5) | −0.0029 (5) |
C22 | 0.0186 (8) | 0.0168 (8) | 0.0178 (7) | −0.0021 (6) | −0.0028 (6) | 0.0003 (6) |
C23 | 0.0296 (9) | 0.0203 (9) | 0.0167 (8) | 0.0036 (7) | −0.0047 (6) | −0.0010 (6) |
C24 | 0.0442 (11) | 0.0265 (10) | 0.0215 (8) | −0.0072 (8) | 0.0001 (8) | 0.0024 (7) |
C25 | 0.115 (2) | 0.0344 (13) | 0.0240 (10) | −0.0185 (14) | −0.0110 (12) | 0.0085 (9) |
S1—C11 | 1.6763 (16) | C13—H13A | 0.9900 |
S2—C21 | 1.6566 (16) | C13—H13B | 0.9900 |
O1—C12 | 1.224 (2) | C14—C15 | 1.516 (3) |
O2—C22 | 1.234 (2) | C14—H14A | 0.9900 |
C1—C6 | 1.395 (2) | C14—H14B | 0.9900 |
C1—C2 | 1.401 (2) | C15—H15A | 0.9800 |
C1—N11 | 1.4207 (19) | C15—H15B | 0.9800 |
C2—C3 | 1.385 (2) | C15—H15C | 0.9800 |
C2—N21 | 1.4325 (19) | N21—C21 | 1.337 (2) |
C3—C4 | 1.393 (2) | N21—H21 | 0.83 (2) |
C3—H3 | 0.9500 | C21—N22 | 1.395 (2) |
C4—C5 | 1.384 (3) | N22—C22 | 1.370 (2) |
C4—H4 | 0.9500 | N22—H22 | 0.87 (2) |
C5—C6 | 1.394 (2) | C22—C23 | 1.503 (2) |
C5—H5 | 0.9500 | C23—C24 | 1.527 (3) |
C6—H6 | 0.9500 | C23—H23A | 0.9900 |
N11—C11 | 1.334 (2) | C23—H23B | 0.9900 |
N11—H11 | 0.86 (2) | C24—C25 | 1.516 (3) |
C11—N12 | 1.395 (2) | C24—H24A | 0.9900 |
N12—C12 | 1.382 (2) | C24—H24B | 0.9900 |
N12—H12 | 0.84 (2) | C25—H25A | 0.9800 |
C12—C13 | 1.510 (2) | C25—H25B | 0.9800 |
C13—C14 | 1.524 (3) | C25—H25C | 0.9800 |
C6—C1—C2 | 119.57 (14) | C15—C14—H14B | 108.9 |
C6—C1—N11 | 122.61 (14) | C13—C14—H14B | 108.9 |
C2—C1—N11 | 117.65 (13) | H14A—C14—H14B | 107.7 |
C3—C2—C1 | 120.47 (14) | C14—C15—H15A | 109.5 |
C3—C2—N21 | 119.91 (14) | C14—C15—H15B | 109.5 |
C1—C2—N21 | 119.48 (14) | H15A—C15—H15B | 109.5 |
C2—C3—C4 | 119.80 (15) | C14—C15—H15C | 109.5 |
C2—C3—H3 | 120.1 | H15A—C15—H15C | 109.5 |
C4—C3—H3 | 120.1 | H15B—C15—H15C | 109.5 |
C5—C4—C3 | 119.94 (15) | C21—N21—C2 | 123.85 (14) |
C5—C4—H4 | 120.0 | C21—N21—H21 | 116.0 (13) |
C3—C4—H4 | 120.0 | C2—N21—H21 | 120.1 (13) |
C4—C5—C6 | 120.74 (15) | N21—C21—N22 | 115.68 (14) |
C4—C5—H5 | 119.6 | N21—C21—S2 | 125.81 (12) |
C6—C5—H5 | 119.6 | N22—C21—S2 | 118.52 (12) |
C5—C6—C1 | 119.45 (15) | C22—N22—C21 | 128.97 (14) |
C5—C6—H6 | 120.3 | C22—N22—H22 | 117.5 (13) |
C1—C6—H6 | 120.3 | C21—N22—H22 | 113.1 (13) |
C11—N11—C1 | 127.91 (14) | O2—C22—N22 | 122.64 (14) |
C11—N11—H11 | 114.1 (12) | O2—C22—C23 | 122.56 (15) |
C1—N11—H11 | 117.4 (13) | N22—C22—C23 | 114.77 (14) |
N11—C11—N12 | 114.78 (14) | C22—C23—C24 | 110.15 (14) |
N11—C11—S1 | 127.73 (12) | C22—C23—H23A | 109.6 |
N12—C11—S1 | 117.49 (11) | C24—C23—H23A | 109.6 |
C12—N12—C11 | 128.39 (14) | C22—C23—H23B | 109.6 |
C12—N12—H12 | 115.2 (13) | C24—C23—H23B | 109.6 |
C11—N12—H12 | 116.3 (13) | H23A—C23—H23B | 108.1 |
O1—C12—N12 | 122.84 (14) | C25—C24—C23 | 111.58 (16) |
O1—C12—C13 | 122.44 (15) | C25—C24—H24A | 109.3 |
N12—C12—C13 | 114.71 (14) | C23—C24—H24A | 109.3 |
C12—C13—C14 | 112.57 (15) | C25—C24—H24B | 109.3 |
C12—C13—H13A | 109.1 | C23—C24—H24B | 109.3 |
C14—C13—H13A | 109.1 | H24A—C24—H24B | 108.0 |
C12—C13—H13B | 109.1 | C24—C25—H25A | 109.5 |
C14—C13—H13B | 109.1 | C24—C25—H25B | 109.5 |
H13A—C13—H13B | 107.8 | H25A—C25—H25B | 109.5 |
C15—C14—C13 | 113.35 (16) | C24—C25—H25C | 109.5 |
C15—C14—H14A | 108.9 | H25A—C25—H25C | 109.5 |
C13—C14—H14A | 108.9 | H25B—C25—H25C | 109.5 |
C6—C1—C2—C3 | −1.7 (2) | C11—N12—C12—O1 | −2.4 (3) |
N11—C1—C2—C3 | 173.81 (15) | C11—N12—C12—C13 | 178.22 (16) |
C6—C1—C2—N21 | −177.47 (14) | O1—C12—C13—C14 | 31.9 (2) |
N11—C1—C2—N21 | −2.0 (2) | N12—C12—C13—C14 | −148.67 (15) |
C1—C2—C3—C4 | 1.9 (2) | C12—C13—C14—C15 | 67.2 (2) |
N21—C2—C3—C4 | 177.67 (15) | C3—C2—N21—C21 | 113.70 (18) |
C2—C3—C4—C5 | −0.8 (3) | C1—C2—N21—C21 | −70.5 (2) |
C3—C4—C5—C6 | −0.4 (3) | C2—N21—C21—N22 | 173.38 (14) |
C4—C5—C6—C1 | 0.6 (2) | C2—N21—C21—S2 | −6.7 (2) |
C2—C1—C6—C5 | 0.4 (2) | N21—C21—N22—C22 | 6.5 (2) |
N11—C1—C6—C5 | −174.83 (15) | S2—C21—N22—C22 | −173.42 (13) |
C6—C1—N11—C11 | −49.1 (2) | C21—N22—C22—O2 | 1.0 (3) |
C2—C1—N11—C11 | 135.57 (16) | C21—N22—C22—C23 | −177.18 (15) |
C1—N11—C11—N12 | −174.00 (14) | O2—C22—C23—C24 | −61.4 (2) |
C1—N11—C11—S1 | 5.6 (2) | N22—C22—C23—C24 | 116.77 (17) |
N11—C11—N12—C12 | 6.0 (2) | C22—C23—C24—C25 | −176.8 (2) |
S1—C11—N12—C12 | −173.65 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11···O1 | 0.86 (2) | 1.90 (2) | 2.6336 (17) | 142.6 (17) |
N12—H12···O2i | 0.84 (2) | 2.19 (2) | 3.0309 (18) | 175.3 (19) |
N21—H21···O2 | 0.83 (2) | 1.98 (2) | 2.6616 (18) | 139.1 (18) |
N22—H22···S1ii | 0.87 (2) | 2.75 (2) | 3.6147 (14) | 172.0 (17) |
Symmetry codes: (i) x−1, y, z; (ii) x+1/2, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H22N4O2S2 |
Mr | 366.50 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 173 |
a, b, c (Å) | 8.8099 (5), 16.4925 (7), 12.3923 (8) |
β (°) | 91.949 (5) |
V (Å3) | 1799.53 (17) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.28 × 0.28 × 0.23 |
Data collection | |
Diffractometer | Stoe IPDS II two-circle diffractometer |
Absorption correction | Multi-scan (MULABS; Spek, 2009; Blessing, 1995) |
Tmin, Tmax | 0.918, 0.932 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22483, 3360, 2890 |
Rint | 0.087 |
(sin θ/λ)max (Å−1) | 0.608 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.095, 1.04 |
No. of reflections | 3360 |
No. of parameters | 229 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.23, −0.33 |
Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11···O1 | 0.86 (2) | 1.90 (2) | 2.6336 (17) | 142.6 (17) |
N12—H12···O2i | 0.84 (2) | 2.19 (2) | 3.0309 (18) | 175.3 (19) |
N21—H21···O2 | 0.83 (2) | 1.98 (2) | 2.6616 (18) | 139.1 (18) |
N22—H22···S1ii | 0.87 (2) | 2.75 (2) | 3.6147 (14) | 172.0 (17) |
Symmetry codes: (i) x−1, y, z; (ii) x+1/2, −y+3/2, z+1/2. |
Acknowledgements
NA gratefully acknowledges a research scholarship from the HEC Islamabad under the HEC Indigenous PhD Scholarship 5000 Scheme
References
Atia, A. A. (2005). Hydrometallurgy, 80, 98–106. Web of Science CrossRef CAS Google Scholar
Berkessel, A., Roland, K. & Neudorfl, J. M. (2006). Org. Lett. 8, 4195–4198. Web of Science CSD CrossRef PubMed CAS Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hu, C., He, Y., Chen, Z. & Huang, X. (2009). Tetrahedron Asymmetry, 20, 98–106. Google Scholar
Moloto, M. L. & Revaprasadu, N. (2004). J. Mater. Sci. 15, 313–316. CAS Google Scholar
Phetsuksiri, B., Jackson, M., Scherman, H., McNeil, M., Besra, G. S., Baulard, A. R., Slayden, R. A., DeBarber, A. E., Barry, C. E., Baird, M. S., Crick, D. C. & Brennan, P. J. (2003). J. Biol. Chem. 278, 53123–53130. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Succaw, G. L., Weakley, T. J. R., Han, H. & Doxsee, K. M. (2005). Cryst. Growth Des. 5, 2288–2298. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Various bisthiourea derivatives have attracted much attention due to their variety of applications and bioactivities. The presence of multivalent binding sites in bis thioureas provide a multitude of bonding possibilities. Urea and thiourea functionalities, presenting opportunities for the formation of diverse hydrogen bonded networks, represent powerful crystal engineering building blocks (Succaw et al., 2005). The fluorinated bis-thiourea derivative are used as organocatalyst in Morita-Baylis-Hillman reaction (Berkessel et al., 2006). N-alkyl thiourea Cadmium(II) complex as precursor for CdS-nanoparticle synthesis (Moloto et al., 2004). BINOL (1,1'-Bi-2-naphthol) bis thiourea derivatives act as chemosensors (Hu et al.,2009). Bis-thiourea resins have been used for adsorption of silver(I) and gold(II) for application to retrieval of silver ions from processed photo films (Atia et al., 2005). Diisoamyloxydiphenylthioureas are effective anti-tuberculosis agents (Phetsuksiri et al. (2003).
The molecular conformation of the title compound is stabilized by two N—H···O hydrogen bonds. The crystal packing shows N—H···O and N—H···S hydrogen bonds.