organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4′-Formyl­bi­phenyl-4-yl acetate

aSchool of Chemistry & Materials Science, Ludong University, Yantai of Shandong, People's Republic of China
*Correspondence e-mail: xushengguangldu@yahoo.cn

(Received 14 December 2009; accepted 13 January 2010; online 20 January 2010)

In the title compound, C15H12O3, the dihedral angle between the six-membered rings is 30.39 (1)°. The crystal packing is stabilized by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For further synthetic details, see: Chakraborti & Gulhane (2003[Chakraborti, A. K. & Gulhane, R. (2003). Tetrahedron Lett. 44, 3521-3525.]); Chamontin et al. (1999[Chamontin, K., Lokshin, V., Rossollin, V., Samat, A. & Guglielmetti, R. (1999). Tetrahedron, 55, 5821-5830.]); Steglich & Höfle (1969[Steglich, W. & Höfle, G. (1969). Angew. Chem. Int. Ed. Engl. 8, 981-981.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12O3

  • Mr = 240.25

  • Monoclinic, P 21

  • a = 9.250 (6) Å

  • b = 7.499 (4) Å

  • c = 9.596 (6) Å

  • β = 113.695 (10)°

  • V = 609.5 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.18 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.984, Tmax = 0.991

  • 3288 measured reflections

  • 1290 independent reflections

  • 1077 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.00

  • 1290 reflections

  • 164 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.09 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15C⋯O3i 0.96 2.41 3.372 (5) 177
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

4'-formylbiphenyl-4-yl acetate is a derivative of biphenyl that contains two phenyl groups joined by a single covalent bond. However, rotation about the single bond in biphenyl may be sterically hindered and the equilibrium torsional angles in the variously substituted derivatives may be different. In the case of unsubstituted biphenyl, the equilibrium torsional angle is 44.4°. However, in the title compound its value is 30.39 (1)°, because conjugated effects in the molecule are strengthened by π-π conjugation (aldehyde group, oxygen group) as compared with unsubstituted biphenyl, and as result the two phenyl groups tend to be more coplanar.

The molecule of the title compound is illustrated in Fig. 1. The asymmetric unit contains two six-member rings and one acetate group. In the crystal structure there are no classic hydrogen bonds but there are non-classical intermolecular C—H···O hydrogen bonds (viz., C15—H15C···O3[-x,1/2+y,2-z],H···O: 2.41Å, C—H···O: 177°) which help in forming a three dimensional structure.

Related literature top

For details fn the synthetic procedure, see: Chakraborti & Gulhane (2003); Chamontin et al. (1999); Steglich & Höfle (1969).

Experimental top

4'-hydroxy-4-biphenylaldehyde (02) was prepared (Chamontin et al. 1999), starting from 4'-bromo-4-biphenol (01) which is commercially available, using the N-formylpiperidine as electrophilic agent. After 4'-hydroxy-4-biphenylaldehyde (02) was acetylated with the acetylating agent acetic anhydride, catalyzed by 4-(dimthylamino)pyridine (DMAP), the target material 4'-formylbiphenyl-4-ylacetate (B3) was obtained (Chakraborti et al. 2003; Steglich et al. 1969).

Product, yielding 53%. 1H NMR (400MHz,CDCl3, TMS) δ 10.0939 (s, 1H), δ 7.996–7.976 (d, 2H), δ 7.772–7.752(d, 2H), δ 7.688–7. 666 (d, 2H), δ 7.256–7. 235(d, 2H), 2.374 (s,3H); 13C NMR (CDCl3)δ191.79, 169.40, 151.03, 146.28, 137.46, 135.25, 130.29, 128.45, 127.64, 122.19,21.147; ESI-TOF Eaxct Mass for C15H12O3 [M+Na]+: calcd 263.0679, 264.0713, 265.0738, found 263.0401, 264.0444, 265.0743.

Refinement top

All H atoms were positioned in calculated positions, with C—H distancesof 0.97 Å, and with Uiso~(H) = 1.2 or 1.5 Ueq~(C). In the abscense of significan anomalous effects, Friedel pairs were merged, thus giving rise to a poorer reflections to parameters ratio.

Structure description top

4'-formylbiphenyl-4-yl acetate is a derivative of biphenyl that contains two phenyl groups joined by a single covalent bond. However, rotation about the single bond in biphenyl may be sterically hindered and the equilibrium torsional angles in the variously substituted derivatives may be different. In the case of unsubstituted biphenyl, the equilibrium torsional angle is 44.4°. However, in the title compound its value is 30.39 (1)°, because conjugated effects in the molecule are strengthened by π-π conjugation (aldehyde group, oxygen group) as compared with unsubstituted biphenyl, and as result the two phenyl groups tend to be more coplanar.

The molecule of the title compound is illustrated in Fig. 1. The asymmetric unit contains two six-member rings and one acetate group. In the crystal structure there are no classic hydrogen bonds but there are non-classical intermolecular C—H···O hydrogen bonds (viz., C15—H15C···O3[-x,1/2+y,2-z],H···O: 2.41Å, C—H···O: 177°) which help in forming a three dimensional structure.

For details fn the synthetic procedure, see: Chakraborti & Gulhane (2003); Chamontin et al. (1999); Steglich & Höfle (1969).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of (I) (50% probability level).
4'-Formylbiphenyl-4-yl acetate top
Crystal data top
C15H12O3F(000) = 252
Mr = 240.25Dx = 1.309 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1236 reflections
a = 9.250 (6) Åθ = 2.3–23.9°
b = 7.499 (4) ŵ = 0.09 mm1
c = 9.596 (6) ÅT = 298 K
β = 113.695 (10)°Block, colourless
V = 609.5 (6) Å30.18 × 0.15 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
1290 independent reflections
Radiation source: fine-focus sealed tube1077 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1111
Tmin = 0.984, Tmax = 0.991k = 79
3288 measured reflectionsl = 811
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.0661P]
where P = (Fo2 + 2Fc2)/3
1290 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.09 e Å3
1 restraintΔρmin = 0.12 e Å3
Crystal data top
C15H12O3V = 609.5 (6) Å3
Mr = 240.25Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.250 (6) ŵ = 0.09 mm1
b = 7.499 (4) ÅT = 298 K
c = 9.596 (6) Å0.18 × 0.15 × 0.10 mm
β = 113.695 (10)°
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
1290 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1077 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.991Rint = 0.019
3288 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.091H-atom parameters constrained
S = 1.00Δρmax = 0.09 e Å3
1290 reflectionsΔρmin = 0.12 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.0502 (2)0.8608 (3)0.7519 (2)0.0701 (5)
C80.2140 (3)0.8713 (3)0.4862 (3)0.0477 (5)
C40.2728 (3)0.7574 (3)0.2696 (3)0.0513 (6)
H40.18840.67890.24570.062*
C50.3071 (2)0.8734 (3)0.3918 (2)0.0473 (5)
C110.0414 (3)0.8599 (3)0.6654 (3)0.0560 (6)
C20.4874 (3)0.8714 (4)0.2161 (3)0.0554 (6)
C90.0550 (3)0.8248 (3)0.4255 (3)0.0542 (6)
H90.00520.79700.32260.065*
C130.2828 (3)0.9145 (3)0.6404 (3)0.0557 (6)
H130.38860.94770.68410.067*
C30.3610 (3)0.7561 (4)0.1831 (3)0.0560 (6)
H30.33550.67710.10190.067*
C100.0305 (3)0.8190 (4)0.5149 (3)0.0580 (6)
H100.13660.78730.47250.070*
C60.4340 (3)0.9888 (4)0.4230 (3)0.0604 (7)
H60.45931.06900.50340.073*
C10.5827 (3)0.8732 (5)0.1248 (4)0.0741 (8)
H10.66530.95460.15140.089*
C120.1971 (3)0.9091 (4)0.7295 (3)0.0620 (7)
H120.24460.93860.83210.074*
C140.0346 (3)0.7197 (4)0.8450 (3)0.0550 (6)
O30.0583 (2)0.6044 (3)0.8607 (2)0.0720 (5)
C70.5228 (3)0.9866 (4)0.3372 (3)0.0662 (7)
H70.60801.06400.36140.079*
C150.1467 (3)0.7346 (5)0.9211 (3)0.0768 (9)
H15A0.14020.62900.97980.115*
H15B0.25230.74780.84550.115*
H15C0.11960.83670.98710.115*
O10.5613 (3)0.7773 (5)0.0187 (3)0.1034 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0865 (12)0.0605 (11)0.0839 (12)0.0192 (11)0.0557 (11)0.0128 (11)
C80.0530 (12)0.0361 (11)0.0536 (13)0.0002 (11)0.0210 (10)0.0025 (12)
C40.0482 (12)0.0508 (14)0.0534 (13)0.0096 (11)0.0187 (10)0.0039 (12)
C50.0485 (12)0.0398 (11)0.0506 (12)0.0013 (11)0.0168 (10)0.0055 (12)
C110.0675 (15)0.0435 (13)0.0675 (15)0.0122 (14)0.0380 (13)0.0117 (13)
C20.0494 (12)0.0603 (15)0.0592 (14)0.0015 (13)0.0244 (11)0.0081 (14)
C90.0576 (13)0.0523 (15)0.0524 (13)0.0038 (12)0.0217 (11)0.0027 (11)
C130.0521 (13)0.0567 (16)0.0561 (14)0.0011 (11)0.0195 (11)0.0020 (12)
C30.0566 (13)0.0593 (15)0.0522 (13)0.0017 (12)0.0218 (11)0.0029 (13)
C100.0558 (14)0.0557 (16)0.0657 (15)0.0019 (12)0.0276 (12)0.0042 (13)
C60.0643 (15)0.0554 (15)0.0647 (15)0.0155 (13)0.0291 (13)0.0128 (14)
C10.0587 (15)0.091 (2)0.0785 (18)0.0027 (18)0.0339 (14)0.012 (2)
C120.0697 (16)0.0643 (18)0.0523 (13)0.0084 (13)0.0249 (13)0.0027 (13)
C140.0675 (15)0.0529 (15)0.0496 (13)0.0100 (13)0.0287 (12)0.0101 (12)
O30.0852 (12)0.0607 (11)0.0787 (13)0.0094 (11)0.0420 (11)0.0143 (10)
C70.0590 (15)0.0645 (17)0.0779 (18)0.0182 (15)0.0304 (14)0.0030 (16)
C150.094 (2)0.078 (2)0.080 (2)0.0186 (17)0.0573 (18)0.0183 (17)
O10.0920 (15)0.143 (2)0.0995 (16)0.0075 (17)0.0638 (14)0.0223 (18)
Geometric parameters (Å, º) top
O2—C141.355 (3)C13—C121.381 (4)
O2—C111.404 (3)C13—H130.9300
C8—C91.391 (3)C3—H30.9300
C8—C131.394 (3)C10—H100.9300
C8—C51.480 (3)C6—C71.378 (4)
C4—C31.378 (3)C6—H60.9300
C4—C51.391 (3)C1—O11.196 (4)
C4—H40.9300C1—H10.9300
C5—C61.390 (3)C12—H120.9300
C11—C101.360 (4)C14—O31.185 (3)
C11—C121.369 (4)C14—C151.493 (3)
C2—C71.377 (4)C7—H70.9300
C2—C31.385 (4)C15—H15A0.9600
C2—C11.472 (4)C15—H15B0.9600
C9—C101.382 (3)C15—H15C0.9600
C9—H90.9300
C14—O2—C11117.2 (2)C11—C10—C9119.6 (2)
C9—C8—C13117.3 (2)C11—C10—H10120.2
C9—C8—C5121.6 (2)C9—C10—H10120.2
C13—C8—C5121.1 (2)C7—C6—C5121.2 (2)
C3—C4—C5121.5 (2)C7—C6—H6119.4
C3—C4—H4119.2C5—C6—H6119.4
C5—C4—H4119.2O1—C1—C2124.6 (3)
C6—C5—C4117.3 (2)O1—C1—H1117.7
C6—C5—C8121.5 (2)C2—C1—H1117.7
C4—C5—C8121.2 (2)C11—C12—C13119.5 (2)
C10—C11—C12121.0 (2)C11—C12—H12120.3
C10—C11—O2118.3 (2)C13—C12—H12120.3
C12—C11—O2120.6 (2)O3—C14—O2122.2 (2)
C7—C2—C3118.5 (2)O3—C14—C15127.1 (3)
C7—C2—C1120.0 (3)O2—C14—C15110.7 (2)
C3—C2—C1121.5 (3)C6—C7—C2121.0 (2)
C10—C9—C8121.4 (2)C6—C7—H7119.5
C10—C9—H9119.3C2—C7—H7119.5
C8—C9—H9119.3C14—C15—H15A109.5
C12—C13—C8121.3 (2)C14—C15—H15B109.5
C12—C13—H13119.4H15A—C15—H15B109.5
C8—C13—H13119.4C14—C15—H15C109.5
C4—C3—C2120.5 (2)H15A—C15—H15C109.5
C4—C3—H3119.8H15B—C15—H15C109.5
C2—C3—H3119.8
C3—C4—C5—C60.2 (4)C12—C11—C10—C90.8 (4)
C3—C4—C5—C8178.6 (2)O2—C11—C10—C9177.1 (2)
C9—C8—C5—C6150.4 (3)C8—C9—C10—C110.2 (4)
C13—C8—C5—C630.2 (3)C4—C5—C6—C70.7 (4)
C9—C8—C5—C430.8 (3)C8—C5—C6—C7178.2 (2)
C13—C8—C5—C4148.6 (2)C7—C2—C1—O1179.4 (3)
C14—O2—C11—C10103.6 (3)C3—C2—C1—O10.8 (5)
C14—O2—C11—C1280.1 (3)C10—C11—C12—C131.0 (4)
C13—C8—C9—C101.0 (4)O2—C11—C12—C13177.2 (3)
C5—C8—C9—C10178.5 (2)C8—C13—C12—C110.2 (4)
C9—C8—C13—C120.8 (4)C11—O2—C14—O34.2 (4)
C5—C8—C13—C12178.6 (2)C11—O2—C14—C15176.4 (2)
C5—C4—C3—C20.0 (4)C5—C6—C7—C20.9 (4)
C7—C2—C3—C40.2 (4)C3—C2—C7—C60.7 (4)
C1—C2—C3—C4179.6 (3)C1—C2—C7—C6179.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···O3i0.962.413.372 (5)177
Symmetry code: (i) x, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC15H12O3
Mr240.25
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)9.250 (6), 7.499 (4), 9.596 (6)
β (°) 113.695 (10)
V3)609.5 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.18 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.984, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
3288, 1290, 1077
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.00
No. of reflections1290
No. of parameters164
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.09, 0.12

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···O3i0.962.413.372 (5)177
Symmetry code: (i) x, y+1/2, z+2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Ludong University and the Students Research Fund of Ludong University.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborti, A. K. & Gulhane, R. (2003). Tetrahedron Lett. 44, 3521–3525.  Web of Science CrossRef CAS Google Scholar
First citationChamontin, K., Lokshin, V., Rossollin, V., Samat, A. & Guglielmetti, R. (1999). Tetrahedron, 55, 5821–5830.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteglich, W. & Höfle, G. (1969). Angew. Chem. Int. Ed. Engl. 8, 981–981.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds