organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hydr­­oxy-3-nitro­phenyl penta­noate

aTianjin Polytechnic University, Tianjin 300160, People's Republic of China
*Correspondence e-mail: yhxtjpu@163.com

(Received 8 January 2010; accepted 22 January 2010; online 30 January 2010)

In the title compound, C11H13NO5, an intra­molecular O—H⋯O hydrogen bond is formed between the hydr­oxy and the nitro groups, which results in the formation of a six-membered ring. The valer­oxy group shows a torsioned conformation, and connects to the aryl ring with a C—C—O—C torsion angle of 102.34 (1)°.

Related literature

For general background to the use of phenolic esters as inter­mediates in organic synthesis, see: Trollsås et al. (1996[Trollsås, M., Orrenius, C., Sahlén, F., Gedde, U. W., Norin, T., Hult, A., Hermann, D., Rudquist, P., Komitov, L., Lagerwall, S. T. & Lindström, J. (1996). J. Am. Chem. Soc. 118, 8542-8548.]); Svensson et al. (1998[Svensson, M., Helgee, B., Skarp, K. & Andersson, G. (1998). J. Mater. Chem. 8, 353-362.]); Atkinson et al. (2005[Atkinson, P. J., Bromidge, S. M., Duxon, M. S., Gaster, L. M., Hadley, M. S., Hammond, B., Johnson, C. N., Middlemiss, D. N., North, S. E., Price, G. W., Rami, H. K., Riley, G. J., Scott, C. M., Shaw, T. E., Starr, K. R., Stemp, G., Thewlis, K. M., Thomas, D. R., Thompson, M., Vong, A. K. K. & Watson, J. M. (2005). Bioorg. Med. Chem. Lett. 15, 737-741.]); Hu et al. (2001[Hu, B., Ellingboe, J., Gunawan, I., Han, S., Largis, E., Li, Z., Malamas, M., Mulvey, R., Oliphant, A., Sum, F.-W., Tillett, J. & Wong, V. (2001). Bioorg. Med. Chem. Lett. 11, 757-760.]). For a related structure, see: Ji & Li (2006[Ji, X. & Li, C. (2006). Synthesis, pp. 2478-2482.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13NO5

  • Mr = 239.22

  • Triclinic, [P \overline 1]

  • a = 5.3006 (14) Å

  • b = 10.435 (2) Å

  • c = 11.365 (3) Å

  • α = 67.340 (12)°

  • β = 81.074 (17)°

  • γ = 77.114 (16)°

  • V = 563.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 113 K

  • 0.18 × 0.06 × 0.06 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2007[Rigaku/MSC (2007). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.980, Tmax = 0.993

  • 5175 measured reflections

  • 2639 independent reflections

  • 1972 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.100

  • S = 1.00

  • 2639 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.872 (14) 1.871 (14) 2.6022 (13) 140.2 (13)

Data collection: CrystalClear (Rigaku/MSC, 2007[Rigaku/MSC (2007). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In organic synthesis, phenolic esters are useful intermediates (Trollsås et al., 1996; Svensson et al., 1998; Atkinson et al., 2005; Hu et al., 2001). We have synthesized the title compound according to the method in reference (Ji et al., 2006), and we report herein its crystal structure.

In the molecule of the title compound (Fig. 1) bond lengths (Allen et al., 1987) and angles are within normal ranges. An intramolecular O—H···O is formed between the hydroxy and the nitro groups, which results in the formation of a planar six-membered ring, coplanar with the aryl ring. The valeroxy group shows a torsioned conformation, the dihedral angle between aromatic ring and C6–O4–C7 being 99.64°. In addition valeroxy group is connected to the aromatic ring with a torsion angle (C5–C6–O4–C7) of 102.34 (1)°. A short O2···O2[1-x,1-y,2-z] = 2.855 (1)Å contact appears in the packing.

Related literature top

For general background to the use of phenolic esters as intermediates in organic synthesis, see: Trollsås et al. (1996); Svensson et al. (1998); Atkinson et al. (2005); Hu et al. (2001). For a related structure, see: Ji et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, 2-nitrohydroquinone pentanoate (325 mg, 1.0 mmol) was dissolved in chloroform (20 ml). At 273–278 K, anhydrous AlCl3 (200.2 mg, 1.5 mmol) was added to this solution, the reaction was stirred at room temperature for 1 h, and then hydrochloric acid (5 ml, 10%) was added. The reaction mixture was extracted with chloroform and dried with anhydrous sodium sulfate. After concentration, the residue was separated by flash column chromatography and purified by recrystallization from chloroform (yield; 167 mg, 70%, m.p. 310 K). Spectroscopic analysis: IR (KBr, ν, cm-1): 3267, 3096, 2960, 2937, 1762, 1539, 1238, 1138, 1099, 943, 840. Analysis required for C11H13NO5: C 55.23; H 5.48; N 5.85%. Found: C 55.32; H 5.54; N 5.79%.

Refinement top

C-H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively; and constrained to ride on their parent atoms. H3 coordinates were was further refined. In all cases Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic H and x = 1.5 for all other H atoms.

Structure description top

In organic synthesis, phenolic esters are useful intermediates (Trollsås et al., 1996; Svensson et al., 1998; Atkinson et al., 2005; Hu et al., 2001). We have synthesized the title compound according to the method in reference (Ji et al., 2006), and we report herein its crystal structure.

In the molecule of the title compound (Fig. 1) bond lengths (Allen et al., 1987) and angles are within normal ranges. An intramolecular O—H···O is formed between the hydroxy and the nitro groups, which results in the formation of a planar six-membered ring, coplanar with the aryl ring. The valeroxy group shows a torsioned conformation, the dihedral angle between aromatic ring and C6–O4–C7 being 99.64°. In addition valeroxy group is connected to the aromatic ring with a torsion angle (C5–C6–O4–C7) of 102.34 (1)°. A short O2···O2[1-x,1-y,2-z] = 2.855 (1)Å contact appears in the packing.

For general background to the use of phenolic esters as intermediates in organic synthesis, see: Trollsås et al. (1996); Svensson et al. (1998); Atkinson et al. (2005); Hu et al. (2001). For a related structure, see: Ji et al. (2006). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2007); cell refinement: CrystalClear (Rigaku/MSC, 2007); data reduction: CrystalClear (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as a dashed line.
4-Hydroxy-3-nitrophenyl pentanoate top
Crystal data top
C11H13NO5Z = 2
Mr = 239.22F(000) = 252
Triclinic, P1Dx = 1.409 Mg m3
Hall symbol: -P 1Melting point: 310 K
a = 5.3006 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.435 (2) ÅCell parameters from 1965 reflections
c = 11.365 (3) Åθ = 2.1–27.9°
α = 67.340 (12)°µ = 0.11 mm1
β = 81.074 (17)°T = 113 K
γ = 77.114 (16)°Prism, colorless
V = 563.8 (2) Å30.18 × 0.06 × 0.06 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2639 independent reflections
Radiation source: fine-focus sealed tube1972 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 2.2°
ω and φ scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2007)
k = 1313
Tmin = 0.980, Tmax = 0.993l = 1414
5175 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0553P)2]
where P = (Fo2 + 2Fc2)/3
2639 reflections(Δ/σ)max = 0.001
158 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C11H13NO5γ = 77.114 (16)°
Mr = 239.22V = 563.8 (2) Å3
Triclinic, P1Z = 2
a = 5.3006 (14) ÅMo Kα radiation
b = 10.435 (2) ŵ = 0.11 mm1
c = 11.365 (3) ÅT = 113 K
α = 67.340 (12)°0.18 × 0.06 × 0.06 mm
β = 81.074 (17)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2639 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2007)
1972 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.993Rint = 0.023
5175 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.24 e Å3
2639 reflectionsΔρmin = 0.27 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44132 (16)0.16466 (9)1.06926 (8)0.0260 (2)
O20.57276 (18)0.35065 (8)1.06023 (9)0.0294 (2)
O30.97659 (17)0.43498 (8)0.91208 (9)0.0266 (2)
H30.849 (3)0.4414 (15)0.9691 (14)0.040*
O41.05538 (15)0.03140 (8)0.78112 (8)0.0208 (2)
O50.75270 (16)0.06969 (8)0.63771 (8)0.0238 (2)
N10.59085 (19)0.24914 (10)1.02548 (9)0.0206 (2)
C10.8163 (2)0.11536 (11)0.89438 (11)0.0183 (3)
H10.69250.05440.92830.022*
C20.7982 (2)0.23078 (11)0.93060 (10)0.0175 (3)
C30.9768 (2)0.32268 (11)0.88102 (11)0.0194 (3)
C41.1752 (2)0.29541 (12)0.79260 (11)0.0218 (3)
H41.29820.35670.75660.026*
C51.1953 (2)0.18137 (12)0.75690 (11)0.0209 (3)
H51.33150.16410.69690.025*
C61.0158 (2)0.09177 (11)0.80900 (11)0.0181 (3)
C70.9099 (2)0.03100 (12)0.69151 (10)0.0178 (3)
C80.9818 (2)0.16744 (12)0.66970 (11)0.0197 (3)
H8A1.03620.24410.75060.024*
H8B1.13260.16200.60560.024*
C90.7641 (2)0.20491 (11)0.62381 (11)0.0210 (3)
H9A0.69920.12550.54670.025*
H9B0.61890.21960.69110.025*
C100.8556 (2)0.33818 (12)0.59220 (12)0.0238 (3)
H10A0.96600.31540.51080.029*
H10B0.96360.40930.66010.029*
C110.6337 (3)0.40135 (13)0.58021 (14)0.0332 (3)
H11A0.52800.42820.66180.050*
H11B0.70390.48510.55810.050*
H11C0.52600.33160.51300.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0254 (5)0.0286 (5)0.0263 (5)0.0112 (4)0.0048 (4)0.0114 (4)
O20.0387 (6)0.0213 (4)0.0310 (5)0.0050 (4)0.0060 (4)0.0161 (4)
O30.0329 (5)0.0241 (5)0.0303 (5)0.0113 (4)0.0036 (4)0.0170 (4)
O40.0237 (5)0.0196 (4)0.0229 (5)0.0002 (3)0.0061 (3)0.0125 (3)
O50.0254 (5)0.0229 (4)0.0236 (5)0.0022 (4)0.0063 (4)0.0108 (3)
N10.0229 (6)0.0190 (5)0.0191 (5)0.0016 (4)0.0013 (4)0.0076 (4)
C10.0187 (6)0.0177 (5)0.0192 (6)0.0047 (4)0.0034 (5)0.0058 (4)
C20.0185 (6)0.0181 (5)0.0154 (6)0.0012 (4)0.0015 (4)0.0066 (4)
C30.0239 (6)0.0170 (5)0.0187 (6)0.0027 (5)0.0049 (5)0.0074 (4)
C40.0214 (6)0.0217 (6)0.0224 (6)0.0069 (5)0.0014 (5)0.0067 (5)
C50.0201 (6)0.0232 (6)0.0181 (6)0.0013 (5)0.0011 (5)0.0077 (5)
C60.0221 (6)0.0166 (5)0.0174 (6)0.0004 (4)0.0068 (5)0.0083 (4)
C70.0172 (6)0.0234 (6)0.0141 (6)0.0052 (5)0.0017 (4)0.0085 (4)
C80.0206 (6)0.0211 (6)0.0199 (6)0.0015 (5)0.0023 (5)0.0111 (5)
C90.0208 (6)0.0232 (6)0.0216 (6)0.0042 (5)0.0015 (5)0.0111 (5)
C100.0269 (7)0.0218 (6)0.0258 (7)0.0041 (5)0.0040 (5)0.0115 (5)
C110.0348 (8)0.0286 (7)0.0441 (9)0.0095 (6)0.0049 (6)0.0189 (6)
Geometric parameters (Å, º) top
O1—N11.2264 (12)C5—C61.3878 (16)
O2—N11.2461 (12)C5—H50.9500
O3—C31.3476 (13)C7—C81.4948 (15)
O3—H30.872 (14)C8—C91.5171 (16)
O4—C71.3678 (15)C8—H8A0.9900
O4—C61.4032 (12)C8—H8B0.9900
O5—C71.2019 (14)C9—C101.5258 (14)
N1—C21.4508 (14)C9—H9A0.9900
C1—C61.3675 (15)C9—H9B0.9900
C1—C21.3956 (15)C10—C111.5170 (18)
C1—H10.9500C10—H10A0.9900
C2—C31.3987 (16)C10—H10B0.9900
C3—C41.3984 (16)C11—H11A0.9800
C4—C51.3762 (16)C11—H11B0.9800
C4—H40.9500C11—H11C0.9800
C3—O3—H3109.7 (10)O4—C7—C8110.77 (10)
C7—O4—C6117.46 (9)C7—C8—C9113.82 (9)
O1—N1—O2122.30 (9)C7—C8—H8A108.8
O1—N1—C2119.42 (9)C9—C8—H8A108.8
O2—N1—C2118.27 (9)C7—C8—H8B108.8
C6—C1—C2118.66 (10)C9—C8—H8B108.8
C6—C1—H1120.7H8A—C8—H8B107.7
C2—C1—H1120.7C8—C9—C10111.43 (9)
C1—C2—C3121.70 (9)C8—C9—H9A109.3
C1—C2—N1117.19 (10)C10—C9—H9A109.3
C3—C2—N1121.08 (10)C8—C9—H9B109.3
O3—C3—C4116.78 (10)C10—C9—H9B109.3
O3—C3—C2125.67 (10)H9A—C9—H9B108.0
C4—C3—C2117.55 (10)C11—C10—C9113.11 (10)
C5—C4—C3121.13 (11)C11—C10—H10A109.0
C5—C4—H4119.4C9—C10—H10A109.0
C3—C4—H4119.4C11—C10—H10B109.0
C4—C5—C6119.68 (10)C9—C10—H10B109.0
C4—C5—H5120.2H10A—C10—H10B107.8
C6—C5—H5120.2C10—C11—H11A109.5
C1—C6—C5121.27 (10)C10—C11—H11B109.5
C1—C6—O4119.95 (10)H11A—C11—H11B109.5
C5—C6—O4118.54 (9)C10—C11—H11C109.5
O5—C7—O4122.35 (10)H11A—C11—H11C109.5
O5—C7—C8126.85 (12)H11B—C11—H11C109.5
C6—C1—C2—C30.58 (18)C2—C1—C6—C51.16 (18)
C6—C1—C2—N1177.40 (10)C2—C1—C6—O4173.22 (10)
O1—N1—C2—C10.25 (16)C4—C5—C6—C10.80 (19)
O2—N1—C2—C1179.25 (11)C4—C5—C6—O4173.66 (11)
O1—N1—C2—C3178.24 (11)C7—O4—C6—C183.13 (13)
O2—N1—C2—C31.26 (17)C7—O4—C6—C5102.34 (13)
C1—C2—C3—O3178.86 (12)C6—O4—C7—O50.14 (15)
N1—C2—C3—O30.96 (19)C6—O4—C7—C8177.99 (8)
C1—C2—C3—C40.34 (18)O5—C7—C8—C928.67 (16)
N1—C2—C3—C4178.24 (11)O4—C7—C8—C9153.30 (9)
O3—C3—C4—C5178.56 (11)C7—C8—C9—C10175.07 (9)
C2—C3—C4—C50.72 (18)C8—C9—C10—C11164.72 (10)
C3—C4—C5—C60.17 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.872 (14)1.871 (14)2.6022 (13)140.2 (13)

Experimental details

Crystal data
Chemical formulaC11H13NO5
Mr239.22
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)5.3006 (14), 10.435 (2), 11.365 (3)
α, β, γ (°)67.340 (12), 81.074 (17), 77.114 (16)
V3)563.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.18 × 0.06 × 0.06
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2007)
Tmin, Tmax0.980, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
5175, 2639, 1972
Rint0.023
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.100, 1.00
No. of reflections2639
No. of parameters158
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.27

Computer programs: CrystalClear (Rigaku/MSC, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.872 (14)1.871 (14)2.6022 (13)140.2 (13)
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAtkinson, P. J., Bromidge, S. M., Duxon, M. S., Gaster, L. M., Hadley, M. S., Hammond, B., Johnson, C. N., Middlemiss, D. N., North, S. E., Price, G. W., Rami, H. K., Riley, G. J., Scott, C. M., Shaw, T. E., Starr, K. R., Stemp, G., Thewlis, K. M., Thomas, D. R., Thompson, M., Vong, A. K. K. & Watson, J. M. (2005). Bioorg. Med. Chem. Lett. 15, 737–741.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHu, B., Ellingboe, J., Gunawan, I., Han, S., Largis, E., Li, Z., Malamas, M., Mulvey, R., Oliphant, A., Sum, F.-W., Tillett, J. & Wong, V. (2001). Bioorg. Med. Chem. Lett. 11, 757–760.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJi, X. & Li, C. (2006). Synthesis, pp. 2478–2482.  Google Scholar
First citationRigaku/MSC (2007). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSvensson, M., Helgee, B., Skarp, K. & Andersson, G. (1998). J. Mater. Chem. 8, 353–362.  Web of Science CrossRef CAS Google Scholar
First citationTrollsås, M., Orrenius, C., Sahlén, F., Gedde, U. W., Norin, T., Hult, A., Hermann, D., Rudquist, P., Komitov, L., Lagerwall, S. T. & Lindström, J. (1996). J. Am. Chem. Soc. 118, 8542–8548.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds