organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10-Formyl-2,4,6,8,12-penta­nitro-2,4,6,8,10,12-hexa­aza­tetra­cyclo­[5.5.0.05,9.03,11]do­decane acetone solvate

aSchool of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China, and bGansu Yinguang Chemical Industry Group Co. Ltd, Gansu 730900, People's Republic of China
*Correspondence e-mail: nanfei314@126.com

(Received 10 January 2010; accepted 22 January 2010; online 27 January 2010)

The title compound, C7H7N11O11·C3H6O, consisting of one mol­ecule of 10-formyl-2,4,6,8,12-penta­nitro-2,4,6,8,10,12-hexa­azatetra­cyclo­[5.5.0.05,9.03,11]dodecane (penta­nitro­mono­form­yl­hexa­aza­isowurtzitane, PNMFIW) and one acetone solvent mol­ecule, is a member of the caged hexa­azaisowurtzitane family. PNMFIW has a cage structure which is constructed from one six-membered and two five-membered rings which are linked by a C—C bond, thus creating two seven-membered rings. In the PNMFIW mol­ecule, one formyl group is bonded to the N heteroatom of the six-membered cycle, and five nitro groups are appended to other five N heteroatom of the caged structure. The acetone solvent mol­ecule is arranged beside a five-membered plane of PNMFIW with an O atom and an H atom close (with respect to the sum of the van der Waals radii) to the neighbouring nitro O atom [O⋯O = 2.957 (3) and 2.852 (3) Å; O⋯ H = 2.692 (2), 2.526 (3) and 2.432 (3) Å].

Related literature

For the synthesis see: Golfier et al. (1998[Golfier, M., Graindorge, H., Longevialle, Y. & Mace, H. (1998). Proceedings of the 29th International Annual Conference of ICT, Karlsruhe, March 1-17.]); Liu et al. (2006[Liu, J., Jin, S. & Shu, Q. (2006). Chin. J. Ener. Mat. 14, 346-349.]); Ou et al. (2000[Ou, Y., Xu, Y., Chen, B., Liu, L. & Wang, C. (2000). Chin. J. Org. Chem. 20, 556-559]). For structures with similar properties, see: Chen et al. (2010[Chen, H., Shi, R., Chen, S., Jin, S., Li, L. & Shi, Y. (2010). Acta Cryst. E66, o338.]); Jin et al. (2009[Jin, S., Chen, S., Chen, H., Li, L. & Shi, Y. (2009). Acta Cryst. E65, o3112.]); Lu et al. (2004[Lu, L.-P., Qin, S.-D., Zhu, M.-L. & Yang, P. (2004). Acta Cryst. E60, o583-o585.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7N11O11·C3H6O

  • Mr = 479.31

  • Monoclinic, P 21

  • a = 10.432 (3) Å

  • b = 7.9230 (19) Å

  • c = 12.191 (3) Å

  • β = 113.493 (2)°

  • V = 924.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 93 K

  • 0.60 × 0.27 × 0.17 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • 7388 measured reflections

  • 2257 independent reflections

  • 2056 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.066

  • S = 1.00

  • 2257 reflections

  • 301 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: CrystalClear; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Title compound is a solvate of PNMFIW (I) with acetone. PNMFIW was even known as a by-product in the synthesis of hexanitrohexaazawurtzitane (HNIW) (Golfier et al., 1998; Liu et al.,2006). We determined the single structures of PNMFIW (Jin et al., 2009) and the analog of TNDFIW (Chen et al., 2010) not long ago, further the titled solvate of PNMFIW was obtained by crystallization in acetone solvent.

Figure 1 shows the molecular structure of PNMFIW solvate with acetone. The caged structure of compound (I) is constructed from one six-membered and two five-membered rings which are closed by the C1—C4 bond, thus creating two seven-membered rings. The six-membered pyrazine ring in compound (I) is shaped like a boat, while more stable conformation of six-membered ringis chair form. The two five-membered rings are also non-planar, being characterized by the torsion angles of two five-membered rings. Four nitro groups are appended to the four nitrogen atoms of the two five-membered rings, while a nitro group and a formyl are attached to the two nitrogen atoms of the six-membered ring respectively. It was observed that the acetone molecule is arranged beside a five-membered plane of compound (I) molecule and the skeleton of acetone molecule is nearly perpendicular to the five-membered plane with oxygen atom and a hydrogen atom of acetone significantly closed to the neighbouring nitro oxygen atom of compound (I). The inter molecular distance of O12 of acetone to C2, C3, O2 and O4 are 2.9378 (5), 2.9811 (3), 2.8523 (4) and 2.9567 angstrom much less than the sum of the van der Waals radii respectively,the closed intermolecular contact different from those of the common organic complex (Lu et al., 2004) results the high denstity of 1.723 g/cm3.

Related literature top

For the synthesis see: Golfier et al. (1998); Liu et al. (2006); Ou et al. (2000). For structures with similar properties, see: Chen et al. (2010); Jin et al. (2009); Lu et al. (2004).

Experimental top

Fuming sulfuric acid was slowly added into fuming nitric acid in a three-neck flask with stirring. After the solution of mixed acids was heated to 60 0C, tetraacetyldiformylhexaazaisowurtzitane (10 g) was added, and then the temperature was elevated to 65 0C. The solution was maintained at 65 0C for 12 h; thereafter the solution was poured into ice-water. The precipitated solid was filtered off, washed with water and then dried. The obtained solid was a mixture of polynitrohexaazaisowurtzitane derivatives with different number of nitro substitutes. Pure PNMFIW was obtained through a silica column chromatography with hexane/acetyl acetate (6/4 by volume) as mobile phase at room temperature (25 0C).

Pure PNMFIW was dissolved in solvent of acetone, and then the resulted solution was placed in ambient condition (288–293 K). About a week later, single crystals was obtained by controlling the evaporation of solvent. The crystal structure of PNMFIW solvate was determined by single-crystal X-ray diffraction.

Refinement top

All non-hydrogen atoms were obtained using the direct methods. The hydrogen atom were placed geometrically and treated by a constrained refinement. The distances of methane and methene are 1.000 A, and the distance of carbonyl is 0.950 A. The Ueq of H is assigned 1.2 time Ueq of C linked.

Structure description top

Title compound is a solvate of PNMFIW (I) with acetone. PNMFIW was even known as a by-product in the synthesis of hexanitrohexaazawurtzitane (HNIW) (Golfier et al., 1998; Liu et al.,2006). We determined the single structures of PNMFIW (Jin et al., 2009) and the analog of TNDFIW (Chen et al., 2010) not long ago, further the titled solvate of PNMFIW was obtained by crystallization in acetone solvent.

Figure 1 shows the molecular structure of PNMFIW solvate with acetone. The caged structure of compound (I) is constructed from one six-membered and two five-membered rings which are closed by the C1—C4 bond, thus creating two seven-membered rings. The six-membered pyrazine ring in compound (I) is shaped like a boat, while more stable conformation of six-membered ringis chair form. The two five-membered rings are also non-planar, being characterized by the torsion angles of two five-membered rings. Four nitro groups are appended to the four nitrogen atoms of the two five-membered rings, while a nitro group and a formyl are attached to the two nitrogen atoms of the six-membered ring respectively. It was observed that the acetone molecule is arranged beside a five-membered plane of compound (I) molecule and the skeleton of acetone molecule is nearly perpendicular to the five-membered plane with oxygen atom and a hydrogen atom of acetone significantly closed to the neighbouring nitro oxygen atom of compound (I). The inter molecular distance of O12 of acetone to C2, C3, O2 and O4 are 2.9378 (5), 2.9811 (3), 2.8523 (4) and 2.9567 angstrom much less than the sum of the van der Waals radii respectively,the closed intermolecular contact different from those of the common organic complex (Lu et al., 2004) results the high denstity of 1.723 g/cm3.

For the synthesis see: Golfier et al. (1998); Liu et al. (2006); Ou et al. (2000). For structures with similar properties, see: Chen et al. (2010); Jin et al. (2009); Lu et al. (2004).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: CrystalClear (Rigaku, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of PNMFIW-acetone with labelling and displacement ellipsoids drawn at the 30% probability level.
10-Formyl-2,4,6,8,12-pentanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05,9.03,11]dodecane acetone solvate top
Crystal data top
C7H7N11O11·C3H6OF(000) = 492
Mr = 479.31Dx = 1.723 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3051 reflections
a = 10.432 (3) Åθ = 3.2–27.5°
b = 7.9230 (19) ŵ = 0.16 mm1
c = 12.191 (3) ÅT = 93 K
β = 113.493 (2)°Prism, colorless
V = 924.1 (4) Å30.60 × 0.27 × 0.17 mm
Z = 2
Data collection top
Rigaku Saturn724+
diffractometer
2056 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.033
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
Detector resolution: 28.5714 pixels mm-1h = 1213
multi–scank = 1010
7388 measured reflectionsl = 1513
2257 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0252P)2 + 0.266P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2257 reflectionsΔρmax = 0.37 e Å3
301 parametersΔρmin = 0.25 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0080 (18)
Crystal data top
C7H7N11O11·C3H6OV = 924.1 (4) Å3
Mr = 479.31Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.432 (3) ŵ = 0.16 mm1
b = 7.9230 (19) ÅT = 93 K
c = 12.191 (3) Å0.60 × 0.27 × 0.17 mm
β = 113.493 (2)°
Data collection top
Rigaku Saturn724+
diffractometer
2056 reflections with I > 2σ(I)
7388 measured reflectionsRint = 0.033
2257 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.066H-atom parameters constrained
S = 1.00Δρmax = 0.37 e Å3
2257 reflectionsΔρmin = 0.25 e Å3
301 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Since the absolute configuration for the compound could not reliably be determined from Mo Kα data, the Friedel equivalents were merged before the final cycles of refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5840 (2)0.7433 (3)0.04548 (16)0.0252 (5)
O20.6865 (2)0.8921 (2)0.20784 (17)0.0208 (4)
O30.7530 (2)0.3757 (3)0.03918 (17)0.0271 (5)
O40.9429 (2)0.3367 (3)0.19951 (17)0.0250 (5)
O50.2870 (2)0.5826 (3)0.15535 (18)0.0406 (7)
O60.3470 (2)0.6539 (3)0.34336 (18)0.0331 (6)
O70.39153 (19)0.0497 (3)0.18497 (17)0.0250 (5)
O80.54005 (18)0.0268 (2)0.36166 (16)0.0192 (4)
O90.64166 (18)0.7130 (3)0.58913 (16)0.0189 (4)
O100.99291 (18)0.1958 (3)0.44466 (16)0.0211 (4)
O110.85172 (19)0.0667 (3)0.50810 (17)0.0256 (5)
O120.9308 (2)0.7045 (3)0.23532 (19)0.0271 (5)
N10.6275 (2)0.6249 (3)0.22275 (18)0.0140 (5)
N20.7407 (2)0.3766 (3)0.21929 (18)0.0136 (5)
N30.4655 (2)0.4602 (3)0.29591 (18)0.0146 (5)
N40.5722 (2)0.2200 (3)0.28704 (18)0.0134 (5)
N50.6735 (2)0.5978 (3)0.43095 (17)0.0120 (4)
N60.7940 (2)0.3236 (3)0.42695 (18)0.0135 (5)
N70.6364 (2)0.7627 (3)0.1538 (2)0.0180 (5)
N80.8190 (2)0.3654 (3)0.1471 (2)0.0188 (5)
N90.3605 (2)0.5725 (3)0.2628 (2)0.0232 (5)
N100.4930 (2)0.0712 (3)0.27833 (19)0.0158 (5)
N110.8852 (2)0.1841 (3)0.46067 (19)0.0171 (5)
C10.6046 (3)0.4582 (3)0.1680 (2)0.0152 (5)
H10.56830.46480.07880.018*
C20.7369 (3)0.6089 (3)0.3454 (2)0.0123 (5)
H20.80350.70590.36460.015*
C30.8126 (3)0.4392 (3)0.3415 (2)0.0146 (5)
H30.91410.45870.36090.018*
C40.4998 (3)0.3609 (3)0.2111 (2)0.0155 (6)
H40.41390.32310.14200.019*
C50.5788 (2)0.4581 (3)0.4144 (2)0.0129 (5)
H50.54170.45600.47840.015*
C60.6499 (3)0.2865 (3)0.4086 (2)0.0145 (6)
H60.64630.20600.47050.017*
C70.6967 (3)0.7161 (3)0.5185 (2)0.0147 (5)
H70.75950.80580.52420.018*
C80.9431 (3)0.7608 (5)0.0488 (3)0.0360 (8)
H8A0.87870.66500.02140.043*
H8B1.02790.73650.03550.043*
H8C0.89800.86220.00400.043*
C90.9808 (3)0.7892 (4)0.1793 (3)0.0217 (6)
C101.0817 (3)0.9294 (4)0.2373 (3)0.0312 (7)
H10A1.09810.93650.32210.037*
H10B1.04271.03640.19770.037*
H10C1.17030.90710.22990.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0340 (12)0.0276 (12)0.0130 (9)0.0047 (10)0.0083 (8)0.0063 (9)
O20.0290 (11)0.0116 (10)0.0263 (10)0.0013 (8)0.0157 (9)0.0005 (9)
O30.0319 (11)0.0378 (13)0.0151 (9)0.0058 (11)0.0130 (8)0.0002 (10)
O40.0212 (10)0.0296 (13)0.0283 (11)0.0079 (10)0.0144 (9)0.0010 (9)
O50.0390 (13)0.0483 (17)0.0197 (11)0.0220 (13)0.0038 (9)0.0022 (11)
O60.0302 (12)0.0425 (15)0.0235 (11)0.0185 (10)0.0075 (9)0.0069 (11)
O70.0249 (10)0.0262 (12)0.0188 (10)0.0115 (9)0.0035 (8)0.0052 (9)
O80.0236 (10)0.0142 (11)0.0215 (10)0.0010 (8)0.0109 (8)0.0034 (8)
O90.0222 (10)0.0207 (10)0.0183 (9)0.0016 (9)0.0127 (8)0.0022 (8)
O100.0135 (9)0.0226 (11)0.0288 (11)0.0033 (9)0.0101 (8)0.0046 (9)
O110.0216 (10)0.0167 (11)0.0359 (12)0.0008 (9)0.0088 (9)0.0115 (10)
O120.0294 (11)0.0256 (12)0.0345 (12)0.0029 (10)0.0215 (9)0.0088 (10)
N10.0181 (11)0.0126 (11)0.0108 (10)0.0006 (9)0.0054 (8)0.0037 (9)
N20.0145 (10)0.0162 (11)0.0122 (10)0.0003 (9)0.0075 (8)0.0009 (9)
N30.0126 (10)0.0175 (12)0.0123 (10)0.0033 (9)0.0033 (8)0.0003 (9)
N40.0157 (10)0.0096 (11)0.0140 (11)0.0030 (9)0.0051 (8)0.0008 (9)
N50.0146 (10)0.0119 (11)0.0113 (10)0.0007 (9)0.0070 (8)0.0008 (9)
N60.0119 (10)0.0116 (11)0.0157 (11)0.0042 (9)0.0040 (8)0.0035 (9)
N70.0212 (12)0.0178 (13)0.0188 (12)0.0064 (10)0.0120 (10)0.0069 (11)
N80.0223 (12)0.0176 (12)0.0199 (12)0.0035 (11)0.0122 (10)0.0006 (10)
N90.0208 (12)0.0254 (14)0.0190 (12)0.0099 (11)0.0033 (10)0.0003 (11)
N100.0172 (11)0.0150 (12)0.0182 (11)0.0030 (10)0.0103 (9)0.0032 (10)
N110.0155 (11)0.0144 (12)0.0181 (11)0.0030 (10)0.0032 (9)0.0006 (10)
C10.0174 (13)0.0147 (14)0.0143 (12)0.0014 (12)0.0071 (10)0.0008 (11)
C20.0130 (12)0.0128 (14)0.0119 (12)0.0010 (11)0.0059 (10)0.0010 (10)
C30.0154 (12)0.0159 (14)0.0122 (12)0.0018 (11)0.0049 (10)0.0010 (11)
C40.0172 (13)0.0137 (14)0.0148 (12)0.0019 (11)0.0056 (10)0.0012 (11)
C50.0149 (12)0.0128 (13)0.0104 (12)0.0002 (11)0.0045 (10)0.0003 (10)
C60.0139 (12)0.0155 (14)0.0120 (12)0.0017 (11)0.0029 (10)0.0016 (10)
C70.0146 (12)0.0105 (13)0.0173 (13)0.0030 (11)0.0044 (10)0.0020 (11)
C80.0340 (18)0.044 (2)0.0315 (17)0.0045 (17)0.0144 (14)0.0075 (16)
C90.0178 (14)0.0197 (16)0.0316 (16)0.0056 (12)0.0141 (12)0.0072 (13)
C100.0318 (16)0.0246 (17)0.0395 (18)0.0004 (15)0.0165 (14)0.0046 (15)
Geometric parameters (Å, º) top
O1—N71.221 (3)N5—C71.368 (3)
O2—N71.218 (3)N5—C51.443 (3)
O3—N81.220 (3)N5—C21.443 (3)
O4—N81.213 (3)N6—N111.409 (3)
O5—N91.229 (3)N6—C31.458 (3)
O6—N91.229 (3)N6—C61.458 (3)
O7—N101.219 (3)C1—C41.589 (4)
O8—N101.216 (3)C1—H11.0000
O9—C71.211 (3)C2—C31.570 (4)
O10—N111.218 (3)C2—H21.0000
O11—N111.218 (3)C3—H31.0000
O12—C91.213 (3)C4—H41.0000
N1—N71.403 (3)C5—C61.564 (4)
N1—C11.456 (3)C5—H51.0000
N1—C21.481 (3)C6—H61.0000
N2—N81.423 (3)C7—H70.9500
N2—C11.455 (3)C8—C91.496 (4)
N2—C31.462 (3)C8—H8A0.9800
N3—N91.342 (3)C8—H8B0.9800
N3—C41.453 (3)C8—H8C0.9800
N3—C51.457 (3)C9—C101.499 (4)
N4—N101.419 (3)C10—H10A0.9800
N4—C41.455 (3)C10—H10B0.9800
N4—C61.474 (3)C10—H10C0.9800
N7—N1—C1117.98 (19)C3—C2—H2110.7
N7—N1—C2117.6 (2)N6—C3—N2110.8 (2)
C1—N1—C2107.7 (2)N6—C3—C2107.71 (19)
N8—N2—C1117.7 (2)N2—C3—C2105.15 (19)
N8—N2—C3117.61 (19)N6—C3—H3111.0
C1—N2—C3107.70 (19)N2—C3—H3111.0
N9—N3—C4123.2 (2)C2—C3—H3111.0
N9—N3—C5123.3 (2)N3—C4—N4100.13 (19)
C4—N3—C5111.5 (2)N3—C4—C1111.7 (2)
N10—N4—C4116.78 (19)N4—C4—C1109.3 (2)
N10—N4—C6116.27 (19)N3—C4—H4111.7
C4—N4—C6107.7 (2)N4—C4—H4111.7
C7—N5—C5122.2 (2)C1—C4—H4111.7
C7—N5—C2122.2 (2)N5—C5—N3111.7 (2)
C5—N5—C2115.5 (2)N5—C5—C6111.27 (18)
N11—N6—C3115.72 (19)N3—C5—C6100.23 (19)
N11—N6—C6115.0 (2)N5—C5—H5111.1
C3—N6—C6116.11 (19)N3—C5—H5111.1
O2—N7—O1126.9 (2)C6—C5—H5111.1
O2—N7—N1116.6 (2)N6—C6—N4110.3 (2)
O1—N7—N1116.2 (2)N6—C6—C5107.2 (2)
O4—N8—O3127.3 (2)N4—C6—C5106.0 (2)
O4—N8—N2116.1 (2)N6—C6—H6111.1
O3—N8—N2116.5 (2)N4—C6—H6111.1
O6—N9—O5126.6 (2)C5—C6—H6111.1
O6—N9—N3116.6 (2)O9—C7—N5123.7 (2)
O5—N9—N3116.8 (2)O9—C7—H7118.2
O8—N10—O7127.0 (2)N5—C7—H7118.2
O8—N10—N4116.1 (2)C9—C8—H8A109.5
O7—N10—N4116.7 (2)C9—C8—H8B109.5
O10—N11—O11126.3 (2)H8A—C8—H8B109.5
O10—N11—N6116.9 (2)C9—C8—H8C109.5
O11—N11—N6116.7 (2)H8A—C8—H8C109.5
N2—C1—N1104.6 (2)H8B—C8—H8C109.5
N2—C1—C4109.0 (2)O12—C9—C8121.7 (3)
N1—C1—C4107.3 (2)O12—C9—C10121.5 (3)
N2—C1—H1111.9C8—C9—C10116.8 (3)
N1—C1—H1111.9C9—C10—H10A109.5
C4—C1—H1111.9C9—C10—H10B109.5
N5—C2—N1110.14 (19)H10A—C10—H10B109.5
N5—C2—C3110.5 (2)C9—C10—H10C109.5
N1—C2—C3103.72 (19)H10A—C10—H10C109.5
N5—C2—H2110.7H10B—C10—H10C109.5
N1—C2—H2110.7
C1—N1—N7—O2163.7 (2)C1—N2—C3—N696.0 (2)
C2—N1—N7—O231.9 (3)N8—N2—C3—C2115.7 (2)
C1—N1—N7—O121.3 (3)C1—N2—C3—C220.1 (2)
C2—N1—N7—O1153.1 (2)N5—C2—C3—N60.0 (3)
C1—N2—N8—O4162.3 (2)N1—C2—C3—N6118.0 (2)
C3—N2—N8—O430.8 (3)N5—C2—C3—N2118.2 (2)
C1—N2—N8—O322.0 (3)N1—C2—C3—N20.2 (2)
C3—N2—N8—O3153.4 (2)N9—N3—C4—N4157.0 (2)
C4—N3—N9—O6176.6 (2)C5—N3—C4—N438.7 (3)
C5—N3—N9—O614.2 (4)N9—N3—C4—C187.3 (3)
C4—N3—N9—O53.9 (4)C5—N3—C4—C176.9 (3)
C5—N3—N9—O5166.3 (3)N10—N4—C4—N398.0 (2)
C4—N4—N10—O8160.9 (2)C6—N4—C4—N334.9 (2)
C6—N4—N10—O832.0 (3)N10—N4—C4—C1144.5 (2)
C4—N4—N10—O724.3 (3)C6—N4—C4—C182.6 (2)
C6—N4—N10—O7153.2 (2)N2—C1—C4—N3109.2 (2)
C3—N6—N11—O1020.2 (3)N1—C1—C4—N33.5 (3)
C6—N6—N11—O10160.0 (2)N2—C1—C4—N40.7 (3)
C3—N6—N11—O11163.0 (2)N1—C1—C4—N4113.4 (2)
C6—N6—N11—O1123.3 (3)C7—N5—C5—N3119.7 (2)
N8—N2—C1—N1103.0 (2)C2—N5—C5—N357.4 (3)
C3—N2—C1—N132.7 (2)C7—N5—C5—C6129.2 (2)
N8—N2—C1—C4142.5 (2)C2—N5—C5—C653.7 (3)
C3—N2—C1—C481.7 (2)N9—N3—C5—N572.2 (3)
N7—N1—C1—N2103.4 (2)C4—N3—C5—N592.0 (2)
C2—N1—C1—N232.6 (2)N9—N3—C5—C6169.9 (2)
N7—N1—C1—C4140.9 (2)C4—N3—C5—C625.9 (3)
C2—N1—C1—C483.0 (2)N11—N6—C6—N483.5 (2)
C7—N5—C2—N1117.8 (2)C3—N6—C6—N456.1 (3)
C5—N5—C2—N159.3 (3)N11—N6—C6—C5161.54 (19)
C7—N5—C2—C3128.1 (2)C3—N6—C6—C558.9 (3)
C5—N5—C2—C354.7 (3)N10—N4—C6—N6131.7 (2)
N7—N1—C2—N5125.2 (2)C4—N4—C6—N695.1 (2)
C1—N1—C2—N598.5 (2)N10—N4—C6—C5112.6 (2)
N7—N1—C2—C3116.5 (2)C4—N4—C6—C520.6 (3)
C1—N1—C2—C319.8 (2)N5—C5—C6—N62.2 (3)
N11—N6—C3—N282.5 (2)N3—C5—C6—N6120.5 (2)
C6—N6—C3—N256.8 (3)N5—C5—C6—N4115.5 (2)
N11—N6—C3—C2163.00 (19)N3—C5—C6—N42.7 (2)
C6—N6—C3—C257.7 (3)C5—N5—C7—O90.7 (4)
N8—N2—C3—N6128.2 (2)C2—N5—C7—O9177.6 (2)

Experimental details

Crystal data
Chemical formulaC7H7N11O11·C3H6O
Mr479.31
Crystal system, space groupMonoclinic, P21
Temperature (K)93
a, b, c (Å)10.432 (3), 7.9230 (19), 12.191 (3)
β (°) 113.493 (2)
V3)924.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.60 × 0.27 × 0.17
Data collection
DiffractometerRigaku Saturn724+
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7388, 2257, 2056
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.066, 1.00
No. of reflections2257
No. of parameters301
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.25

Computer programs: CrystalClear (Rigaku, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationChen, H., Shi, R., Chen, S., Jin, S., Li, L. & Shi, Y. (2010). Acta Cryst. E66, o338.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGolfier, M., Graindorge, H., Longevialle, Y. & Mace, H. (1998). Proceedings of the 29th International Annual Conference of ICT, Karlsruhe, March 1–17.  Google Scholar
First citationJin, S., Chen, S., Chen, H., Li, L. & Shi, Y. (2009). Acta Cryst. E65, o3112.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, J., Jin, S. & Shu, Q. (2006). Chin. J. Ener. Mat. 14, 346–349.  CAS Google Scholar
First citationLu, L.-P., Qin, S.-D., Zhu, M.-L. & Yang, P. (2004). Acta Cryst. E60, o583–o585.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOu, Y., Xu, Y., Chen, B., Liu, L. & Wang, C. (2000). Chin. J. Org. Chem. 20, 556–559  CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds