organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(p-toluene­sulfonamido)benzoate

aDepartment of Materials Science and Engineering, University of Jinan, Jinan 250022, People's Republic of China, bSchool of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China, and cDepartment of Materials Science and Chemical Engineering, Taishan University, Taishan 271021, People's Republic of China
*Correspondence e-mail: 153725248@163.com

(Received 2 December 2009; accepted 7 January 2010; online 13 January 2010)

The title compound, C15H15NO4S, was prepared by simple condensation of methyl 2-amino­benzoate and 4-methyl­benzene­sulfonyl chloride. The dihedral angle between the benzene rings is 84.36 (6)°. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen-bonding inter­action involving the carbonyl group as acceptor, generating an S(6) graph-set motif.

Related literature

For background information on sulfonamide derivatives and their properties, see: Sheppard et al. (2006[Sheppard, G. S. et al. (2006). J. Med. Chem. 49, 3832-3849.]). For similar structures, see: Schultz et al. (2001[Schultz, T. W., Sinks, G. D. & Miller, L. A. (2001). Environ. Toxicol. 16, 543-549.]); Krishnaiah et al. (1995[Krishnaiah, M., Narayana Raju, K. V., Lu, I.-L., Chen, Y.-S. & Narasinga Rao, S. (1995). Acta Cryst. C51, 2429-2430.]); Arshad, Khan, Shafiq et al. (2009[Arshad, M. N., Khan, I. U., Shafiq, M. & Mukhtar, A. (2009). Acta Cryst. E65, o549.]); Arshad, Khan, Akkurt et al. (2009[Arshad, M. N., Khan, I. U., Akkurt, M., Shafiq, M. & Mustafa, G. (2009). Acta Cryst. E65, o1610-o1611.]); Xiong et al. (2007[Xiong, J., Cai, X.-Q., Yin, P. & Hu, M.-L. (2007). Acta Phys. Chim. Sin. 23, 1183-1188.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO4S

  • Mr = 305.34

  • Monoclinic, P 21 /c

  • a = 15.0129 (13) Å

  • b = 8.3593 (7) Å

  • c = 11.9664 (11) Å

  • β = 96.854 (2)°

  • V = 1491.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 295 K

  • 0.24 × 0.16 × 0.14 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.947, Tmax = 0.968

  • 7663 measured reflections

  • 2639 independent reflections

  • 2230 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.102

  • S = 1.04

  • 2639 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.87 1.89 2.640 (2) 143

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Sulfur-containing compounds, such as sulfates, sulfones, thiols, sulfonamides and sulfoxides can exhibit insecticidal, germicidal or antimicrobial activities (Schultz et al., 2001; Krishnaiah et al., 1995; Arshad, Khan, Shafiq et al., 2009; Xiong et al., 2007). Particularly, the sulfonamides are biologically active organic compounds, which have been investigated as inhibitors of methionine aminopeptidase-2 (MetAP2) and intermediates for cancer therapy (Sheppard et al., 2006). In order to obtain detailed information on the molecular conformation, the X-ray study of the title sulfonamide has been carried out, and the results are presented here.

As is shown in Fig. 1, the two benzene rings are approximately orthogonal, the dihedral angle between their planes being 84.36 (6)°. In addition to van der Waals interactions, there is an intramolecular N—H···O hydrogen bond which generates a graph set motif S(6) (Arshad, Khan, Akkurt et al., 2009) to stabilize the molecular conformation (Fig. 1 and Table 1).

Related literature top

For background information on sulfonamide derivatives and their properties, see: Sheppard et al. (2006). For similar structures, see: Schultz et al. (2001); Krishnaiah et al. (1995); Arshad, Khan, Shafiq et al. (2009); Arshad, Khan, Akkurt et al. (2009); Xiong et al. (2007).

Experimental top

Methyl 2-aminobenzoate (5 mmol) was dissolved in tetrahydrofuran (10 ml) in a round bottom flask (50 ml). The pH of the solution was maintained at 7–8 using Et3N. 4-Toluene sulfonyl chloride (6 mmol) was suspended to the above solution and refluxed until all the 4-toluene sulfonyl chloride was consumed. After removal of the solvent, water (20 ml) was added to the residue. Then the mixture was extracted with CH2Cl2, and the organic layer was dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure. Further purification was carried out by recrystallization in ethanol to give a solid (yield 83.7%). Single crystals suitable for X-ray analysis were obtained by diffusion of n-hexane in an ethanol solution.

Refinement top

All C-bonded H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 (aromatic) or 0.96 Å (methyl). Amine H atom H1 was found in a difference map, and its position fixed in final cycles. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.5Ueq(carrier C, N) for methyl H atoms and H1, and Uiso(H) = 1.2Ueq(carrier C) for others.

Structure description top

Sulfur-containing compounds, such as sulfates, sulfones, thiols, sulfonamides and sulfoxides can exhibit insecticidal, germicidal or antimicrobial activities (Schultz et al., 2001; Krishnaiah et al., 1995; Arshad, Khan, Shafiq et al., 2009; Xiong et al., 2007). Particularly, the sulfonamides are biologically active organic compounds, which have been investigated as inhibitors of methionine aminopeptidase-2 (MetAP2) and intermediates for cancer therapy (Sheppard et al., 2006). In order to obtain detailed information on the molecular conformation, the X-ray study of the title sulfonamide has been carried out, and the results are presented here.

As is shown in Fig. 1, the two benzene rings are approximately orthogonal, the dihedral angle between their planes being 84.36 (6)°. In addition to van der Waals interactions, there is an intramolecular N—H···O hydrogen bond which generates a graph set motif S(6) (Arshad, Khan, Akkurt et al., 2009) to stabilize the molecular conformation (Fig. 1 and Table 1).

For background information on sulfonamide derivatives and their properties, see: Sheppard et al. (2006). For similar structures, see: Schultz et al. (2001); Krishnaiah et al. (1995); Arshad, Khan, Shafiq et al. (2009); Arshad, Khan, Akkurt et al. (2009); Xiong et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with 30% probability ellipsoids. H atoms are shown as spheres of arbitrary radii. The dashed line represents a hydrogen bond.
Methyl 2-(p-toluenesulfonamido)benzoate top
Crystal data top
C15H15NO4SF(000) = 640
Mr = 305.34Dx = 1.360 Mg m3
Monoclinic, P21/cMelting point: 380 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.0129 (13) ÅCell parameters from 3425 reflections
b = 8.3593 (7) Åθ = 2.3–27.0°
c = 11.9664 (11) ŵ = 0.23 mm1
β = 96.854 (2)°T = 295 K
V = 1491.0 (2) Å3Block, colourless
Z = 40.24 × 0.16 × 0.14 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2639 independent reflections
Radiation source: fine-focus sealed tube2230 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 25.1°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1617
Tmin = 0.947, Tmax = 0.968k = 99
7663 measured reflectionsl = 149
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.3683P]
where P = (Fo2 + 2Fc2)/3
2639 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C15H15NO4SV = 1491.0 (2) Å3
Mr = 305.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.0129 (13) ŵ = 0.23 mm1
b = 8.3593 (7) ÅT = 295 K
c = 11.9664 (11) Å0.24 × 0.16 × 0.14 mm
β = 96.854 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
2639 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2230 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.968Rint = 0.024
7663 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.04Δρmax = 0.15 e Å3
2639 reflectionsΔρmin = 0.32 e Å3
191 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.78611 (3)0.16418 (5)0.77097 (4)0.04976 (17)
O10.56582 (10)0.0349 (2)0.36179 (12)0.0866 (5)
O20.61287 (10)0.2115 (2)0.49515 (14)0.0784 (4)
O30.80078 (9)0.05619 (17)0.86305 (10)0.0642 (4)
O40.76453 (10)0.32689 (16)0.79146 (12)0.0677 (4)
N10.70193 (9)0.10160 (18)0.68303 (13)0.0536 (4)
H10.67980.17620.63670.082 (7)*
C10.52814 (17)0.1643 (4)0.2920 (2)0.1100 (11)
H1A0.47630.20570.32210.165*
H1B0.51110.12580.21690.165*
H1C0.57200.24770.29060.165*
C20.60786 (12)0.0751 (3)0.46213 (17)0.0623 (5)
C30.64536 (11)0.0668 (2)0.52490 (15)0.0524 (4)
C40.69256 (10)0.0513 (2)0.63324 (14)0.0474 (4)
C50.72532 (13)0.1874 (2)0.68995 (18)0.0604 (5)
H50.75680.17810.76150.072*
C60.71195 (15)0.3359 (2)0.6419 (2)0.0748 (6)
H60.73430.42610.68120.090*
C70.66594 (16)0.3525 (3)0.5364 (2)0.0810 (7)
H70.65710.45340.50420.097*
C80.63345 (15)0.2203 (3)0.47946 (19)0.0716 (6)
H80.60230.23240.40800.086*
C90.88094 (11)0.16066 (19)0.69848 (13)0.0436 (4)
C100.88227 (13)0.2541 (2)0.60377 (15)0.0556 (5)
H100.83230.31460.57660.067*
C110.95774 (14)0.2569 (3)0.55021 (16)0.0626 (5)
H110.95850.32010.48640.075*
C121.03322 (12)0.1678 (2)0.58876 (16)0.0581 (5)
C131.03009 (13)0.0749 (2)0.68292 (17)0.0623 (5)
H131.08000.01440.71010.075*
C140.95457 (12)0.0694 (2)0.73804 (15)0.0541 (4)
H140.95330.00480.80110.065*
C151.11567 (15)0.1736 (3)0.5291 (2)0.0877 (8)
H15A1.14550.27440.54380.132*
H15B1.09880.16200.44950.132*
H15C1.15550.08830.55570.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0530 (3)0.0496 (3)0.0468 (3)0.00029 (19)0.00665 (19)0.00452 (18)
O10.0675 (9)0.1255 (14)0.0618 (9)0.0107 (9)0.0128 (7)0.0207 (9)
O20.0743 (10)0.0717 (10)0.0861 (11)0.0118 (8)0.0036 (8)0.0221 (9)
O30.0755 (9)0.0734 (9)0.0435 (7)0.0095 (7)0.0067 (6)0.0063 (6)
O40.0695 (9)0.0557 (8)0.0801 (9)0.0029 (6)0.0177 (7)0.0180 (7)
N10.0498 (8)0.0470 (8)0.0620 (9)0.0048 (7)0.0016 (7)0.0006 (7)
C10.0695 (15)0.170 (3)0.0853 (17)0.0053 (16)0.0123 (13)0.0621 (19)
C20.0391 (9)0.0881 (16)0.0591 (12)0.0040 (10)0.0037 (8)0.0139 (11)
C30.0395 (9)0.0634 (11)0.0542 (10)0.0029 (8)0.0053 (7)0.0010 (9)
C40.0382 (8)0.0497 (10)0.0549 (10)0.0001 (7)0.0078 (7)0.0011 (8)
C50.0592 (11)0.0540 (11)0.0657 (12)0.0030 (9)0.0018 (9)0.0046 (9)
C60.0740 (14)0.0486 (12)0.1004 (17)0.0041 (10)0.0046 (13)0.0025 (11)
C70.0807 (15)0.0570 (13)0.1052 (19)0.0042 (11)0.0099 (14)0.0210 (13)
C80.0667 (13)0.0823 (15)0.0642 (13)0.0117 (11)0.0007 (10)0.0163 (11)
C90.0478 (9)0.0432 (9)0.0384 (8)0.0004 (7)0.0004 (7)0.0031 (7)
C100.0557 (11)0.0626 (12)0.0470 (10)0.0063 (9)0.0004 (8)0.0076 (8)
C110.0692 (13)0.0724 (14)0.0463 (10)0.0107 (10)0.0077 (9)0.0042 (9)
C120.0525 (11)0.0652 (12)0.0572 (11)0.0128 (9)0.0091 (9)0.0235 (9)
C130.0495 (11)0.0650 (12)0.0705 (13)0.0103 (9)0.0010 (9)0.0100 (10)
C140.0588 (11)0.0532 (11)0.0484 (10)0.0087 (8)0.0013 (8)0.0033 (8)
C150.0654 (14)0.109 (2)0.0933 (17)0.0258 (13)0.0296 (12)0.0401 (15)
Geometric parameters (Å, º) top
S1—O31.4212 (13)C6—H60.9300
S1—O41.4262 (14)C7—C81.358 (3)
S1—N11.6311 (15)C7—H70.9300
S1—C91.7535 (17)C8—H80.9300
O1—C21.331 (2)C9—C101.379 (2)
O1—C11.440 (3)C9—C141.380 (2)
O2—C21.206 (3)C10—C111.367 (3)
N1—C41.410 (2)C10—H100.9300
N1—H10.8734C11—C121.388 (3)
C1—H1A0.9600C11—H110.9300
C1—H1B0.9600C12—C131.374 (3)
C1—H1C0.9600C12—C151.502 (3)
C2—C31.479 (3)C13—C141.379 (3)
C3—C81.397 (3)C13—H130.9300
C3—C41.407 (2)C14—H140.9300
C4—C51.385 (2)C15—H15A0.9600
C5—C61.373 (3)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C6—C71.372 (3)
O3—S1—O4119.33 (9)C8—C7—C6119.4 (2)
O3—S1—N1109.45 (8)C8—C7—H7120.3
O4—S1—N1104.03 (8)C6—C7—H7120.3
O3—S1—C9108.24 (8)C7—C8—C3122.0 (2)
O4—S1—C9108.40 (8)C7—C8—H8119.0
N1—S1—C9106.73 (8)C3—C8—H8119.0
C2—O1—C1116.4 (2)C10—C9—C14120.39 (17)
C4—N1—S1126.43 (12)C10—C9—S1119.30 (13)
C4—N1—H1111.6C14—C9—S1120.27 (13)
S1—N1—H1112.8C11—C10—C9119.29 (17)
O1—C1—H1A109.5C11—C10—H10120.4
O1—C1—H1B109.5C9—C10—H10120.4
H1A—C1—H1B109.5C10—C11—C12121.63 (18)
O1—C1—H1C109.5C10—C11—H11119.2
H1A—C1—H1C109.5C12—C11—H11119.2
H1B—C1—H1C109.5C13—C12—C11117.99 (17)
O2—C2—O1122.6 (2)C13—C12—C15121.3 (2)
O2—C2—C3125.93 (19)C11—C12—C15120.7 (2)
O1—C2—C3111.5 (2)C12—C13—C14121.46 (18)
C8—C3—C4118.07 (18)C12—C13—H13119.3
C8—C3—C2121.06 (18)C14—C13—H13119.3
C4—C3—C2120.86 (17)C13—C14—C9119.23 (17)
C5—C4—C3119.06 (17)C13—C14—H14120.4
C5—C4—N1121.75 (16)C9—C14—H14120.4
C3—C4—N1119.14 (16)C12—C15—H15A109.5
C6—C5—C4120.82 (19)C12—C15—H15B109.5
C6—C5—H5119.6H15A—C15—H15B109.5
C4—C5—H5119.6C12—C15—H15C109.5
C7—C6—C5120.6 (2)H15A—C15—H15C109.5
C7—C6—H6119.7H15B—C15—H15C109.5
C5—C6—H6119.7
O3—S1—N1—C453.87 (17)C6—C7—C8—C30.0 (4)
O4—S1—N1—C4177.55 (15)C4—C3—C8—C70.1 (3)
C9—S1—N1—C463.05 (16)C2—C3—C8—C7178.8 (2)
C1—O1—C2—O21.7 (3)O3—S1—C9—C10178.84 (13)
C1—O1—C2—C3178.72 (17)O4—S1—C9—C1050.38 (16)
O2—C2—C3—C8178.3 (2)N1—S1—C9—C1061.13 (15)
O1—C2—C3—C81.3 (2)O3—S1—C9—C143.30 (16)
O2—C2—C3—C40.4 (3)O4—S1—C9—C14127.47 (15)
O1—C2—C3—C4179.97 (15)N1—S1—C9—C14121.02 (14)
C8—C3—C4—C50.2 (3)C14—C9—C10—C110.8 (3)
C2—C3—C4—C5178.93 (16)S1—C9—C10—C11177.06 (14)
C8—C3—C4—N1177.13 (16)C9—C10—C11—C120.1 (3)
C2—C3—C4—N11.6 (2)C10—C11—C12—C130.3 (3)
S1—N1—C4—C534.0 (2)C10—C11—C12—C15179.53 (18)
S1—N1—C4—C3148.77 (14)C11—C12—C13—C140.1 (3)
C3—C4—C5—C60.2 (3)C15—C12—C13—C14179.90 (18)
N1—C4—C5—C6177.03 (18)C12—C13—C14—C90.8 (3)
C4—C5—C6—C70.1 (3)C10—C9—C14—C131.2 (3)
C5—C6—C7—C80.0 (4)S1—C9—C14—C13176.68 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.871.892.640 (2)143

Experimental details

Crystal data
Chemical formulaC15H15NO4S
Mr305.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)15.0129 (13), 8.3593 (7), 11.9664 (11)
β (°) 96.854 (2)
V3)1491.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.24 × 0.16 × 0.14
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.947, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
7663, 2639, 2230
Rint0.024
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.04
No. of reflections2639
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.32

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.871.892.640 (2)143.4
 

Acknowledgements

The authors are grateful to the Natural Science Foundation of Shandong Province, China (grant No. G0231) and the Foundation of the Education Ministry of China for Returned Students (grant No. G0220) for financial support. The X-ray data were collected at Taishan University, China.

References

First citationArshad, M. N., Khan, I. U., Akkurt, M., Shafiq, M. & Mustafa, G. (2009). Acta Cryst. E65, o1610–o1611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Khan, I. U., Shafiq, M. & Mukhtar, A. (2009). Acta Cryst. E65, o549.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKrishnaiah, M., Narayana Raju, K. V., Lu, I.-L., Chen, Y.-S. & Narasinga Rao, S. (1995). Acta Cryst. C51, 2429–2430.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSchultz, T. W., Sinks, G. D. & Miller, L. A. (2001). Environ. Toxicol. 16, 543–549.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheppard, G. S. et al. (2006). J. Med. Chem. 49, 3832–3849.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXiong, J., Cai, X.-Q., Yin, P. & Hu, M.-L. (2007). Acta Phys. Chim. Sin. 23, 1183–1188.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds