organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­nitro-1-phen­oxy­benzene

aCollege of Science, Northwest A&F University, Yangling Shaanxi 712100, People's Republic of China
*Correspondence e-mail: duzt@nwsuaf.edu.cn

(Received 19 December 2009; accepted 15 January 2010; online 20 January 2010)

The title compound, C12H8N2O5, was obtained by the reaction of 1-chloro-2,4-dinitro­benzene and phenol in the presence of potassium carbonate. The nitro-substituted benzene ring lies on a mirror plane, with one NO2 group in the same plane and the other disordered across this plane. The phenoxy­benzene unit is placed perpendicular to this mirror, resulting in an exact orthogonal relationship between the phenyl and benzene rings in the mol­ecule. The crystal packing exhibits no significantly short inter­molecular contacts.

Related literature

For the synthesis of the title ether, see: Williamson (1852[Williamson, W. A. (1852). J. Chem. Soc. pp. 229-239.]); Paul & Gupta (2004[Paul, S. & Gupta, M. (2004). Tetrahedron Lett. 45, 8825-8829.]). For a related structure, see: Gopal et al. (1980[Gopal, R., Chandler, W. D. & Robertson, B. E. (1980). Can. J. Chem. 58, 658-663.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8N2O5

  • Mr = 260.20

  • Orthorhombic, P n m a

  • a = 21.012 (13) Å

  • b = 6.917 (4) Å

  • c = 8.211 (5) Å

  • V = 1193.4 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.50 × 0.47 × 0.45 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.945, Tmax = 0.950

  • 5246 measured reflections

  • 1150 independent reflections

  • 639 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.220

  • S = 1.03

  • 1150 reflections

  • 117 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

One of the most common procedures for the synthesis of ethers was originally introduced by Williamson, and involves the reaction of alkoxides with alkyl halides (Williamson, 1852). This method has been known for nearly 170 years, and remains a very useful transformation in organic synthesis (Paul & Gupta, 2004).

In this paper, we present a new crystal structure, 2,4-dinitro-1-phenoxybenzene, (I), which was synthesized by the reaction of 1-chloro-2,4-dinitrobenzene and phenol, in the presence of potassium carbonate (see Experimental).

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in related compounds (e.g. Gopal et al., 1980). The angle between the benzene and the phenyl rings is 90° by symmetry. In the crystal structure, no significantly short intermolecular contacts are observed.

Related literature top

For the synthesis of the title ether, see: Williamson (1852); Paul & Gupta (2004). For a related structure, see: Gopal et al. (1980).

Experimental top

1-Chloro-2,4-dinitrobenzene (10 mmol), potassium carbonate (20 mmol), phenol (6 mmol), and 20 ml of acetone were mixed in a 50 ml flask. After stirring for 2 h. at 373 K, the crude product was obtained. Crystals were obtained by recrystallization from n-hexane/ethyl acetate. Elemental analysis: calculated for C12H8N2O5: C 55.39, H 3.10, N 10.77%; found: C 55.21, H 3.18, N 10.59%.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å, and refined as riding, with Uiso(H) = 1.2Ueq(carrier C). The refinement was carried-out using a model which includes 16 restraints: in order to converge to a sensible geometry for the phenyl ring mirrored in the symmetry plane, bond lengths C7—C8, C8—C9 and C9—C10 were restrained to 1.39 (1) Å. For the disordered nitro group, bond lengths N1—O2 and N1—O3 were averaged, and atoms N1, O2 and O3 were restrained to have similar displacement parameters.

Structure description top

One of the most common procedures for the synthesis of ethers was originally introduced by Williamson, and involves the reaction of alkoxides with alkyl halides (Williamson, 1852). This method has been known for nearly 170 years, and remains a very useful transformation in organic synthesis (Paul & Gupta, 2004).

In this paper, we present a new crystal structure, 2,4-dinitro-1-phenoxybenzene, (I), which was synthesized by the reaction of 1-chloro-2,4-dinitrobenzene and phenol, in the presence of potassium carbonate (see Experimental).

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in related compounds (e.g. Gopal et al., 1980). The angle between the benzene and the phenyl rings is 90° by symmetry. In the crystal structure, no significantly short intermolecular contacts are observed.

For the synthesis of the title ether, see: Williamson (1852); Paul & Gupta (2004). For a related structure, see: Gopal et al. (1980).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title complex with atomic numbering scheme and thermal ellipsoids at 30% probability level. Disordered atoms O2 and O3 generated by symmetry x, 1/2-y, z (m plane) have been omitted. Unlabelled atoms in the phenyl ring are generated by symmetry x, 1/2-y, z.
2,4-Dinitro-1-phenoxybenzene top
Crystal data top
C12H8N2O5F(000) = 536
Mr = 260.20Dx = 1.448 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1105 reflections
a = 21.012 (13) Åθ = 2.7–21.4°
b = 6.917 (4) ŵ = 0.12 mm1
c = 8.211 (5) ÅT = 298 K
V = 1193.4 (12) Å3Block, red
Z = 40.50 × 0.47 × 0.45 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1150 independent reflections
Radiation source: fine-focus sealed tube639 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2325
Tmin = 0.945, Tmax = 0.950k = 88
5246 measured reflectionsl = 59
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.220 w = 1/[σ2(Fo2) + (0.1048P)2 + 0.4983P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1150 reflectionsΔρmax = 0.30 e Å3
117 parametersΔρmin = 0.20 e Å3
16 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.023 (6)
Primary atom site location: structure-invariant direct methods
Crystal data top
C12H8N2O5V = 1193.4 (12) Å3
Mr = 260.20Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 21.012 (13) ŵ = 0.12 mm1
b = 6.917 (4) ÅT = 298 K
c = 8.211 (5) Å0.50 × 0.47 × 0.45 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1150 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
639 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.950Rint = 0.069
5246 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06616 restraints
wR(F2) = 0.220H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
1150 reflectionsΔρmin = 0.20 e Å3
117 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.4600 (2)0.25000.9620 (5)0.0970 (18)
N20.5869 (2)0.25000.4695 (6)0.0782 (13)
O10.35033 (13)0.25000.7731 (4)0.0844 (13)
O20.4181 (2)0.3065 (14)1.0352 (6)0.120 (3)0.50
O30.5041 (3)0.1576 (11)1.0291 (7)0.146 (3)0.50
O40.63351 (19)0.25000.5549 (6)0.1135 (17)
O50.5895 (2)0.25000.3233 (6)0.1127 (16)
C10.4064 (2)0.25000.6926 (6)0.0600 (13)
C20.4620 (2)0.25000.7843 (5)0.0597 (13)
C30.5208 (2)0.25000.7124 (6)0.0641 (13)
H30.55770.25000.77520.077*
C40.5240 (2)0.25000.5464 (6)0.0590 (12)
C50.4704 (2)0.25000.4509 (6)0.0633 (13)
H50.47380.25000.33800.076*
C60.4115 (2)0.25000.5237 (6)0.0662 (14)
H60.37500.25000.45980.079*
C70.2935 (2)0.25000.6851 (6)0.0691 (15)
C80.26597 (18)0.4227 (7)0.6495 (5)0.0960 (14)
H80.28540.53860.67810.115*
C90.2084 (2)0.4202 (10)0.5698 (6)0.130 (2)
H90.18910.53620.54100.155*
C100.1795 (3)0.25000.5328 (9)0.139 (4)
H100.14000.25000.48200.167*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.055 (3)0.182 (5)0.054 (3)0.0000.006 (2)0.000
N20.071 (3)0.089 (3)0.074 (3)0.0000.015 (3)0.000
O10.053 (2)0.149 (4)0.0508 (19)0.0000.0026 (16)0.000
O20.089 (3)0.209 (10)0.062 (3)0.054 (4)0.001 (2)0.017 (4)
O30.146 (4)0.223 (8)0.070 (3)0.075 (5)0.013 (3)0.022 (4)
O40.061 (2)0.181 (5)0.099 (3)0.0000.015 (2)0.000
O50.100 (3)0.161 (4)0.077 (3)0.0000.030 (2)0.000
C10.052 (3)0.074 (3)0.054 (3)0.0000.000 (2)0.000
C20.053 (3)0.076 (3)0.050 (2)0.0000.003 (2)0.000
C30.055 (3)0.076 (3)0.061 (3)0.0000.006 (2)0.000
C40.055 (3)0.057 (3)0.065 (3)0.0000.008 (2)0.000
C50.074 (3)0.069 (3)0.047 (3)0.0000.004 (2)0.000
C60.062 (3)0.082 (3)0.054 (3)0.0000.007 (2)0.000
C70.049 (3)0.110 (4)0.048 (3)0.0000.000 (2)0.000
C80.085 (3)0.120 (4)0.083 (3)0.007 (3)0.004 (2)0.016 (3)
C90.089 (4)0.209 (7)0.091 (3)0.044 (4)0.003 (3)0.042 (4)
C100.055 (4)0.299 (14)0.063 (4)0.0000.006 (3)0.000
Geometric parameters (Å, º) top
N1—O2i1.137 (6)C3—C41.365 (6)
N1—O21.137 (6)C3—H30.9300
N1—O31.253 (6)C4—C51.373 (6)
N1—O3i1.253 (6)C5—C61.373 (6)
N1—C21.459 (6)C5—H50.9300
N2—O51.202 (6)C6—H60.9300
N2—O41.204 (6)C7—C8i1.358 (5)
N2—C41.465 (6)C7—C81.358 (5)
O1—C11.351 (5)C8—C91.375 (5)
O1—C71.397 (5)C8—H80.9300
O2—O2i0.78 (2)C9—C101.360 (6)
O3—O3i1.278 (15)C9—H90.9300
C1—C21.389 (6)C10—C9i1.360 (6)
C1—C61.391 (6)C10—H100.9300
C2—C31.371 (6)
O2i—N1—O399.5 (6)C3—C4—C5122.0 (4)
O2—N1—O3121.1 (6)C3—C4—N2118.3 (4)
O2i—N1—O3i121.1 (6)C5—C4—N2119.6 (4)
O2—N1—O3i99.5 (6)C6—C5—C4119.4 (4)
O2i—N1—C2123.4 (4)C6—C5—H5120.3
O2—N1—C2123.4 (4)C4—C5—H5120.3
O3—N1—C2114.8 (4)C5—C6—C1120.2 (4)
O3i—N1—C2114.8 (4)C5—C6—H6119.9
O5—N2—O4123.1 (5)C1—C6—H6119.9
O5—N2—C4118.1 (5)C8i—C7—C8123.1 (5)
O4—N2—C4118.8 (5)C8i—C7—O1118.4 (3)
C1—O1—C7119.5 (4)C8—C7—O1118.4 (3)
O1—C1—C2117.9 (4)C7—C8—C9117.7 (5)
O1—C1—C6123.7 (4)C7—C8—H8121.1
C2—C1—C6118.4 (4)C9—C8—H8121.1
C3—C2—C1121.6 (4)C10—C9—C8120.7 (6)
C3—C2—N1117.1 (4)C10—C9—H9119.7
C1—C2—N1121.3 (4)C8—C9—H9119.7
C4—C3—C2118.3 (4)C9—C10—C9i120.0 (7)
C4—C3—H3120.9C9—C10—H10120.0
C2—C3—H3120.9C9i—C10—H10120.0
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3ii0.932.693.593 (8)163
C9—H9···O2iii0.932.503.274 (8)141
Symmetry codes: (ii) x, y, z1; (iii) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC12H8N2O5
Mr260.20
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)21.012 (13), 6.917 (4), 8.211 (5)
V3)1193.4 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.50 × 0.47 × 0.45
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.945, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
5246, 1150, 639
Rint0.069
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.220, 1.03
No. of reflections1150
No. of parameters117
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.20

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge the support of the Foundation of Northwest A&F University.

References

First citationGopal, R., Chandler, W. D. & Robertson, B. E. (1980). Can. J. Chem. 58, 658–663.  CrossRef CAS Web of Science Google Scholar
First citationPaul, S. & Gupta, M. (2004). Tetrahedron Lett. 45, 8825–8829.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWilliamson, W. A. (1852). J. Chem. Soc. pp. 229–239.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds