organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,3S,5R,6S)-6-Hydr­­oxy-3-tosyl­­oxy­tropan-8-ium chloride

aDepartment of Pharmacy, Shanghai Jiao Tong University School of Medicine, South Chongqing Road 280, Shanghai 200025, People's Republic of China
*Correspondence e-mail: huaxue@shsmu.edu.cn

(Received 29 November 2009; accepted 24 December 2009; online 9 January 2010)

The title compound, C15H22NO4S+·Cl, is a hydrolysis product of lesatropane [(1R,3S,5R,6S)-6-acet­oxy-3-tosyl­oxytropane] hydro­chloride, a potential anti­glaucoma agent. As in lesatropane, the piperidine and pyrrolidine rings in the title compound adopt chair and envelope conformations, respectively. There are two mol­ecules in the unit cell with similar conformations. The crystal structure is stabilized by inter­molecular O—H⋯Cl and N—H⋯Cl hydrogen bonds.

Related literature

For background to the pharmacological activity of lesatropane, see: Zhu et al. (2008[Zhu, L., Yang, L.-M., Cui, Y.-Y., Zheng, P.-L., Niu, Y.-Y., Wang, H., Lu, Y., Ren, Q.-S., Wei, P.-J. & Chen, H.-Z. (2008). Acta Pharmacol. Sin. 29, 177-184.]); Fu et al. (2008[Fu, J., Feng, X.-M., Yuan, H.-H., Yan, L.-M., Kuang, X.-D., Xia, Z., Gao, X.-L., Yu, C., Lu, Y. & Chen, H.-Z. (2008). J. Pharm. Biomed. Anal. 48, 840-843.], 2009[Fu, J., Fang, C., Cui, Y.-Y., Yang, L.-M., Zhu, L., Feng, X.-M., Zheng, P.-L., Lu, Y. & Chen, H.-Z. (2009). Biomed. Chromatogr. 23, 1044-1050.]). For related structures, see: Yang et al. (2008[Yang, L.-M., Zhu, L., Niu, Y.-Y., Chen, H.-Z. & Lu, Y. (2008). Acta Cryst. E64, o2331.], 2009[Yang, L.-M., Xie, Y.-F., Gu, Y.-F., Chen, H.-Z. & Lu, Y. (2009). Acta Cryst. E65, o1037.]).

[Scheme 1]

Experimental

Crystal data
  • C15H22NO4S+·Cl

  • Mr = 347.85

  • Triclinic, P 1

  • a = 7.1958 (9) Å

  • b = 9.3680 (12) Å

  • c = 13.4124 (17) Å

  • α = 69.894 (2)°

  • β = 76.790 (2)°

  • γ = 85.560 (2)°

  • V = 826.57 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 293 K

  • 0.39 × 0.28 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.754, Tmax = 1.000

  • 4886 measured reflections

  • 4168 independent reflections

  • 3497 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.106

  • S = 0.98

  • 4168 reflections

  • 417 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3603 Friedel pairs

  • Flack parameter: −0.15 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1i 0.82 (2) 2.37 (2) 3.185 (4) 170 (6)
O5—H5⋯Cl2ii 0.83 (2) 2.35 (3) 3.156 (4) 164 (6)
N1—H1B⋯Cl1 0.87 (2) 2.26 (2) 3.091 (4) 159 (4)
N2—H2⋯Cl2 0.87 (2) 2.19 (2) 3.041 (4) 165 (4)
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Lesatropane has been demonstrated to possess potent agonistic activity on muscarinic receptors (Zhu et al., 2008) and is being developed into a new antiglaucoma agent in China. The ocular pharmacokinetics of lesatropane was evaluated (Fu et al., 2008, 2009). The related crystal structures have been reported (Yang et al., 2008, 2009). The title compound was detected during storage of lesatropane hydrochloride solution. We prepared the title compound (Fig.1), and report here its crystal structure. The piperidine ring exists in a chair conformation with N1 atom and C3 atom displaced by 0.881 (6) Å and -0.446 (7) Å, respectively, on opposite sides of C1/C2/C4/C5 plane. The pyrrolidine ring adopts an envelope conformation with N1 atom deviating by 0.695 (7)Å from C1/C5/C6/C7 plane. There are two molecules in the unit cell, and the dihedral angle between two benzene rings is 1.65 (34)°. The molecules are linked to each other by intermolecular strong O—H···Cl and N—H···Cl hydrogen bonds. (Table 1. and Fig. 2.).

Related literature top

For background to the pharmacological activity of lesatropane, see: Zhu et al. (2008); Fu et al. (2008, 2009). For related structures, see: Yang et al. (2008, 2009).

Experimental top

Lesatropane was hydrolyzed with 1% NaOH-EtOH solution. After stirring at 0°C for 5 h, the reaction solution was neutralized by hydrochloric acid. The solvent was evaporated in vacuo. The residue was dissolved in CH2Cl2 and the organic phase was evaporated in vacuo to give the title compound as colorless crystals, [α]D25-8.31(c= 0.1085,CHCl3).1H NMR(CDCl3): δ1.98–3.00(m, 6H, 2,4,7-H), 2.47(s, 3H, CH3Ar), 3.01(s, 3H, CH3N), 3.80(s, 1H, 1-H), 3.87(m, 1H, 5-H), 4.19(s, 1H, OH), 4.63(t, 1H, 3-H), 4.94(m, 1H, 6-H), 7.38(d, J=8.1 Hz, 2H, ArH), 7.75(d, J=8.1 Hz, 2H, ArH), 11.75(s, 1H, H+). Crystals suitable for X-ray analysis were obtained by slow crystallization from anhydrous ethanol.

Refinement top

H atoms bonded to N atom was located in a difference map and refined with distance restraints of N—H=0.873 (19) Å, other H atoms were positioned geometrically and allowed to ride on their parent atoms. with C—H=0.93–0.98 Å, O—H=0.83 (2) Å,. Displacement parameters for H atoms were calculated as Uiso(H) = 1.2–1.5Ueq(carrier atom).

The title compound is a chiral compound and although 95% symmetry center was detected which means that P1 should be P-1, P-1 is in contradiction with the chirality. P-1 was also tried to refine the structure but gave R=0.084. So, P1 is more reasonable and credible.

Structure description top

Lesatropane has been demonstrated to possess potent agonistic activity on muscarinic receptors (Zhu et al., 2008) and is being developed into a new antiglaucoma agent in China. The ocular pharmacokinetics of lesatropane was evaluated (Fu et al., 2008, 2009). The related crystal structures have been reported (Yang et al., 2008, 2009). The title compound was detected during storage of lesatropane hydrochloride solution. We prepared the title compound (Fig.1), and report here its crystal structure. The piperidine ring exists in a chair conformation with N1 atom and C3 atom displaced by 0.881 (6) Å and -0.446 (7) Å, respectively, on opposite sides of C1/C2/C4/C5 plane. The pyrrolidine ring adopts an envelope conformation with N1 atom deviating by 0.695 (7)Å from C1/C5/C6/C7 plane. There are two molecules in the unit cell, and the dihedral angle between two benzene rings is 1.65 (34)°. The molecules are linked to each other by intermolecular strong O—H···Cl and N—H···Cl hydrogen bonds. (Table 1. and Fig. 2.).

For background to the pharmacological activity of lesatropane, see: Zhu et al. (2008); Fu et al. (2008, 2009). For related structures, see: Yang et al. (2008, 2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The intermolecular O—H···Cl and N—H···Cl hydrogen bonds (dashed lines). Symmetry codes: (Cl 1 A) x - 1, y, z; (Cl 2 A) x + 1, y, z.
(1R,3S,5R,6S)-6-Hydroxy-3-tosyloxytropan-8-ium chloride top
Crystal data top
C15H22NO4S+·ClZ = 2
Mr = 347.85F(000) = 368
Triclinic, P1Dx = 1.398 Mg m3
Hall symbol: P 1Melting point: 412 K
a = 7.1958 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3680 (12) ÅCell parameters from 2053 reflections
c = 13.4124 (17) Åθ = 4.6–54.7°
α = 69.894 (2)°µ = 0.37 mm1
β = 76.790 (2)°T = 293 K
γ = 85.560 (2)°Prismatic, colorless
V = 826.57 (18) Å30.39 × 0.28 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4168 independent reflections
Radiation source: fine-focus sealed tube3497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
phi and ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 89
Tmin = 0.754, Tmax = 1.000k = 1111
4886 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.060P)2 + ]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
4168 reflectionsΔρmax = 0.37 e Å3
417 parametersΔρmin = 0.24 e Å3
7 restraintsAbsolute structure: Flack (1983), 3603 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.15 (8)
Crystal data top
C15H22NO4S+·Clγ = 85.560 (2)°
Mr = 347.85V = 826.57 (18) Å3
Triclinic, P1Z = 2
a = 7.1958 (9) ÅMo Kα radiation
b = 9.3680 (12) ŵ = 0.37 mm1
c = 13.4124 (17) ÅT = 293 K
α = 69.894 (2)°0.39 × 0.28 × 0.15 mm
β = 76.790 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4168 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3497 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 1.000Rint = 0.014
4886 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106Δρmax = 0.37 e Å3
S = 0.98Δρmin = 0.24 e Å3
4168 reflectionsAbsolute structure: Flack (1983), 3603 Friedel pairs
417 parametersAbsolute structure parameter: 0.15 (8)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.68669 (16)0.49958 (12)0.53438 (8)0.0397 (3)
S20.41766 (16)0.19107 (12)0.44619 (8)0.0401 (3)
Cl10.73995 (19)0.03363 (15)1.03456 (10)0.0487 (3)
Cl20.35173 (19)0.66678 (16)0.03841 (11)0.0622 (4)
O10.0387 (5)0.1347 (4)0.8073 (3)0.0619 (9)
O20.8064 (6)0.3982 (5)0.4922 (3)0.0541 (10)
O30.5651 (6)0.5988 (4)0.4705 (3)0.0548 (10)
O40.5462 (5)0.4084 (4)0.6436 (3)0.0418 (8)
O51.0882 (5)0.3794 (4)0.0936 (3)0.0576 (8)
O60.5406 (6)0.0955 (4)0.5103 (3)0.0527 (10)
O70.2965 (6)0.2969 (5)0.4846 (3)0.0591 (11)
O80.5575 (4)0.2796 (4)0.3366 (2)0.0376 (8)
N10.3883 (6)0.1187 (5)0.9298 (3)0.0359 (9)
N20.7097 (6)0.5851 (4)0.0538 (3)0.0354 (9)
C10.3815 (8)0.2874 (6)0.8983 (4)0.0427 (13)
H10.35140.31750.96330.051*
C20.5693 (8)0.3497 (6)0.8305 (4)0.0443 (13)
H2A0.66430.31720.87470.053*
H2B0.56320.45980.80720.053*
C30.6333 (8)0.3018 (6)0.7310 (4)0.0392 (11)
H30.77260.30970.70790.047*
C40.5728 (7)0.1407 (5)0.7498 (4)0.0375 (11)
H4A0.66660.06980.78100.045*
H4B0.57120.13100.68030.045*
C50.3765 (7)0.0975 (5)0.8249 (3)0.0355 (11)
H5A0.34510.00800.83750.043*
C60.2166 (7)0.2045 (6)0.7864 (4)0.0411 (12)
H60.25680.25420.70760.049*
C70.2132 (8)0.3253 (6)0.8403 (4)0.0448 (13)
H7A0.09340.32140.89210.054*
H7B0.22830.42610.78600.054*
C80.2418 (8)0.0359 (7)1.0276 (4)0.0503 (13)
H8A0.27700.03801.09190.075*
H8B0.23420.06771.03110.075*
H8C0.11990.08391.02260.075*
C90.8273 (8)0.6055 (5)0.5760 (4)0.0370 (11)
C101.0154 (8)0.5730 (6)0.5736 (4)0.0442 (13)
H101.07180.49570.54830.053*
C111.1224 (8)0.6543 (6)0.6087 (4)0.0457 (13)
H111.25190.63370.60490.055*
C121.0377 (9)0.7672 (6)0.6497 (4)0.0476 (14)
C130.8473 (10)0.7977 (7)0.6502 (5)0.0538 (16)
H130.78910.87460.67540.065*
C140.7414 (8)0.7177 (6)0.6147 (4)0.0466 (13)
H140.61250.73900.61670.056*
C151.1547 (10)0.8524 (7)0.6924 (5)0.0634 (16)
H15A1.21230.78090.74750.095*
H15B1.07310.91970.72300.095*
H15C1.25270.91020.63380.095*
C160.6975 (7)0.6088 (5)0.1618 (4)0.0365 (11)
H160.70890.71660.15200.044*
C170.5067 (8)0.5446 (6)0.2326 (4)0.0417 (12)
H17A0.49670.55360.30350.050*
H17B0.40670.60660.20090.050*
C180.4711 (7)0.3819 (5)0.2478 (4)0.0370 (11)
H180.33320.36370.26690.044*
C190.5583 (8)0.3388 (6)0.1467 (4)0.0395 (12)
H19A0.57680.22960.16870.047*
H19B0.46880.36510.09900.047*
C200.7488 (7)0.4169 (5)0.0834 (4)0.0337 (10)
H200.79660.38920.01800.040*
C210.9008 (7)0.3873 (6)0.1520 (4)0.0400 (12)
H210.87090.29090.21200.048*
C220.8696 (8)0.5180 (6)0.1996 (4)0.0428 (12)
H22A0.84500.47750.27840.051*
H22B0.98190.58240.17350.051*
C230.8482 (8)0.6850 (6)0.0388 (4)0.0468 (13)
H23A0.80710.78870.05340.070*
H23B0.85580.65670.10190.070*
H23C0.97160.67430.02100.070*
C240.2817 (7)0.0842 (6)0.4053 (4)0.0353 (11)
C250.0900 (8)0.1097 (6)0.4105 (4)0.0432 (13)
H250.02770.18370.43770.052*
C260.0087 (8)0.0230 (7)0.3746 (4)0.0513 (14)
H260.13920.03890.37970.062*
C270.0761 (9)0.0845 (6)0.3321 (4)0.0449 (13)
C280.2681 (9)0.1099 (7)0.3296 (5)0.0546 (16)
H280.32890.18440.30250.066*
C290.3729 (8)0.0288 (7)0.3658 (5)0.0511 (15)
H290.50210.04890.36400.061*
C300.0316 (10)0.1748 (8)0.2911 (5)0.077 (2)
H30A0.15360.20330.33960.116*
H30B0.03930.26460.28730.116*
H30C0.04980.11440.21990.116*
H1A0.030 (7)0.116 (6)0.868 (2)0.09 (2)*
H51.137 (8)0.463 (4)0.056 (4)0.09 (2)*
H1B0.503 (4)0.097 (5)0.942 (4)0.034 (13)*
H20.600 (4)0.616 (5)0.037 (4)0.036 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0434 (8)0.0448 (8)0.0283 (6)0.0043 (6)0.0064 (6)0.0088 (6)
S20.0463 (8)0.0432 (7)0.0303 (6)0.0095 (6)0.0023 (6)0.0135 (6)
Cl10.0452 (8)0.0527 (7)0.0471 (7)0.0030 (6)0.0155 (6)0.0124 (6)
Cl20.0449 (9)0.0580 (9)0.0738 (10)0.0037 (7)0.0283 (8)0.0012 (8)
O10.043 (2)0.098 (3)0.052 (2)0.0107 (18)0.0097 (17)0.032 (2)
O20.062 (3)0.059 (2)0.049 (2)0.001 (2)0.0074 (19)0.031 (2)
O30.062 (3)0.063 (3)0.0350 (19)0.008 (2)0.021 (2)0.0025 (19)
O40.042 (2)0.045 (2)0.0321 (17)0.0066 (16)0.0102 (16)0.0021 (16)
O50.0418 (19)0.057 (2)0.065 (2)0.0080 (16)0.0030 (16)0.0161 (18)
O60.064 (3)0.056 (2)0.035 (2)0.0118 (19)0.021 (2)0.0028 (18)
O70.059 (3)0.063 (3)0.056 (2)0.008 (2)0.010 (2)0.033 (2)
O80.032 (2)0.045 (2)0.0309 (17)0.0034 (14)0.0077 (15)0.0046 (15)
N10.032 (2)0.047 (3)0.0269 (19)0.0011 (19)0.0079 (18)0.0092 (18)
N20.035 (2)0.036 (2)0.031 (2)0.0019 (18)0.0093 (19)0.0029 (18)
C10.061 (4)0.041 (3)0.033 (2)0.007 (2)0.019 (2)0.018 (2)
C20.055 (3)0.039 (3)0.042 (3)0.010 (2)0.020 (3)0.009 (2)
C30.038 (3)0.045 (3)0.028 (2)0.001 (2)0.008 (2)0.005 (2)
C40.045 (3)0.039 (3)0.032 (2)0.005 (2)0.009 (2)0.017 (2)
C50.047 (3)0.033 (2)0.027 (2)0.002 (2)0.005 (2)0.0111 (19)
C60.030 (3)0.064 (3)0.031 (2)0.004 (2)0.011 (2)0.016 (2)
C70.042 (3)0.056 (3)0.036 (2)0.013 (2)0.007 (2)0.019 (2)
C80.043 (3)0.063 (3)0.034 (3)0.007 (2)0.002 (2)0.004 (2)
C90.040 (3)0.034 (3)0.029 (2)0.007 (2)0.000 (2)0.004 (2)
C100.045 (3)0.048 (3)0.041 (3)0.002 (2)0.007 (3)0.018 (3)
C110.040 (3)0.048 (3)0.043 (3)0.002 (2)0.013 (2)0.006 (2)
C120.056 (4)0.049 (3)0.031 (3)0.014 (3)0.010 (3)0.003 (2)
C130.064 (4)0.043 (3)0.056 (4)0.001 (3)0.005 (3)0.025 (3)
C140.032 (3)0.050 (3)0.057 (3)0.006 (2)0.009 (3)0.020 (3)
C150.081 (5)0.059 (4)0.049 (3)0.024 (3)0.019 (3)0.008 (3)
C160.040 (3)0.034 (2)0.039 (2)0.004 (2)0.010 (2)0.017 (2)
C170.042 (3)0.046 (3)0.034 (2)0.008 (2)0.005 (2)0.013 (2)
C180.030 (3)0.040 (3)0.039 (3)0.001 (2)0.010 (2)0.009 (2)
C190.049 (3)0.039 (3)0.035 (3)0.003 (2)0.015 (2)0.015 (2)
C200.038 (3)0.039 (3)0.025 (2)0.0008 (19)0.0006 (19)0.015 (2)
C210.034 (3)0.044 (3)0.035 (2)0.004 (2)0.008 (2)0.006 (2)
C220.047 (3)0.049 (3)0.035 (2)0.013 (2)0.008 (2)0.016 (2)
C230.044 (3)0.055 (3)0.030 (3)0.001 (2)0.002 (2)0.004 (2)
C240.038 (3)0.038 (3)0.029 (2)0.002 (2)0.008 (2)0.009 (2)
C250.038 (3)0.040 (3)0.043 (3)0.003 (2)0.004 (2)0.008 (2)
C260.031 (3)0.066 (4)0.051 (3)0.011 (2)0.008 (3)0.010 (3)
C270.057 (4)0.044 (3)0.029 (2)0.015 (2)0.008 (2)0.004 (2)
C280.061 (4)0.050 (3)0.063 (4)0.003 (3)0.019 (3)0.029 (3)
C290.053 (4)0.049 (3)0.061 (4)0.002 (3)0.014 (3)0.029 (3)
C300.087 (5)0.098 (5)0.053 (4)0.045 (4)0.017 (4)0.021 (4)
Geometric parameters (Å, º) top
S1—O21.409 (3)C10—C111.377 (8)
S1—O31.426 (4)C10—H100.9300
S1—O41.579 (4)C11—C121.394 (7)
S1—C91.765 (6)C11—H110.9300
S2—O61.421 (4)C12—C131.377 (8)
S2—O71.421 (4)C12—C151.520 (8)
S2—O81.573 (3)C13—C141.367 (8)
S2—C241.741 (5)C13—H130.9300
Cl1—H1B2.26 (2)C14—H140.9300
Cl2—H22.19 (2)C15—H15A0.9600
O1—C61.409 (6)C15—H15B0.9600
O1—H1A0.82 (2)C15—H15C0.9600
O4—C31.482 (6)C16—C171.512 (7)
O5—C211.406 (6)C16—C221.530 (7)
O5—H50.83 (2)C16—H160.9800
O8—C181.478 (5)C17—C181.501 (7)
N1—C11.489 (6)C17—H17A0.9700
N1—C81.493 (7)C17—H17B0.9700
N1—C51.509 (5)C18—C191.531 (6)
N1—H1B0.874 (19)C18—H180.9800
N2—C231.480 (6)C19—C201.527 (7)
N2—C201.507 (6)C19—H19A0.9700
N2—C161.522 (6)C19—H19B0.9700
N2—H20.873 (19)C20—C211.536 (6)
C1—C21.480 (7)C20—H200.9800
C1—C71.540 (7)C21—C221.544 (6)
C1—H10.9800C21—H210.9800
C2—C31.514 (6)C22—H22A0.9700
C2—H2A0.9700C22—H22B0.9700
C2—H2B0.9700C23—H23A0.9600
C3—C41.524 (7)C23—H23B0.9600
C3—H30.9800C23—H23C0.9600
C4—C51.527 (7)C24—C251.372 (7)
C4—H4A0.9700C24—C291.398 (6)
C4—H4B0.9700C25—C261.383 (8)
C5—C61.527 (6)C25—H250.9300
C5—H5A0.9800C26—C271.361 (7)
C6—C71.535 (7)C26—H260.9300
C6—H60.9800C27—C281.378 (8)
C7—H7A0.9700C27—C301.495 (8)
C7—H7B0.9700C28—C291.374 (8)
C8—H8A0.9600C28—H280.9300
C8—H8B0.9600C29—H290.9300
C8—H8C0.9600C30—H30A0.9600
C9—C101.360 (7)C30—H30B0.9600
C9—C141.372 (6)C30—H30C0.9600
O2—S1—O3119.2 (2)C13—C12—C15122.0 (5)
O2—S1—O4110.1 (2)C11—C12—C15120.1 (6)
O3—S1—O4104.3 (2)C14—C13—C12121.7 (5)
O2—S1—C9108.6 (2)C14—C13—H13119.2
O3—S1—C9110.0 (2)C12—C13—H13119.2
O4—S1—C9103.5 (2)C13—C14—C9119.3 (5)
O6—S2—O7120.3 (2)C13—C14—H14120.3
O6—S2—O8103.7 (2)C9—C14—H14120.3
O7—S2—O8109.2 (2)C12—C15—H15A109.5
O6—S2—C24110.6 (2)C12—C15—H15B109.5
O7—S2—C24108.8 (3)H15A—C15—H15B109.5
O8—S2—C24102.6 (2)C12—C15—H15C109.5
C6—O1—H1A118 (4)H15A—C15—H15C109.5
C3—O4—S1117.1 (3)H15B—C15—H15C109.5
C21—O5—H5114 (4)C17—C16—N2106.2 (4)
C18—O8—S2117.3 (3)C17—C16—C22114.2 (4)
C1—N1—C8115.1 (4)N2—C16—C22101.9 (3)
C1—N1—C5101.2 (4)C17—C16—H16111.4
C8—N1—C5115.8 (4)N2—C16—H16111.4
C1—N1—H1B103 (3)C22—C16—H16111.4
C8—N1—H1B111 (3)C18—C17—C16115.5 (4)
C5—N1—H1B110 (3)C18—C17—H17A108.4
C23—N2—C20116.0 (3)C16—C17—H17A108.4
C23—N2—C16114.7 (4)C18—C17—H17B108.4
C20—N2—C16101.4 (3)C16—C17—H17B108.4
C23—N2—H2103 (3)H17A—C17—H17B107.5
C20—N2—H2116 (3)O8—C18—C17110.0 (4)
C16—N2—H2105 (3)O8—C18—C19106.6 (3)
C2—C1—N1108.7 (4)C17—C18—C19113.1 (4)
C2—C1—C7115.9 (5)O8—C18—H18109.0
N1—C1—C7101.4 (4)C17—C18—H18109.0
C2—C1—H1110.2C19—C18—H18109.0
N1—C1—H1110.2C20—C19—C18113.7 (4)
C7—C1—H1110.2C20—C19—H19A108.8
C1—C2—C3114.0 (5)C18—C19—H19A108.8
C1—C2—H2A108.7C20—C19—H19B108.8
C3—C2—H2A108.7C18—C19—H19B108.8
C1—C2—H2B108.7H19A—C19—H19B107.7
C3—C2—H2B108.7N2—C20—C19105.8 (3)
H2A—C2—H2B107.6N2—C20—C21104.9 (4)
O4—C3—C2107.5 (4)C19—C20—C21113.5 (4)
O4—C3—C4108.4 (4)N2—C20—H20110.8
C2—C3—C4113.4 (4)C19—C20—H20110.8
O4—C3—H3109.1C21—C20—H20110.8
C2—C3—H3109.1O5—C21—C20114.0 (4)
C4—C3—H3109.1O5—C21—C22113.7 (4)
C3—C4—C5113.2 (3)C20—C21—C22103.4 (3)
C3—C4—H4A108.9O5—C21—H21108.5
C5—C4—H4A108.9C20—C21—H21108.5
C3—C4—H4B108.9C22—C21—H21108.5
C5—C4—H4B108.9C16—C22—C21106.8 (4)
H4A—C4—H4B107.7C16—C22—H22A110.4
N1—C5—C4105.9 (4)C21—C22—H22A110.4
N1—C5—C6104.3 (3)C16—C22—H22B110.4
C4—C5—C6114.0 (4)C21—C22—H22B110.4
N1—C5—H5A110.8H22A—C22—H22B108.6
C4—C5—H5A110.8N2—C23—H23A109.5
C6—C5—H5A110.8N2—C23—H23B109.5
O1—C6—C5115.4 (4)H23A—C23—H23B109.5
O1—C6—C7114.1 (4)N2—C23—H23C109.5
C5—C6—C7103.5 (4)H23A—C23—H23C109.5
O1—C6—H6107.8H23B—C23—H23C109.5
C5—C6—H6107.8C25—C24—C29120.1 (5)
C7—C6—H6107.8C25—C24—S2121.5 (4)
C6—C7—C1105.9 (4)C29—C24—S2118.4 (4)
C6—C7—H7A110.6C24—C25—C26118.6 (5)
C1—C7—H7A110.6C24—C25—H25120.7
C6—C7—H7B110.6C26—C25—H25120.7
C1—C7—H7B110.6C27—C26—C25123.1 (5)
H7A—C7—H7B108.7C27—C26—H26118.4
N1—C8—H8A109.5C25—C26—H26118.4
N1—C8—H8B109.5C26—C27—C28117.1 (5)
H8A—C8—H8B109.5C26—C27—C30122.5 (6)
N1—C8—H8C109.5C28—C27—C30120.4 (5)
H8A—C8—H8C109.5C29—C28—C27122.3 (5)
H8B—C8—H8C109.5C29—C28—H28118.8
C10—C9—C14120.6 (5)C27—C28—H28118.8
C10—C9—S1120.7 (4)C28—C29—C24118.7 (6)
C14—C9—S1118.7 (4)C28—C29—H29120.6
C9—C10—C11120.1 (5)C24—C29—H29120.6
C9—C10—H10119.9C27—C30—H30A109.5
C11—C10—H10119.9C27—C30—H30B109.5
C10—C11—C12120.3 (5)H30A—C30—H30B109.5
C10—C11—H11119.8C27—C30—H30C109.5
C12—C11—H11119.8H30A—C30—H30C109.5
C13—C12—C11117.9 (5)H30B—C30—H30C109.5
O2—S1—O4—C355.1 (4)C12—C13—C14—C91.0 (9)
O3—S1—O4—C3175.8 (3)C10—C9—C14—C130.5 (8)
C9—S1—O4—C360.8 (4)S1—C9—C14—C13178.1 (4)
O6—S2—O8—C18175.5 (3)C23—N2—C16—C17159.3 (4)
O7—S2—O8—C1855.1 (4)C20—N2—C16—C1774.9 (4)
C24—S2—O8—C1860.3 (3)C23—N2—C16—C2280.9 (5)
C8—N1—C1—C2159.1 (4)C20—N2—C16—C2244.9 (4)
C5—N1—C1—C275.3 (5)N2—C16—C17—C1855.6 (5)
C8—N1—C1—C778.4 (5)C22—C16—C17—C1855.8 (6)
C5—N1—C1—C747.2 (4)S2—O8—C18—C17108.5 (4)
N1—C1—C2—C356.0 (6)S2—O8—C18—C19128.5 (4)
C7—C1—C2—C357.3 (6)C16—C17—C18—O883.9 (5)
S1—O4—C3—C2122.0 (4)C16—C17—C18—C1935.1 (6)
S1—O4—C3—C4115.1 (4)O8—C18—C19—C2085.3 (5)
C1—C2—C3—O484.9 (6)C17—C18—C19—C2035.7 (6)
C1—C2—C3—C434.9 (6)C23—N2—C20—C19158.9 (4)
O4—C3—C4—C583.1 (5)C16—N2—C20—C1976.2 (4)
C2—C3—C4—C536.2 (6)C23—N2—C20—C2180.8 (5)
C1—N1—C5—C475.0 (4)C16—N2—C20—C2144.1 (4)
C8—N1—C5—C4159.9 (4)C18—C19—C20—N257.6 (5)
C1—N1—C5—C645.6 (5)C18—C19—C20—C2156.8 (5)
C8—N1—C5—C679.6 (5)N2—C20—C21—O598.7 (4)
C3—C4—C5—N157.4 (5)C19—C20—C21—O5146.3 (4)
C3—C4—C5—C656.7 (5)N2—C20—C21—C2225.2 (5)
N1—C5—C6—O1100.7 (4)C19—C20—C21—C2289.8 (5)
C4—C5—C6—O1144.3 (4)C17—C16—C22—C2184.4 (5)
N1—C5—C6—C724.6 (5)N2—C16—C22—C2129.6 (5)
C4—C5—C6—C790.4 (4)O5—C21—C22—C16127.2 (4)
O1—C6—C7—C1130.7 (4)C20—C21—C22—C163.1 (5)
C5—C6—C7—C14.5 (5)O6—S2—C24—C25135.6 (4)
C2—C1—C7—C685.2 (5)O7—S2—C24—C251.3 (5)
N1—C1—C7—C632.2 (5)O8—S2—C24—C25114.3 (4)
O2—S1—C9—C105.8 (5)O6—S2—C24—C2944.9 (5)
O3—S1—C9—C10137.9 (4)O7—S2—C24—C29179.2 (4)
O4—S1—C9—C10111.1 (4)O8—S2—C24—C2965.2 (4)
O2—S1—C9—C14176.6 (4)C29—C24—C25—C260.9 (8)
O3—S1—C9—C1444.5 (5)S2—C24—C25—C26178.6 (4)
O4—S1—C9—C1466.5 (4)C24—C25—C26—C271.4 (8)
C14—C9—C10—C111.0 (8)C25—C26—C27—C282.6 (8)
S1—C9—C10—C11178.5 (4)C25—C26—C27—C30178.5 (5)
C9—C10—C11—C121.9 (8)C26—C27—C28—C291.5 (8)
C10—C11—C12—C132.3 (8)C30—C27—C28—C29179.5 (6)
C10—C11—C12—C15177.6 (5)C27—C28—C29—C240.7 (9)
C11—C12—C13—C141.8 (8)C25—C24—C29—C281.9 (8)
C15—C12—C13—C14178.0 (5)S2—C24—C29—C28177.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl1i0.82 (2)2.37 (2)3.185 (4)170 (6)
O5—H5···Cl2ii0.83 (2)2.35 (3)3.156 (4)164 (6)
N1—H1B···Cl10.87 (2)2.26 (2)3.091 (4)159 (4)
N2—H2···Cl20.87 (2)2.19 (2)3.041 (4)165 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H22NO4S+·Cl
Mr347.85
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.1958 (9), 9.3680 (12), 13.4124 (17)
α, β, γ (°)69.894 (2), 76.790 (2), 85.560 (2)
V3)826.57 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.39 × 0.28 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.754, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4886, 4168, 3497
Rint0.014
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.106, 0.98
No. of reflections4168
No. of parameters417
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.24
Absolute structureFlack (1983), 3603 Friedel pairs
Absolute structure parameter0.15 (8)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl1i0.82 (2)2.37 (2)3.185 (4)170 (6)
O5—H5···Cl2ii0.83 (2)2.35 (3)3.156 (4)164 (6)
N1—H1B···Cl10.874 (19)2.26 (2)3.091 (4)159 (4)
N2—H2···Cl20.873 (19)2.19 (2)3.041 (4)165 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by the Fund of the Science and Technology Commission of Shanghai Municipality (Key item, grant No. 06DZ19001) and the Shanghai Municipal Education Commission Fund (grant No. 06BZ009). We thank the Shanghai Institute of Organic Chemistry for the X-ray data collection and analysis.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, J., Fang, C., Cui, Y.-Y., Yang, L.-M., Zhu, L., Feng, X.-M., Zheng, P.-L., Lu, Y. & Chen, H.-Z. (2009). Biomed. Chromatogr. 23, 1044–1050.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFu, J., Feng, X.-M., Yuan, H.-H., Yan, L.-M., Kuang, X.-D., Xia, Z., Gao, X.-L., Yu, C., Lu, Y. & Chen, H.-Z. (2008). J. Pharm. Biomed. Anal. 48, 840–843.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L.-M., Xie, Y.-F., Gu, Y.-F., Chen, H.-Z. & Lu, Y. (2009). Acta Cryst. E65, o1037.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, L.-M., Zhu, L., Niu, Y.-Y., Chen, H.-Z. & Lu, Y. (2008). Acta Cryst. E64, o2331.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, L., Yang, L.-M., Cui, Y.-Y., Zheng, P.-L., Niu, Y.-Y., Wang, H., Lu, Y., Ren, Q.-S., Wei, P.-J. & Chen, H.-Z. (2008). Acta Pharmacol. Sin. 29, 177–184.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds