organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Nitro-p-phenyl­ene di­benzene­sulfonate

aSichuan College of Chemical Technology, Luzhou 646005, People's Republic of China
*Correspondence e-mail: yzwchem@126.com

(Received 14 January 2010; accepted 23 January 2010; online 30 January 2010)

In the title compound, C18H13NO8S2, the nitro­phenyl ring forms dihedral angles of 46.67 (7) and 75.40 (6)° with the phenyl rings. The nitro group makes a dihedral angle of 26.13 (8)° with the attached ring. The crystal packing is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For background to the use of phenolic esters in organic synthesis, see: Trollsås et al. (1996[Trollsås, M., Orrenius, C., Sahlén, F., Gedde, U. W., Norin, T., Hult, A., Hermann, D., Rudquist, P., Komitov, L., Lagerwall, S. T. & Lindström, J. (1996). J. Am. Chem. Soc. 118, 8542-8548.]); Svensson et al. (1998[Svensson, M., Helgee, B., Skarp, K. & Andersson, G. (1998). J. Mater. Chem. 8, 353-362.]); Atkinson et al. (2005[Atkinson, P. J., Bromidge, S. M., Duxon, M. S., Gaster, L. M., Hadley, M. S., Hammond, B., Johnson, C. N., Middlemiss, D. N., North, S. E., Price, G. W., Rami, H. K., Riley, G. J., Scott, C. M., Shaw, T. E., Starr, K. R., Stemp, G., Thewlis, K. M., Thomas, D. R., Thompson, M., Vong, A. K. K. & Watson, J. M. (2005). Bioorg. Med. Chem. Lett. 15, 737-741.]); Hu et al. (2001[Hu, B., Ellingboe, J., Gunawan, I., Han, S., Largis, E., Li, Z., Malamas, M., Mulvey, R., Oliphant, A., Sum, F.-W., Tillett, J. & Wong, V. (2001). Bioorg. Med. Chem. Lett. 11, 757-760.]). For a related structure, see: Ji et al. (2006[Ji, X. & Li, C. (2006). Synthesis, pp. 2478-2482.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13NO8S2

  • Mr = 435.43

  • Monoclinic, P 21 /c

  • a = 11.669 (5) Å

  • b = 10.554 (4) Å

  • c = 15.343 (7) Å

  • β = 101.462 (7)°

  • V = 1851.9 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 113 K

  • 0.30 × 0.07 × 0.06 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.906, Tmax = 0.980

  • 15174 measured reflections

  • 4386 independent reflections

  • 3278 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.121

  • S = 1.08

  • 4386 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 0.95 2.49 3.234 (3) 135
C9—H9⋯O8ii 0.95 2.46 3.368 (3) 160
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phenolic esters can be used to synthesize some useful intermediates in organic synthesis (Trollsås et al., 1996; Svensson et al., 1998; Atkinson et al., 2005; Hu et al., 2001).

The compound (I) was prepared by the reaction of 2-nitrohydroquinone and 4-phenylsulfonyl chloride in the presence of triethylamine (Ji et al., 2006) and its structure was reported here.

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987). The three aromatic rings ((C1 to C6), (C7 to C12) and (C13 to C18) form two dihedral angles of 46.67 (7)° and 75.40 (6)° in turn. The nitro group plane is connected with the aromatic plane with a dihedral angle of 26.13 (8)°. The torsion angles of C1—S1—O3—C7 and C10—O6—S2—C13 are 84.81 (15)° and -79.15 (16)°, respectively. In the crystal structure, intermolecular C—H···O hydrogen bonds link the molecules (Table 1, Figure 2).

Related literature top

For background to the use of phenolic esters in organic synthesis, see: Trollsås et al. (1996); Svensson et al. (1998); Atkinson et al. (2005); Hu et al. (2001). For a related structure, see: Ji et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

2-nitrohydroquinone (78 mg, 0.5 mmol) was dissolved in chloroform (30 ml). To this solution, 4-phenylsulfonyl chloride (209 mg, 1.0 mmol) and triethylamine (101 mg, 1.0 mmol) were added and the reaction was stirred at room temperature for 3 h. The reaction mixture was extracted with dichloromethane and dried with anhydrous sodium sulphate. After concentration, the residue was separated by flash column chromatography and purified by recrystallization from chloroform (yield 156 mg, 72%, m.p. 393 K). Spectroscopic analysis: IR (KBr, ν, cm-1): 3075, 1541, 1483, 1379, 1198, 1165, 1091, 855, 733.

Refinement top

All H atoms were positioned geometrically and refined as riding (C—H = 0.95Å for aromatic H) and allowed to ride on their parent atoms, with Uiso(H) =1.2Ueq(parent).

Structure description top

Phenolic esters can be used to synthesize some useful intermediates in organic synthesis (Trollsås et al., 1996; Svensson et al., 1998; Atkinson et al., 2005; Hu et al., 2001).

The compound (I) was prepared by the reaction of 2-nitrohydroquinone and 4-phenylsulfonyl chloride in the presence of triethylamine (Ji et al., 2006) and its structure was reported here.

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987). The three aromatic rings ((C1 to C6), (C7 to C12) and (C13 to C18) form two dihedral angles of 46.67 (7)° and 75.40 (6)° in turn. The nitro group plane is connected with the aromatic plane with a dihedral angle of 26.13 (8)°. The torsion angles of C1—S1—O3—C7 and C10—O6—S2—C13 are 84.81 (15)° and -79.15 (16)°, respectively. In the crystal structure, intermolecular C—H···O hydrogen bonds link the molecules (Table 1, Figure 2).

For background to the use of phenolic esters in organic synthesis, see: Trollsås et al. (1996); Svensson et al. (1998); Atkinson et al. (2005); Hu et al. (2001). For a related structure, see: Ji et al. (2006). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, (I), with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal structure of (I), view along the a-axis. Dashed lines indicate C—H···O interactions.
2-Nitro-p-phenylene dibenzenesulfonate top
Crystal data top
C18H13NO8S2F(000) = 896
Mr = 435.43Dx = 1.562 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6872 reflections
a = 11.669 (5) Åθ = 1.4–27.9°
b = 10.554 (4) ŵ = 0.34 mm1
c = 15.343 (7) ÅT = 113 K
β = 101.462 (7)°Prism, colorless
V = 1851.9 (14) Å30.30 × 0.07 × 0.06 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4386 independent reflections
Radiation source: Rotating anode3278 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.035
Detector resolution: 14.63 pixels mm-1θmax = 27.8°, θmin = 1.8°
ω and φ scansh = 1515
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
k = 1213
Tmin = 0.906, Tmax = 0.980l = 2014
15174 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0646P)2]
where P = (Fo2 + 2Fc2)/3
4386 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C18H13NO8S2V = 1851.9 (14) Å3
Mr = 435.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.669 (5) ŵ = 0.34 mm1
b = 10.554 (4) ÅT = 113 K
c = 15.343 (7) Å0.30 × 0.07 × 0.06 mm
β = 101.462 (7)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4386 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
3278 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.980Rint = 0.035
15174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.08Δρmax = 1.11 e Å3
4386 reflectionsΔρmin = 0.50 e Å3
262 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47624 (5)0.78506 (4)0.24585 (3)0.02226 (14)
S21.02988 (5)0.38180 (5)0.34494 (3)0.02633 (15)
O10.46295 (13)0.67436 (12)0.19112 (9)0.0252 (3)
O20.43170 (13)0.90467 (13)0.21175 (10)0.0290 (4)
O30.61466 (13)0.81300 (12)0.27823 (10)0.0248 (3)
O40.67578 (15)0.81516 (13)0.11784 (10)0.0337 (4)
O50.69050 (14)0.62624 (13)0.06595 (9)0.0302 (4)
O60.88958 (13)0.37990 (13)0.32927 (10)0.0271 (3)
O71.06055 (15)0.25648 (14)0.37645 (10)0.0369 (4)
O81.07180 (14)0.49022 (15)0.39729 (10)0.0346 (4)
N10.69459 (15)0.70129 (15)0.12753 (11)0.0233 (4)
C10.42957 (18)0.75292 (18)0.34514 (13)0.0224 (4)
C20.4055 (2)0.62808 (19)0.36603 (14)0.0281 (5)
H20.41560.55990.32780.034*
C30.3661 (2)0.6070 (2)0.44472 (15)0.0341 (6)
H30.34980.52300.46100.041*
C40.3503 (2)0.7068 (2)0.49945 (15)0.0334 (5)
H40.32080.69130.55190.040*
C50.3772 (2)0.8296 (2)0.47808 (15)0.0336 (6)
H50.36860.89730.51710.040*
C60.4165 (2)0.85408 (19)0.40072 (14)0.0274 (5)
H60.43430.93810.38560.033*
C70.68888 (17)0.70745 (17)0.28997 (13)0.0212 (4)
C80.72464 (18)0.66007 (18)0.37471 (14)0.0236 (4)
H80.70010.69990.42350.028*
C90.79652 (18)0.55410 (19)0.38883 (14)0.0242 (4)
H90.82290.52180.44720.029*
C100.82902 (17)0.49626 (18)0.31632 (13)0.0218 (4)
C110.79618 (17)0.54331 (17)0.23077 (13)0.0212 (4)
H110.82030.50320.18200.025*
C120.72676 (17)0.65101 (17)0.21879 (13)0.0199 (4)
C131.05739 (19)0.40052 (19)0.23713 (13)0.0255 (5)
C141.1317 (2)0.4954 (2)0.22087 (16)0.0348 (5)
H141.16570.55240.26670.042*
C151.1561 (2)0.5059 (2)0.13575 (18)0.0460 (7)
H151.20780.57000.12330.055*
C161.1054 (3)0.4237 (3)0.06989 (16)0.0470 (7)
H161.12220.43140.01200.056*
C171.0300 (3)0.3298 (3)0.08698 (16)0.0451 (7)
H170.99490.27400.04070.054*
C181.0057 (2)0.3169 (2)0.17063 (16)0.0352 (6)
H180.95470.25210.18280.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0194 (3)0.0219 (3)0.0260 (3)0.00342 (19)0.0056 (2)0.0013 (2)
S20.0199 (3)0.0352 (3)0.0239 (3)0.0062 (2)0.0046 (2)0.0068 (2)
O10.0246 (8)0.0264 (7)0.0247 (7)0.0009 (6)0.0049 (6)0.0019 (6)
O20.0293 (9)0.0253 (7)0.0337 (8)0.0094 (6)0.0097 (7)0.0064 (6)
O30.0191 (8)0.0197 (7)0.0358 (8)0.0021 (5)0.0063 (6)0.0014 (6)
O40.0399 (10)0.0241 (8)0.0382 (9)0.0079 (7)0.0102 (8)0.0108 (7)
O50.0348 (9)0.0310 (8)0.0246 (8)0.0030 (7)0.0055 (7)0.0013 (7)
O60.0192 (8)0.0278 (7)0.0350 (8)0.0049 (6)0.0069 (7)0.0087 (6)
O70.0337 (10)0.0424 (9)0.0373 (9)0.0174 (7)0.0132 (8)0.0187 (8)
O80.0247 (9)0.0511 (9)0.0268 (8)0.0040 (7)0.0023 (7)0.0051 (7)
N10.0200 (9)0.0249 (9)0.0261 (9)0.0002 (7)0.0071 (7)0.0038 (7)
C10.0191 (10)0.0236 (10)0.0241 (10)0.0014 (8)0.0032 (8)0.0007 (8)
C20.0318 (13)0.0228 (10)0.0309 (11)0.0029 (9)0.0093 (10)0.0063 (9)
C30.0443 (15)0.0274 (11)0.0326 (12)0.0097 (10)0.0125 (11)0.0016 (9)
C40.0452 (15)0.0326 (12)0.0237 (11)0.0062 (10)0.0100 (10)0.0024 (9)
C50.0461 (16)0.0278 (11)0.0274 (11)0.0003 (10)0.0090 (11)0.0064 (9)
C60.0328 (13)0.0203 (10)0.0287 (11)0.0022 (8)0.0053 (10)0.0005 (8)
C70.0156 (10)0.0193 (9)0.0284 (10)0.0013 (7)0.0038 (8)0.0018 (8)
C80.0180 (10)0.0277 (10)0.0262 (10)0.0040 (8)0.0069 (8)0.0051 (9)
C90.0193 (10)0.0292 (10)0.0230 (10)0.0031 (8)0.0017 (8)0.0026 (9)
C100.0155 (10)0.0227 (9)0.0272 (10)0.0012 (8)0.0046 (8)0.0042 (8)
C110.0179 (10)0.0234 (10)0.0237 (10)0.0007 (8)0.0074 (8)0.0001 (8)
C120.0165 (10)0.0201 (9)0.0230 (10)0.0014 (7)0.0040 (8)0.0030 (8)
C130.0232 (11)0.0318 (11)0.0223 (10)0.0102 (9)0.0061 (8)0.0052 (9)
C140.0304 (13)0.0365 (12)0.0386 (13)0.0070 (10)0.0097 (10)0.0058 (10)
C150.0442 (16)0.0480 (15)0.0527 (16)0.0152 (12)0.0265 (13)0.0218 (13)
C160.0529 (18)0.0647 (17)0.0274 (12)0.0351 (15)0.0179 (12)0.0162 (13)
C170.0471 (17)0.0592 (16)0.0262 (12)0.0264 (14)0.0002 (12)0.0033 (12)
C180.0320 (13)0.0384 (12)0.0350 (12)0.0117 (10)0.0061 (10)0.0024 (10)
Geometric parameters (Å, º) top
S1—O21.4246 (14)C5—H50.9500
S1—O11.4291 (15)C6—H60.9500
S1—O31.6198 (16)C7—C81.378 (3)
S1—C11.750 (2)C7—C121.391 (3)
S2—O81.4274 (16)C8—C91.389 (3)
S2—O71.4291 (15)C8—H80.9500
S2—O61.6069 (17)C9—C101.386 (3)
S2—C131.758 (2)C9—H90.9500
O3—C71.401 (2)C10—C111.384 (3)
O4—N11.225 (2)C11—C121.387 (3)
O5—N11.226 (2)C11—H110.9500
O6—C101.411 (2)C13—C141.380 (3)
N1—C121.474 (2)C13—C181.393 (3)
C1—C61.394 (3)C14—C151.395 (3)
C1—C21.398 (3)C14—H140.9500
C2—C31.393 (3)C15—C161.373 (4)
C2—H20.9500C15—H150.9500
C3—C41.383 (3)C16—C171.385 (4)
C3—H30.9500C16—H160.9500
C4—C51.388 (3)C17—C181.375 (4)
C4—H40.9500C17—H170.9500
C5—C61.379 (3)C18—H180.9500
O2—S1—O1121.30 (9)C8—C7—O3118.26 (18)
O2—S1—O3102.71 (8)C12—C7—O3121.64 (17)
O1—S1—O3108.31 (8)C7—C8—C9120.0 (2)
O2—S1—C1109.73 (9)C7—C8—H8120.0
O1—S1—C1109.68 (9)C9—C8—H8120.0
O3—S1—C1103.42 (9)C10—C9—C8118.85 (19)
O8—S2—O7121.12 (10)C10—C9—H9120.6
O8—S2—O6108.61 (9)C8—C9—H9120.6
O7—S2—O6102.61 (9)C11—C10—C9122.31 (19)
O8—S2—C13109.46 (10)C11—C10—O6118.83 (18)
O7—S2—C13110.01 (10)C9—C10—O6118.65 (17)
O6—S2—C13103.41 (9)C10—C11—C12117.65 (19)
C7—O3—S1116.62 (12)C10—C11—H11121.2
C10—O6—S2118.49 (12)C12—C11—H11121.2
O4—N1—O5124.14 (17)C11—C12—C7121.03 (18)
O4—N1—C12118.28 (17)C11—C12—N1116.91 (18)
O5—N1—C12117.56 (16)C7—C12—N1122.06 (17)
C6—C1—C2122.0 (2)C14—C13—C18121.6 (2)
C6—C1—S1118.36 (16)C14—C13—S2119.40 (17)
C2—C1—S1119.60 (16)C18—C13—S2118.99 (18)
C3—C2—C1117.77 (19)C13—C14—C15118.7 (2)
C3—C2—H2121.1C13—C14—H14120.7
C1—C2—H2121.1C15—C14—H14120.7
C4—C3—C2120.8 (2)C16—C15—C14120.0 (3)
C4—C3—H3119.6C16—C15—H15120.0
C2—C3—H3119.6C14—C15—H15120.0
C3—C4—C5120.3 (2)C15—C16—C17120.7 (2)
C3—C4—H4119.9C15—C16—H16119.7
C5—C4—H4119.9C17—C16—H16119.7
C6—C5—C4120.5 (2)C18—C17—C16120.3 (2)
C6—C5—H5119.7C18—C17—H17119.9
C4—C5—H5119.7C16—C17—H17119.9
C5—C6—C1118.6 (2)C17—C18—C13118.8 (2)
C5—C6—H6120.7C17—C18—H18120.6
C1—C6—H6120.7C13—C18—H18120.6
C8—C7—C12120.10 (18)
O2—S1—O3—C7161.01 (14)S2—O6—C10—C995.9 (2)
O1—S1—O3—C731.54 (16)C9—C10—C11—C121.1 (3)
C1—S1—O3—C784.81 (15)O6—C10—C11—C12173.68 (17)
O8—S2—O6—C1037.06 (17)C10—C11—C12—C71.8 (3)
O7—S2—O6—C10166.41 (14)C10—C11—C12—N1178.80 (17)
C13—S2—O6—C1079.15 (16)C8—C7—C12—C113.0 (3)
O2—S1—C1—C633.48 (19)O3—C7—C12—C11177.22 (17)
O1—S1—C1—C6169.09 (16)C8—C7—C12—N1177.57 (18)
O3—S1—C1—C675.54 (18)O3—C7—C12—N12.2 (3)
O2—S1—C1—C2145.86 (17)O4—N1—C12—C11151.69 (18)
O1—S1—C1—C210.3 (2)O5—N1—C12—C1127.0 (3)
O3—S1—C1—C2105.11 (17)O4—N1—C12—C728.9 (3)
C6—C1—C2—C30.7 (3)O5—N1—C12—C7152.42 (19)
S1—C1—C2—C3178.60 (17)O8—S2—C13—C1412.8 (2)
C1—C2—C3—C40.7 (3)O7—S2—C13—C14122.56 (18)
C2—C3—C4—C52.1 (4)O6—S2—C13—C14128.44 (17)
C3—C4—C5—C62.1 (4)O8—S2—C13—C18168.81 (16)
C4—C5—C6—C10.6 (3)O7—S2—C13—C1855.8 (2)
C2—C1—C6—C50.8 (3)O6—S2—C13—C1853.20 (18)
S1—C1—C6—C5178.57 (17)C18—C13—C14—C150.7 (3)
S1—O3—C7—C897.86 (18)S2—C13—C14—C15177.62 (17)
S1—O3—C7—C1282.4 (2)C13—C14—C15—C160.7 (3)
C12—C7—C8—C91.4 (3)C14—C15—C16—C170.1 (4)
O3—C7—C8—C9178.82 (17)C15—C16—C17—C180.6 (4)
C7—C8—C9—C101.3 (3)C16—C17—C18—C130.6 (3)
C8—C9—C10—C112.6 (3)C14—C13—C18—C170.0 (3)
C8—C9—C10—O6172.13 (17)S2—C13—C18—C17178.28 (17)
S2—O6—C10—C1189.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.952.493.234 (3)135
C9—H9···O8ii0.952.463.368 (3)160
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H13NO8S2
Mr435.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)11.669 (5), 10.554 (4), 15.343 (7)
β (°) 101.462 (7)
V3)1851.9 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.30 × 0.07 × 0.06
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.906, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
15174, 4386, 3278
Rint0.035
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.121, 1.08
No. of reflections4386
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.11, 0.50

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.95002.493.234 (3)134.7
C9—H9···O8ii0.95002.463.368 (3)159.7
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1, z+1.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAtkinson, P. J., Bromidge, S. M., Duxon, M. S., Gaster, L. M., Hadley, M. S., Hammond, B., Johnson, C. N., Middlemiss, D. N., North, S. E., Price, G. W., Rami, H. K., Riley, G. J., Scott, C. M., Shaw, T. E., Starr, K. R., Stemp, G., Thewlis, K. M., Thomas, D. R., Thompson, M., Vong, A. K. K. & Watson, J. M. (2005). Bioorg. Med. Chem. Lett. 15, 737–741.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHu, B., Ellingboe, J., Gunawan, I., Han, S., Largis, E., Li, Z., Malamas, M., Mulvey, R., Oliphant, A., Sum, F.-W., Tillett, J. & Wong, V. (2001). Bioorg. Med. Chem. Lett. 11, 757–760.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJi, X. & Li, C. (2006). Synthesis, pp. 2478–2482.  Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSvensson, M., Helgee, B., Skarp, K. & Andersson, G. (1998). J. Mater. Chem. 8, 353–362.  Web of Science CrossRef CAS Google Scholar
First citationTrollsås, M., Orrenius, C., Sahlén, F., Gedde, U. W., Norin, T., Hult, A., Hermann, D., Rudquist, P., Komitov, L., Lagerwall, S. T. & Lindström, J. (1996). J. Am. Chem. Soc. 118, 8542–8548.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds