inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Filled skutterudite structure of europium ruthenium polyphosphide, EuRu4P12

aGraduate School of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Japan
*Correspondence e-mail: kagomiya@nitech.ac.jp

(Received 11 December 2009; accepted 5 January 2010; online 13 January 2010)

The crystal structure of EuRu4P12 is isotypic with filled skutterudite structures of rare earth transition metal poly­phosphides: RFe4P12 (R = Ce, Pr, Nd, Sm and Eu), RRu4P12 (R = La, Ce, Pr and Nd) and ROs4P12 (R = La, Ce, Pr and Nd). The Ru cation is coordinated by six P anions in a distorted octa­hedral manner. The partially occupied Eu position (site occupancy 0.97) is enclosed by a cage formed by the corner-shared framework of the eight RuP6 octa­hedra.

Related literature

The title compound is isotypic with the Im[\overline{3}] form of LaFe4P12, see: Jeitschko & Braun (1977[Jeitschko, W. & Braun, D. (1977). Acta Cryst. B33, 3401-3406.]). For the single-crystal preparation and magnetic and electrical properties of EuRu4P12, see: Sekine et al. (2000[Sekine, C., Inoue, M., Inaba, T. & Shirotani, I. (2000). Physica B, 281-282, 308-310.]). For hyperfine inter­action in EuRu4P12, see: Grandjean et al. (1983[Grandjean, F., Gerard, A., Hodges, J., Braun, D. J. & Jeitschko, W. (1983). Hyperfine Interact. 15-16, 765-765.]); Indoh et al. (2002[Indoh, K., Onodera, H., Sekine, C., Shirotani, I. & Yamaguchi, Y. (2002). J. Phys. Soc. Jpn, 71 (Suppl.), 243-245.]). For the method used to avoid multiple diffraction, see: Takenaka et al. (2008[Takenaka, Y., Sakakura, T., Tanaka, K. & Kishimoto, S. (2008). Acta Cryst. A64, C566.]).

Experimental

Crystal data
  • Eu0.97Ru4P12

  • Mr = 923.37

  • Cubic, [I m \overline 3]

  • a = 8.04163 (10) Å

  • V = 520.04 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 13.37 mm−1

  • T = 100 K

  • 0.04 mm (radius)

Data collection
  • MacScience M06XHF22 four-circle diffractometer

  • Absorption correction: for a sphere [transmission coefficients for spheres tabulated in International Tables Vol. C (1992), Table 6.3.3.3, were interpolated with Lagrange's method (four-point interpolation; Yamauchi et al., 1965[Yamauchi, J., Moriguchi, S. & Ichimatsu, S. (1965). Numerical Calculation Method for Computer. Tokyo: Baifukan.])] Tmin = 0.486, Tmax = 0.526

  • 1564 measured reflections

  • 769 independent reflections

  • 625 reflections with F > 3σ(F)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.024

  • S = 1.54

  • 1304 reflections

  • 30 parameters

  • Δρmax = 2.08 e Å−3

  • Δρmin = −1.14 e Å−3

Table 1
Selected bond lengths (Å)

Eu1—P1 3.1112 (3)
Eu1—Ru1 3.4821 (1)
Ru1—P1 2.3558 (1)
P1—P1i 2.3061 (1)
P1—P1ii 3.0829 (1)
Symmetry codes: (i) -x, y, -z; (ii) [-z+{\script{1\over 2}}, x+{\script{1\over 2}}, -y+{\script{1\over 2}}].

Data collection: MXCSYS (MacScience, 1995[MacScience (1995). MXCSYS. Bruker AXS Inc., Tsukuba, Ibaraki, Japan.]) and IUANGLE (Tanaka et al., 1994[Tanaka, K., Kumazawa, S., Tsubokawa, M., Maruno, S. & Shirotani, I. (1994). Acta Cryst. A50, 246-252.]); cell refinement: RSLC-3 UNICS system (Sakurai & Kobayashi, 1979[Sakurai, T. & Kobayashi, K. (1979). Rikagaku Kenkyusho Hokoku (Rep. Inst. Phys. Chem. Res.), 55, 69-77.]); data reduction: RDEDIT (Tanaka, 2008[Tanaka, K. (2008). RDEDIT. Unpublished.]); program(s) used to solve structure: QNTAO (Tanaka et al., 2008[Tanaka, K., Makita, R., Funahashi, S., Komori, T. & Zaw Win (2008). Acta Cryst. A64, 437-449.]); program(s) used to refine structure: QNTAO; molecular graphics: ATOMS for Windows (Dowty, 2000[Dowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: RDEDIT.

Supporting information


Related literature top

The title compound is isotypic with the Im3 form of LaFe4P12 (Jeitschko & Braun, 1977). For the single-crystal preparation and magnetic and electrical properties of LaRu4P12, see: Sekine et al. (2000). For hyperfine interaction in LaRu4P12, see: Grandjean et al. (1983); Indoh et al. (2002). For extinction correction method, see: Becker & Coppens (1975). For the method used to avoid multiple diffraction, see: Takenaka et al. (2008). [Please check added citations]

Refinement top

Multiple diffraction was avoided by using ψ-scans (Takenaka et al., 2008). Intensities were measured at the equi-temperature region of combination of angles ω and χ of a four-circle diffractometer. The intensities have not been included for the refinement if the multiple diffraction cannot be avoided. In addition, the crystal was cooled to 100 K with an Oxford cryostream cooler installed on a four-circle diffractometer. Since the temperature of the sample depends on the ω and χ-angle and the X-ray diffraction measurement was carried out in the equi-temperature area, the ω and χ-angle had the limitation. Thus completeness of the independent reflection was less than 85%.

Structure description top

The title compound is isotypic with the Im3 form of LaFe4P12 (Jeitschko & Braun, 1977). For the single-crystal preparation and magnetic and electrical properties of LaRu4P12, see: Sekine et al. (2000). For hyperfine interaction in LaRu4P12, see: Grandjean et al. (1983); Indoh et al. (2002). For extinction correction method, see: Becker & Coppens (1975). For the method used to avoid multiple diffraction, see: Takenaka et al. (2008). [Please check added citations]

Computing details top

Data collection: MXCSYS (MacScience, 1995) and IUANGLE (Tanaka et al., 1994); cell refinement: RSLC-3 UNICS system (Sakurai & Kobayashi, 1979); data reduction: RDEDIT (Tanaka, 2008); program(s) used to solve structure: QNTAO (Tanaka et al., 2008); program(s) used to refine structure: QNTAO (Tanaka et al., 2008); molecular graphics: ATOMS for Windows (Dowty, 2000); software used to prepare material for publication: RDEDIT (Tanaka, 2008).

Figures top
[Figure 1] Fig. 1. The structure of EuRu4P12 at 100 K. Small yellow and large red spheres, respectively, represent P and Eu atoms. Green distorted octahedron represent RuO6 units.
[Figure 2] Fig. 2. Bonding of Ru4 and P12 around an Eu ion with displacement ellipsoids at the 90% probability level. Red, blue and yellow ellipsoids represent Eu, Ru and P atoms, in Fig. 1.
Europium ruthenium polyphosphide top
Crystal data top
Eu0.97Ru4P12Dx = 5.925 Mg m3
Mr = 923.37Mo Kα radiation, λ = 0.71073 Å
Cubic, Im3Cell parameters from 37 reflections
Hall symbol: -I 2 2 3θ = 36.0–37.7°
a = 8.04163 (10) ŵ = 13.37 mm1
V = 520.04 (1) Å3T = 100 K
Z = 2Sphere, black
F(000) = 828.40.04 mm (radius)
Data collection top
MacScience M06XHF22 four-circle
diffractometer
769 independent reflections
Radiation source: fine-focus rotating anode625 reflections with F > 3σ(F)
Graphite monochromatorRint = 0.016
Detector resolution: 1.25 x 1.25° pixels mm-1θmax = 74.2°, θmin = 3.6°
ω/2θ scansh = 1820
Absorption correction: for a sphere
[transmission coefficients for spheres tabulated in International Tables Vol. C (1992), Table 6.3.3.3, were interpolated with Lagrange's method (four-point interpolation; Yamauchi et al., 1965)]
k = 2121
Tmin = 0.486, Tmax = 0.526l = 1820
1564 measured reflections
Refinement top
Refinement on FWeighting scheme based on measured s.u.'s
Least-squares matrix: full(Δ/σ)max = 0.018
R[F2 > 2σ(F2)] = 0.020Δρmax = 2.08 e Å3
wR(F2) = 0.024Δρmin = 1.14 e Å3
S = 1.54Extinction correction: B–C type 1 Gaussian isotropic (Becker & Coppens, 1975)
1304 reflectionsExtinction coefficient: 0.068 (6)
30 parameters
Crystal data top
Eu0.97Ru4P12Z = 2
Mr = 923.37Mo Kα radiation
Cubic, Im3µ = 13.37 mm1
a = 8.04163 (10) ÅT = 100 K
V = 520.04 (1) Å30.04 mm (radius)
Data collection top
MacScience M06XHF22 four-circle
diffractometer
769 independent reflections
Absorption correction: for a sphere
[transmission coefficients for spheres tabulated in International Tables Vol. C (1992), Table 6.3.3.3, were interpolated with Lagrange's method (four-point interpolation; Yamauchi et al., 1965)]
625 reflections with F > 3σ(F)
Tmin = 0.486, Tmax = 0.526Rint = 0.016
1564 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02030 parameters
wR(F2) = 0.024Δρmax = 2.08 e Å3
S = 1.54Δρmin = 1.14 e Å3
1304 reflections
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Eu10.0000000.0000000.0000000.00270 (2)0.970 (4)
Ru10.2500000.2500000.2500000.001840 (15)
P10.0000000.3593290.1433860.00283 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.00271 (3)0.00271 (3)0.00271 (3)000
Ru10.00185 (3)0.00185 (3)0.00185 (3)0.000108 (17)0.000108 (17)0.000108 (17)
P10.00268 (10)0.00301 (10)0.00285 (10)000.00009 (7)
Geometric parameters (Å, º) top
Eu1—P13.1112 (3)Ru1—P1i2.3558 (1)
Eu1—Ru13.4821 (1)P1—P1ii2.3061 (1)
Ru1—P12.3558 (1)P1—P1i3.0829 (1)
Eu1—P1—Ru177.78Ru1—P1—P1i49.13
Eu1—P1—P1ii68.25P1—Ru1—P1i81.74
Eu1—P1—P1i109.77P1ii—P1—P1i89.59
Ru1—P1—P1ii111.34
Symmetry codes: (i) z+1/2, x+1/2, y+1/2; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaEu0.97Ru4P12
Mr923.37
Crystal system, space groupCubic, Im3
Temperature (K)100
a (Å)8.04163 (10)
V3)520.04 (1)
Z2
Radiation typeMo Kα
µ (mm1)13.37
Crystal size (mm)0.04 (radius)
Data collection
DiffractometerMacScience M06XHF22 four-circle
Absorption correctionFor a sphere
[transmission coefficients for spheres tabulated in International Tables Vol. C (1992), Table 6.3.3.3, were interpolated with Lagrange's method (four-point interpolation; Yamauchi et al., 1965)]
Tmin, Tmax0.486, 0.526
No. of measured, independent and
observed [F > 3σ(F)] reflections
1564, 769, 625
Rint0.016
(sin θ/λ)max1)1.354
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.024, 1.54
No. of reflections1304
No. of parameters30
No. of restraints?
Δρmax, Δρmin (e Å3)2.08, 1.14

Computer programs: MXCSYS (MacScience, 1995) and IUANGLE (Tanaka et al., 1994), RSLC-3 UNICS system (Sakurai & Kobayashi, 1979), RDEDIT (Tanaka, 2008), QNTAO (Tanaka et al., 2008), ATOMS for Windows (Dowty, 2000).

Selected bond lengths (Å) top
Eu1—P13.1112 (3)P1—P1i2.3061 (1)
Eu1—Ru13.4821 (1)P1—P1ii3.0829 (1)
Ru1—P12.3558 (1)
Symmetry codes: (i) x, y, z; (ii) z+1/2, x+1/2, y+1/2.
 

Acknowledgements

Part of this study was supported by the Inter­national Training Programme (ITP) from the Japan Society for the Promotion of Science (JSPS).

References

First citationDowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationGrandjean, F., Gerard, A., Hodges, J., Braun, D. J. & Jeitschko, W. (1983). Hyperfine Interact. 15–16, 765–765.  CrossRef Web of Science Google Scholar
First citationIndoh, K., Onodera, H., Sekine, C., Shirotani, I. & Yamaguchi, Y. (2002). J. Phys. Soc. Jpn, 71 (Suppl.), 243–245.  Google Scholar
First citationJeitschko, W. & Braun, D. (1977). Acta Cryst. B33, 3401–3406.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMacScience (1995). MXCSYS. Bruker AXS Inc., Tsukuba, Ibaraki, Japan.  Google Scholar
First citationSakurai, T. & Kobayashi, K. (1979). Rikagaku Kenkyusho Hokoku (Rep. Inst. Phys. Chem. Res.), 55, 69–77.  Google Scholar
First citationSekine, C., Inoue, M., Inaba, T. & Shirotani, I. (2000). Physica B, 281–282, 308–310.  Web of Science CrossRef Google Scholar
First citationTakenaka, Y., Sakakura, T., Tanaka, K. & Kishimoto, S. (2008). Acta Cryst. A64, C566.  CrossRef IUCr Journals Google Scholar
First citationTanaka, K. (2008). RDEDIT. Unpublished.  Google Scholar
First citationTanaka, K., Kumazawa, S., Tsubokawa, M., Maruno, S. & Shirotani, I. (1994). Acta Cryst. A50, 246–252.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTanaka, K., Makita, R., Funahashi, S., Komori, T. & Zaw Win (2008). Acta Cryst. A64, 437–449.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYamauchi, J., Moriguchi, S. & Ichimatsu, S. (1965). Numerical Calculation Method for Computer. Tokyo: Baifukan.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds