inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Monolanthanum tripotassium tetra­hydrogen deca­molybdodicobaltate(III) trideca­hydrate

aDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea, and bDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 30 December 2009; accepted 7 January 2010; online 23 January 2010)

The title compound, K3La[H4Mo10Co2O38].13H2O, is an optically active chiral polyoxometalate (POM) which contains an anion with ideal point symmetry D2 (222). The crystals containing one of the enanti­omer pairs in the POM were resolved at pH 2.5. The factor that governs the formation of the compound is the pH condition of the mother liquor. The racemate salt, K6[H4Mo10Co2O38]·7H2O, is obtained at pH 6.5 [Nolan et al. (1998[Nolan, A. L., Allen, C. C., Burns, R. C., Craig, D. C. & Lawrance, G. A. (1998). Aust. J. Chem. 51. 825-834.]). Aust. J. Chem. 51. 825–834]. Two non-acidic H atoms in the POM form intra­molecular hydrogen bonds and the remaining two H atoms form hydrogen bonds with two water mol­ecules. The POMs are connected by three K+ ions. The La3+ ion is coordinated by three O atoms of the POM and six water molecues with distances in the range 2.516 (5)–2.589 (5) Å.

Related literature

For the crystal structures of [H4Mo10Co2O38]6−, see: Evans & Showell (1969[Evans, H. T. Jr & Showell, J. S. (1969). J. Am. Chem. Soc. 91. 6881-6882.]); Nolan et al. (1998[Nolan, A. L., Allen, C. C., Burns, R. C., Craig, D. C. & Lawrance, G. A. (1998). Aust. J. Chem. 51. 825-834.]). For the optical resolution, see: Ama et al. (1970[Ama, T., Hidaka, J. & Shimura, Y. (1970). Bull. Chem. Soc. Jpn, 43, 2654.]). For a review of chirality in POM chemistry, see: Hasenknopf et al. (2008[Hasenknopf, B., Micone, K., Lacôte, E., Thorimbert, S., Malacria, M. & Thouvenot, R. (2008). Eur. J. Inorg. Chem. pp. 5001-5013.]). For bond-valence sum calculations, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]); Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]).

[Scheme 1]

Experimental

Crystal data
  • K3La[H4Mo10Co2O38]·13H2O

  • Mr = 2179.71

  • Monoclinic, P 21

  • a = 10.4487 (6) Å

  • b = 18.598 (1) Å

  • c = 12.3179 (8) Å

  • β = 112.957 (4)°

  • V = 2204.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.83 mm−1

  • T = 298 K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Stoe STADI-4 diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1996[Stoe & Cie (1996). STADI-4, X-RED and X-SHAPE. Stoe & Cie Gmbh, Darmstadt, Germany.]) Tmin = 0.349, Tmax = 0.527

  • 10417 measured reflections

  • 10104 independent reflections

  • 9949 reflections with I > 2σ(I)

  • Rint = 0.016

  • 3 standard reflections every 60 min intensity decay: 2.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.069

  • S = 1.10

  • 10104 reflections

  • 630 parameters

  • 22 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.37 e Å−3

  • Δρmin = −1.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: 0.001 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7C—H7⋯O30T 0.79 (4) 2.16 (5) 2.891 (6) 152 (8)
O8C—H8⋯O9W 0.85 (4) 2.26 (6) 2.972 (10) 141 (7)
O9C—H9⋯O8Wi 0.82 (4) 2.21 (6) 2.935 (9) 147 (8)
O10C—H10⋯O21T 0.80 (4) 2.27 (6) 2.932 (6) 141 (8)
Symmetry code: (i) x-1, y, z-1.

Data collection: STADI-4 (Stoe & Cie, 1996[Stoe & Cie (1996). STADI-4, X-RED and X-SHAPE. Stoe & Cie Gmbh, Darmstadt, Germany.]); cell refinement: X-RED (Stoe & Cie, 1996[Stoe & Cie (1996). STADI-4, X-RED and X-SHAPE. Stoe & Cie Gmbh, Darmstadt, Germany.]); data reduction: X-RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The ammonium salt of [H4Mo10Co2O38]6- heteropolyoxometalte has been briefly reported as a typical chiral polyoxometalate (POM) (Evans et al. 1969) and the crystal strucure of potassium salt, K6[H4Mo10Co2O38].7H2O was reported in detail by P21/c space group (Nolan et al. 1998). The study of optical resolution of this POM was carrried out by using [Co(en)3]3+ (Ama et al. 1970). One of the enantiomer pair salts was obtained as crystals. But the crystal structral study of this salt was not carried out. Recently, the micro review of chirality in POM chemistry has been reported (Hasenknopf et al. 2008). Somtimes, the lanthanide cation, having a very large oxide affinity and stability at low pH range, is useful in isolating POMs because the lanthanide forms a very stable salt with POMs.

The title compound was obtained as a lantahanide-alkali metal double salt in the monoclinic system in chiral space group P21. Here we report the enantimorphous structure of [H4Mo10Co2O38]6- heteropolyoxometalate. The structure of the [H4Mo10Co2O38]6- POM (Fig. 1) has been discussed in detail (Nolan et al., 1998). The O atoms are classified in the Fig. 1, viz., Ot (O16-O24, O29-O38; terminal MoO atom), Ob (O11-O14, O25-O28; O bridged µ2-O atom), Oc (O7-O10; µ3-O atom of a Co and two Mo atoms), Od (O1, O2, O5, O6; µ4-O atom of a Co and three Mo atoms), and Oq (O3, O4; µ4-O atom of two Co and two Mo atoms). Fig. 2 shows the two enantiomers.

The four protonated O atoms, Oc(H) in the POM, were identified (Nolan et al., 1998) by calculation of bond-valence sums (BVS; Brown & Altermatt, 1985; Brese & O'Keeffe, 1991). The positions of four non-acidic H atoms on Oc atoms were found on difference Fourier map in this report. These H atoms formed hydrogen bond intramoleculely and with water molecules (Table. 1). All the water molecules formed hydrogen bonds with O atoms in the polyanions, and there are also Ow–H···Ow hydrogen-bond interactions except zeolitic O13w molecule. K+ ions are coordinated by eight O atoms, viz. [K1(Ot)7(Ow)]+, [K2(Ot)3(Ow)4]+, and [K3(Ot)3(Ob)2(Ow)3]+ in the range 2.69 (1)-3.276 (6) Å. La3+ ion is coordinated by nine O atoms, viz. [La(Ot)3(Ow)6]3+ in the range 2.516 (5)-2.589 (5) Å.

Related literature top

For the crystal structures of [H4Mo10Co2O38]6-, see: Evans & Showell (1969); Nolan et al. (1998). For the optical resolution, see: Ama et al. (1970). For a review of chirality in POM chemistry, see: Hasenknopf et al. (2008). For bond-valence sum calculations, see: Brown & Altermatt (1985); Brese & O'Keeffe (1991).

Experimental top

Crystals of the title compound were obtained from the aqueous solution of La(NO3)3.6H2O and K6[H4Co2Mo10O38].7H2O (Nolan et al., 1998) at pH 2.5.

Refinement top

Four H atoms of [H4Co2Mo10O38]6- were positioned in a difference Fourier map and their positional parameters refined with a distance restraint [O–H = 0.85 (5) Å] and these H atoms were refined with an isotropic displacement parameter Uiso = 1.2Ueq(O). The all H atoms of the water molecules were refined with an isotropic displacement parameter Uiso = 1.5Ueq(O). The water H atoms in the O1w and O12w were positioned in a difference Fourier map and their positional parameters refined with a distances restraint [O–H = 0.85 (5) Å]. The water H atoms in the O5w were placed in calculated positions. They were included in the refinement of the riding-motion approximation. The water H atoms in the O2w, O3w, O4w, O8w and O11w were geometrically positioned and refined using a riding model, with O–H = 0.96 Å. The H atoms of the other water molecules were placed in a difference Fourier map and their positional parameters refined with a distances restraint [O–H = 0.85 (5) Å]. The reasonable positions of H atoms in O13w molecule could not be obtained by difference Fourier map and riding model because of zeolitic water molecule. The reported Flack parameter [0.001 (10)] was obtained by a TWIN/BASF procedure.

Structure description top

The ammonium salt of [H4Mo10Co2O38]6- heteropolyoxometalte has been briefly reported as a typical chiral polyoxometalate (POM) (Evans et al. 1969) and the crystal strucure of potassium salt, K6[H4Mo10Co2O38].7H2O was reported in detail by P21/c space group (Nolan et al. 1998). The study of optical resolution of this POM was carrried out by using [Co(en)3]3+ (Ama et al. 1970). One of the enantiomer pair salts was obtained as crystals. But the crystal structral study of this salt was not carried out. Recently, the micro review of chirality in POM chemistry has been reported (Hasenknopf et al. 2008). Somtimes, the lanthanide cation, having a very large oxide affinity and stability at low pH range, is useful in isolating POMs because the lanthanide forms a very stable salt with POMs.

The title compound was obtained as a lantahanide-alkali metal double salt in the monoclinic system in chiral space group P21. Here we report the enantimorphous structure of [H4Mo10Co2O38]6- heteropolyoxometalate. The structure of the [H4Mo10Co2O38]6- POM (Fig. 1) has been discussed in detail (Nolan et al., 1998). The O atoms are classified in the Fig. 1, viz., Ot (O16-O24, O29-O38; terminal MoO atom), Ob (O11-O14, O25-O28; O bridged µ2-O atom), Oc (O7-O10; µ3-O atom of a Co and two Mo atoms), Od (O1, O2, O5, O6; µ4-O atom of a Co and three Mo atoms), and Oq (O3, O4; µ4-O atom of two Co and two Mo atoms). Fig. 2 shows the two enantiomers.

The four protonated O atoms, Oc(H) in the POM, were identified (Nolan et al., 1998) by calculation of bond-valence sums (BVS; Brown & Altermatt, 1985; Brese & O'Keeffe, 1991). The positions of four non-acidic H atoms on Oc atoms were found on difference Fourier map in this report. These H atoms formed hydrogen bond intramoleculely and with water molecules (Table. 1). All the water molecules formed hydrogen bonds with O atoms in the polyanions, and there are also Ow–H···Ow hydrogen-bond interactions except zeolitic O13w molecule. K+ ions are coordinated by eight O atoms, viz. [K1(Ot)7(Ow)]+, [K2(Ot)3(Ow)4]+, and [K3(Ot)3(Ob)2(Ow)3]+ in the range 2.69 (1)-3.276 (6) Å. La3+ ion is coordinated by nine O atoms, viz. [La(Ot)3(Ow)6]3+ in the range 2.516 (5)-2.589 (5) Å.

For the crystal structures of [H4Mo10Co2O38]6-, see: Evans & Showell (1969); Nolan et al. (1998). For the optical resolution, see: Ama et al. (1970). For a review of chirality in POM chemistry, see: Hasenknopf et al. (2008). For bond-valence sum calculations, see: Brown & Altermatt (1985); Brese & O'Keeffe (1991).

Computing details top

Data collection: STADI-4 (Stoe & Cie, 1996); cell refinement: X-RED (Stoe & Cie, 1996); data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the [H4Mo10Co2O38]6- POM with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The two enantiomers of the La[Mo10Co2O38]7- POM. The structure described here is (A).
Monolanthanum tripotassium tetrahydrogen decamolybdodicobaltate(III) tridecahydrate top
Crystal data top
LaK3[H4Mo10Co2O38]·13H2OF(000) = 2052
Mr = 2179.71Dx = 3.284 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ybCell parameters from 28 reflections
a = 10.4487 (6) Åθ = 19.0–20.9°
b = 18.598 (1) ŵ = 4.83 mm1
c = 12.3179 (8) ÅT = 298 K
β = 112.957 (4)°Polyhedron, blue
V = 2204.1 (2) Å30.28 × 0.24 × 0.20 mm
Z = 2
Data collection top
Stoe STADI-4
diffractometer
9949 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
ω/2θ scansh = 1313
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1996)
k = 2424
Tmin = 0.349, Tmax = 0.527l = 1515
10417 measured reflections3 standard reflections every 60 min
10104 independent reflections intensity decay: 2.3%
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0432P)2 + 5.9397P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max < 0.001
S = 1.10Δρmax = 1.37 e Å3
10104 reflectionsΔρmin = 1.27 e Å3
630 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
22 restraintsExtinction coefficient: 0.00255 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.001 (10)
Crystal data top
LaK3[H4Mo10Co2O38]·13H2OV = 2204.1 (2) Å3
Mr = 2179.71Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.4487 (6) ŵ = 4.83 mm1
b = 18.598 (1) ÅT = 298 K
c = 12.3179 (8) Å0.28 × 0.24 × 0.20 mm
β = 112.957 (4)°
Data collection top
Stoe STADI-4
diffractometer
9949 reflections with I > 2σ(I)
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1996)
Rint = 0.016
Tmin = 0.349, Tmax = 0.5273 standard reflections every 60 min
10417 measured reflections intensity decay: 2.3%
10104 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069Δρmax = 1.37 e Å3
S = 1.10Δρmin = 1.27 e Å3
10104 reflectionsAbsolute structure: Flack (1983)
630 parametersAbsolute structure parameter: 0.001 (10)
22 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La0.44544 (3)0.446924 (17)0.14123 (3)0.01703 (7)
Mo10.35787 (6)0.30183 (3)0.62418 (4)0.02049 (11)
Mo20.09792 (5)0.18531 (3)0.54287 (4)0.01769 (10)
Mo30.02214 (5)0.11683 (3)0.27366 (4)0.01671 (10)
Mo40.42999 (5)0.23358 (2)0.20358 (4)0.01407 (9)
Mo50.51945 (5)0.32853 (3)0.44537 (4)0.01653 (10)
Mo60.13311 (5)0.32304 (2)0.16909 (4)0.01389 (9)
Mo70.05653 (5)0.25070 (3)0.09176 (4)0.01733 (10)
Mo80.06410 (5)0.07332 (3)0.11493 (4)0.01639 (10)
Mo90.18216 (5)0.02480 (3)0.12967 (4)0.01894 (10)
Mo100.30682 (5)0.05651 (2)0.38835 (4)0.01552 (9)
Co10.25776 (8)0.21760 (4)0.36757 (6)0.01310 (14)
Co20.16831 (8)0.15142 (4)0.14734 (6)0.01251 (14)
K10.0300 (2)0.11545 (10)0.3699 (2)0.0461 (4)
K20.6309 (3)0.28591 (13)0.9870 (2)0.0595 (6)
K30.6994 (3)0.11419 (19)0.4003 (3)0.0811 (8)
O1D0.1934 (4)0.1345 (2)0.4209 (3)0.0144 (7)
O2D0.3143 (4)0.2948 (2)0.2990 (3)0.0152 (8)
O3Q0.3316 (4)0.1562 (2)0.2853 (4)0.0165 (8)
O4Q0.0974 (4)0.2140 (2)0.2295 (3)0.0148 (7)
O5D0.1119 (4)0.0722 (2)0.2175 (3)0.0153 (7)
O6D0.2314 (4)0.2341 (2)0.0927 (3)0.0146 (7)
O7C0.1753 (4)0.2738 (2)0.4538 (3)0.0154 (7)
H70.130 (7)0.305 (4)0.412 (6)0.023*
O8C0.4303 (4)0.2347 (2)0.5049 (3)0.0168 (8)
H80.487 (7)0.201 (3)0.512 (7)0.025*
O9C0.0078 (4)0.1540 (2)0.0016 (4)0.0177 (8)
H90.073 (5)0.159 (5)0.007 (7)0.027*
O10C0.2394 (4)0.0811 (2)0.0682 (4)0.0164 (8)
H100.312 (6)0.091 (4)0.066 (7)0.025*
O11B0.2833 (5)0.2093 (3)0.6447 (4)0.0247 (9)
O12B0.0505 (4)0.1808 (2)0.3825 (4)0.0202 (8)
O13B0.5637 (4)0.2485 (2)0.3574 (4)0.0177 (8)
O14B0.4073 (5)0.3666 (2)0.5211 (4)0.0217 (8)
O15T0.5119 (5)0.2980 (3)0.7427 (4)0.0347 (11)
O16T0.2563 (6)0.3602 (3)0.6628 (5)0.0337 (11)
O17T0.0054 (6)0.2421 (3)0.5929 (4)0.0316 (11)
O18T0.0785 (6)0.1022 (3)0.5926 (5)0.0320 (11)
O19T0.0674 (6)0.0388 (3)0.3207 (5)0.0333 (11)
O20T0.1582 (5)0.1366 (3)0.1435 (4)0.0292 (10)
O21T0.4985 (5)0.1640 (3)0.1549 (4)0.0256 (9)
O22T0.4651 (4)0.3102 (2)0.1398 (4)0.0202 (8)
O23T0.5226 (5)0.3973 (2)0.3514 (4)0.0246 (9)
O24T0.6782 (5)0.3278 (3)0.5558 (4)0.0291 (10)
O25B0.0026 (4)0.3003 (2)0.0225 (4)0.0191 (8)
O26B0.1374 (4)0.1659 (2)0.1320 (4)0.0205 (8)
O27B0.0277 (4)0.0062 (2)0.0117 (4)0.0203 (8)
O28B0.3425 (5)0.0027 (2)0.2733 (4)0.0215 (9)
O29T0.2215 (4)0.3920 (2)0.1336 (4)0.0223 (9)
O30T0.0460 (5)0.3621 (2)0.2463 (4)0.0228 (9)
O31T0.1538 (5)0.3148 (2)0.1229 (4)0.0260 (9)
O32T0.1007 (5)0.2530 (3)0.2044 (4)0.0298 (10)
O33T0.0996 (5)0.0761 (3)0.2239 (4)0.0278 (10)
O34T0.1615 (5)0.0218 (3)0.1690 (4)0.0258 (9)
O35T0.2728 (6)0.0787 (3)0.0729 (5)0.0336 (11)
O36T0.0954 (6)0.0806 (3)0.1858 (5)0.0334 (11)
O37T0.4685 (5)0.0749 (3)0.4933 (4)0.0279 (10)
O38T0.2395 (5)0.0078 (3)0.4493 (4)0.0264 (9)
O1W0.3980 (6)0.3956 (3)0.0655 (4)0.0354 (12)
H1A0.429 (11)0.419 (5)0.117 (8)0.053*
H1B0.327 (9)0.373 (5)0.060 (9)0.053*
O2W0.5027 (5)0.5444 (3)0.0224 (4)0.0336 (11)
H2A0.53420.59390.04740.050*
H2B0.45430.53480.06030.050*
O3W0.6426 (6)0.5253 (3)0.2868 (5)0.0436 (14)
H3A0.71890.49490.33270.065*
H3B0.67340.55930.24350.065*
O4W0.2314 (5)0.5129 (3)0.0086 (5)0.0403 (13)
H4A0.25810.55350.02600.060*
H4B0.18040.52930.05400.060*
O5W0.6810 (5)0.3994 (3)0.1512 (5)0.0337 (11)
H5A0.73590.38220.23010.051*
H5B0.73210.43760.13250.051*
O6W0.3676 (6)0.5322 (4)0.2677 (5)0.0470 (16)
H6A0.41850.55050.32360.071*
H6B0.29060.53180.25510.071*
O7W0.0072 (8)0.0501 (4)0.5720 (7)0.067 (2)
H7A0.02140.04560.65230.101*
H7B0.06000.01880.56800.101*
O8W0.7068 (8)0.1744 (5)0.8755 (8)0.069 (2)
H8A0.75370.19370.82880.104*
H8B0.62510.14890.82550.104*
O9W0.7144 (9)0.1721 (4)0.6059 (9)0.115 (5)
H9A0.72670.22180.61690.172*
H9B0.76250.15030.66390.172*
O10W0.7381 (9)0.0065 (4)0.5288 (12)0.110 (5)
H10A0.81660.00320.54390.165*
H10B0.71270.00260.57590.165*
O11W0.4099 (6)0.1777 (3)0.8878 (5)0.0381 (12)
H11A0.33060.19150.90410.057*
H11C0.38380.17480.80410.057*
O12W0.5854 (7)0.0010 (4)0.2258 (6)0.0480 (15)
H12A0.515 (7)0.010 (7)0.246 (10)0.072*
H12B0.650 (8)0.027 (6)0.290 (8)0.072*
O13W0.8073 (8)0.3096 (4)0.3319 (9)0.077 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La0.01867 (15)0.01501 (14)0.01674 (15)0.00193 (12)0.00619 (11)0.00159 (11)
Mo10.0262 (3)0.0214 (2)0.0125 (2)0.00452 (19)0.00618 (19)0.00344 (18)
Mo20.0230 (2)0.0174 (2)0.0143 (2)0.00067 (18)0.00903 (18)0.00012 (17)
Mo30.0166 (2)0.0177 (2)0.0167 (2)0.00258 (17)0.00736 (18)0.00267 (17)
Mo40.0144 (2)0.0130 (2)0.0148 (2)0.00060 (16)0.00567 (16)0.00003 (16)
Mo50.0182 (2)0.0155 (2)0.0132 (2)0.00354 (17)0.00326 (17)0.00012 (17)
Mo60.0151 (2)0.0118 (2)0.0142 (2)0.00074 (16)0.00515 (16)0.00089 (16)
Mo70.0207 (2)0.0162 (2)0.0136 (2)0.00059 (17)0.00507 (17)0.00143 (17)
Mo80.0162 (2)0.0170 (2)0.0149 (2)0.00093 (17)0.00489 (17)0.00296 (17)
Mo90.0241 (2)0.0126 (2)0.0193 (2)0.00084 (18)0.00764 (19)0.00130 (17)
Mo100.0178 (2)0.0132 (2)0.0144 (2)0.00079 (17)0.00502 (16)0.00198 (16)
Co10.0160 (3)0.0119 (3)0.0106 (3)0.0016 (3)0.0043 (3)0.0003 (2)
Co20.0148 (3)0.0104 (3)0.0115 (3)0.0005 (2)0.0043 (3)0.0003 (2)
K10.0452 (10)0.0339 (9)0.0664 (12)0.0074 (7)0.0297 (9)0.0064 (8)
K20.0837 (16)0.0500 (12)0.0427 (11)0.0020 (11)0.0224 (11)0.0147 (9)
K30.0781 (18)0.0793 (19)0.087 (2)0.0011 (15)0.0335 (16)0.0015 (16)
O1D0.022 (2)0.0108 (17)0.0138 (17)0.0020 (14)0.0103 (15)0.0014 (14)
O2D0.0138 (18)0.0146 (18)0.0137 (18)0.0019 (14)0.0015 (15)0.0010 (14)
O3Q0.021 (2)0.0143 (18)0.0153 (18)0.0000 (15)0.0076 (16)0.0013 (14)
O4Q0.0154 (18)0.0138 (18)0.0129 (17)0.0014 (14)0.0033 (14)0.0004 (14)
O5D0.0175 (18)0.0121 (18)0.0160 (18)0.0011 (14)0.0063 (15)0.0002 (14)
O6D0.0160 (17)0.0128 (17)0.0127 (17)0.0025 (15)0.0031 (14)0.0015 (14)
O7C0.021 (2)0.0117 (17)0.0128 (18)0.0010 (15)0.0053 (15)0.0004 (14)
O8C0.0208 (19)0.0126 (18)0.0155 (18)0.0023 (15)0.0053 (15)0.0035 (14)
O9C0.0156 (18)0.019 (2)0.0180 (19)0.0010 (16)0.0059 (16)0.0024 (15)
O10C0.0157 (18)0.0152 (18)0.0175 (19)0.0008 (15)0.0056 (15)0.0008 (15)
O11B0.027 (2)0.027 (2)0.019 (2)0.0025 (18)0.0072 (18)0.0035 (17)
O12B0.021 (2)0.021 (2)0.019 (2)0.0033 (16)0.0083 (16)0.0012 (16)
O13B0.0154 (18)0.018 (2)0.0174 (19)0.0010 (15)0.0043 (15)0.0003 (15)
O14B0.033 (2)0.0134 (18)0.022 (2)0.0033 (17)0.0131 (18)0.0028 (16)
O15T0.036 (3)0.043 (3)0.020 (2)0.010 (2)0.006 (2)0.006 (2)
O16T0.042 (3)0.033 (3)0.031 (2)0.001 (2)0.020 (2)0.006 (2)
O17T0.043 (3)0.029 (3)0.029 (2)0.005 (2)0.020 (2)0.005 (2)
O18T0.041 (3)0.027 (2)0.031 (2)0.005 (2)0.017 (2)0.004 (2)
O19T0.040 (3)0.025 (2)0.041 (3)0.004 (2)0.022 (2)0.001 (2)
O20T0.019 (2)0.039 (3)0.026 (2)0.0009 (18)0.0043 (18)0.005 (2)
O21T0.029 (2)0.021 (2)0.029 (2)0.0005 (18)0.0133 (19)0.0043 (17)
O22T0.022 (2)0.020 (2)0.021 (2)0.0010 (16)0.0103 (17)0.0050 (16)
O23T0.028 (2)0.021 (2)0.021 (2)0.0080 (18)0.0054 (18)0.0030 (17)
O24T0.027 (2)0.026 (2)0.027 (2)0.0026 (19)0.0034 (19)0.0036 (19)
O25B0.0191 (19)0.0190 (19)0.0174 (19)0.0049 (16)0.0052 (16)0.0001 (16)
O26B0.023 (2)0.022 (2)0.019 (2)0.0008 (17)0.0111 (17)0.0024 (16)
O27B0.020 (2)0.020 (2)0.020 (2)0.0043 (16)0.0071 (16)0.0037 (16)
O28B0.022 (2)0.018 (2)0.021 (2)0.0026 (16)0.0056 (17)0.0000 (16)
O29T0.020 (2)0.020 (2)0.024 (2)0.0011 (16)0.0055 (17)0.0069 (17)
O30T0.029 (2)0.018 (2)0.023 (2)0.0017 (17)0.0121 (18)0.0042 (17)
O31T0.031 (2)0.020 (2)0.030 (2)0.0030 (18)0.0149 (19)0.0047 (18)
O32T0.030 (2)0.030 (2)0.021 (2)0.005 (2)0.0013 (18)0.0008 (19)
O33T0.025 (2)0.030 (2)0.025 (2)0.0004 (19)0.0060 (18)0.0020 (19)
O34T0.033 (2)0.023 (2)0.025 (2)0.0072 (19)0.0155 (19)0.0044 (18)
O35T0.043 (3)0.027 (2)0.031 (3)0.009 (2)0.016 (2)0.005 (2)
O36T0.043 (3)0.022 (2)0.033 (3)0.007 (2)0.013 (2)0.000 (2)
O37T0.026 (2)0.030 (2)0.022 (2)0.0021 (19)0.0039 (18)0.0057 (18)
O38T0.033 (2)0.020 (2)0.028 (2)0.0039 (18)0.014 (2)0.0063 (18)
O1W0.049 (3)0.036 (3)0.020 (2)0.013 (2)0.012 (2)0.003 (2)
O2W0.033 (3)0.035 (3)0.029 (2)0.011 (2)0.008 (2)0.006 (2)
O3W0.042 (3)0.053 (4)0.034 (3)0.025 (3)0.014 (2)0.016 (3)
O4W0.024 (2)0.046 (3)0.047 (3)0.006 (2)0.010 (2)0.027 (3)
O5W0.030 (2)0.033 (3)0.042 (3)0.008 (2)0.017 (2)0.003 (2)
O6W0.028 (3)0.061 (4)0.042 (3)0.008 (3)0.003 (2)0.025 (3)
O7W0.080 (5)0.054 (4)0.056 (4)0.028 (4)0.013 (4)0.006 (4)
O8W0.062 (5)0.072 (5)0.089 (6)0.009 (4)0.045 (4)0.015 (5)
O9W0.086 (6)0.044 (4)0.118 (8)0.021 (4)0.064 (6)0.034 (5)
O10W0.055 (5)0.031 (4)0.231 (14)0.005 (3)0.040 (7)0.025 (6)
O11W0.040 (3)0.046 (3)0.033 (3)0.009 (2)0.019 (2)0.012 (2)
O12W0.038 (3)0.052 (4)0.054 (4)0.001 (3)0.018 (3)0.015 (3)
O13W0.050 (4)0.061 (5)0.128 (7)0.027 (4)0.045 (5)0.050 (5)
Geometric parameters (Å, º) top
Mo1—Mo53.2938 (7)Mo6—O30T1.714 (4)
Mo1—Mo23.3098 (7)Mo6—O29T1.734 (4)
Mo1—Co13.3106 (9)Mo6—O25B1.858 (4)
Mo2—Co13.2599 (9)Mo6—O2D2.014 (4)
Mo2—Mo33.3086 (7)Mo6—O4Q2.240 (4)
Mo3—Co23.0348 (9)Mo6—O6D2.330 (4)
Mo3—Co13.2809 (9)Mo7—O32T1.688 (5)
Mo3—Mo103.3586 (7)Mo7—O31T1.705 (4)
Mo3—Mo94.1946 (7)Mo7—O26B1.943 (4)
Mo4—O21T1.697 (5)Mo7—O25B1.973 (4)
Mo4—O22T1.734 (4)Mo7—O9C2.273 (4)
Mo4—O13B1.885 (4)Mo7—O6D2.314 (4)
Mo4—O6D1.991 (4)Mo8—O34T1.710 (4)
Mo4—O3Q2.224 (4)Mo8—O33T1.714 (5)
Mo4—O2D2.290 (4)Mo8—O27B1.922 (4)
Mo4—Co22.9687 (9)Mo8—O26B1.928 (4)
Mo4—Co13.2004 (9)Mo8—O9C2.278 (4)
Mo4—Mo63.3975 (7)Mo8—O10C2.290 (4)
Mo5—Co13.2569 (9)Mo9—O36T1.693 (5)
Mo5—Mo64.1438 (7)Mo9—O35T1.705 (5)
Mo5—Co25.2232 (9)Mo9—O27B1.944 (4)
Mo6—Co13.0057 (8)Mo9—O28B1.972 (4)
Mo6—Co23.2359 (9)Mo9—O10C2.271 (4)
Mo6—Mo73.2816 (7)Mo9—O5D2.363 (4)
Mo7—Co23.2810 (9)Mo10—O38T1.704 (5)
Mo8—Co23.3148 (8)Mo10—O37T1.714 (5)
Mo8—Mo93.3213 (7)Mo10—O28B1.887 (4)
Mo9—Co23.2915 (9)Mo10—O1D2.009 (4)
Mo9—Mo103.3014 (7)Mo10—O5D2.306 (4)
Mo10—Co13.0334 (9)Mo10—O3Q2.318 (4)
Mo10—Co23.2667 (9)Co1—O4Q1.866 (4)
Co1—Co22.7874 (10)Co1—O2D1.874 (4)
La—O4W2.516 (5)Co1—O3Q1.880 (4)
La—O29T2.521 (4)Co1—O1D1.902 (4)
La—O2W2.543 (5)Co1—O7C1.918 (4)
La—O22T2.552 (4)Co1—O8C1.958 (4)
La—O23T2.564 (5)Co2—O4Q1.874 (4)
La—O6W2.567 (5)Co2—O3Q1.883 (4)
La—O5W2.572 (5)Co2—O6D1.897 (4)
La—O1W2.579 (5)Co2—O5D1.913 (4)
La—O3W2.589 (5)Co2—O10C1.944 (4)
Mo1—O15T1.702 (5)Co2—O9C1.944 (4)
Mo1—O16T1.711 (5)K1—O36T2.690 (6)
Mo1—O11B1.946 (5)K1—O17Ti2.739 (5)
Mo1—O14B1.960 (4)K1—O38T2.843 (5)
Mo1—O8C2.271 (4)K1—O7W2.863 (9)
Mo1—O7C2.279 (4)K1—O16Ti2.894 (6)
Mo2—O17T1.701 (5)K1—O24Tii3.011 (5)
Mo2—O18T1.704 (5)K1—O19T3.025 (6)
Mo2—O11B1.905 (5)K1—O31Tiii3.174 (5)
Mo2—O12B1.981 (4)K2—O8W2.770 (9)
Mo2—O7C2.293 (4)K2—O15T2.781 (5)
Mo2—O1D2.306 (4)K2—O5Wiv2.827 (6)
Mo3—O19T1.697 (5)K2—O35Tv2.912 (5)
Mo3—O20T1.717 (5)K2—O11W2.945 (7)
Mo3—O12B1.900 (4)K2—O1Wiv3.046 (7)
Mo3—O5D1.971 (4)K2—O22Tiv3.048 (5)
Mo3—O1D2.299 (4)K3—O10W2.685 (12)
Mo3—O4Q2.378 (4)K3—O9W2.700 (13)
Mo5—O24T1.686 (5)K3—O13B2.819 (5)
Mo5—O23T1.734 (5)K3—O12W2.939 (7)
Mo5—O14B1.898 (4)K3—O12Bvi2.977 (5)
Mo5—O13B1.998 (4)K3—O21T3.075 (6)
Mo5—O8C2.232 (4)K3—O37T3.134 (6)
Mo5—O2D2.286 (4)K3—O19Tvi3.276 (6)
Co2—Mo3—Mo951.149 (17)O34T—Mo8—O26B97.8 (2)
Co1—Mo3—Mo988.689 (18)O33T—Mo8—O26B101.8 (2)
Mo2—Mo3—Mo9127.515 (17)O27B—Mo8—O26B147.24 (18)
Mo10—Mo3—Mo950.358 (13)O34T—Mo8—O9C160.5 (2)
Co2—Mo4—Mo660.658 (18)O33T—Mo8—O9C92.4 (2)
Co1—Mo4—Mo654.102 (17)O27B—Mo8—O9C81.79 (17)
Co1—Mo5—Mo646.018 (15)O26B—Mo8—O9C71.78 (17)
Mo1—Mo5—Mo687.491 (16)O34T—Mo8—O10C92.88 (19)
Co1—Mo6—Mo7113.07 (2)O33T—Mo8—O10C160.05 (19)
Co2—Mo6—Mo760.447 (17)O27B—Mo8—O10C71.20 (16)
Co1—Mo6—Mo551.231 (17)O26B—Mo8—O10C81.51 (16)
Co2—Mo6—Mo589.230 (18)O9C—Mo8—O10C69.71 (15)
Mo7—Mo6—Mo5126.989 (17)O36T—Mo9—O35T106.2 (3)
Mo4—Mo6—Mo550.202 (12)O36T—Mo9—O27B99.1 (2)
Co2—Mo8—Mo959.471 (17)O35T—Mo9—O27B101.9 (2)
Co2—Mo9—Mo860.167 (17)O36T—Mo9—O28B101.3 (2)
Mo10—Mo9—Mo8119.405 (19)O35T—Mo9—O28B96.2 (2)
Co2—Mo9—Mo345.892 (16)O27B—Mo9—O28B147.68 (18)
Mo10—Mo9—Mo351.573 (13)O36T—Mo9—O10C156.9 (2)
Mo8—Mo9—Mo388.185 (16)O35T—Mo9—O10C96.4 (2)
Co1—Mo10—Mo361.518 (18)O27B—Mo9—O10C71.25 (16)
Co2—Mo10—Mo354.502 (17)O28B—Mo9—O10C80.34 (17)
Mo9—Mo10—Mo378.068 (16)O36T—Mo9—O5D88.2 (2)
Mo6—Co1—Mo10135.92 (3)O35T—Mo9—O5D163.3 (2)
Co2—Co1—Mo5119.37 (3)O27B—Mo9—O5D83.44 (16)
Mo6—Co1—Mo582.75 (2)O28B—Mo9—O5D72.42 (16)
Mo10—Co1—Mo5120.40 (3)O10C—Mo9—O5D70.10 (14)
Mo4—Co1—Mo560.838 (18)O38T—Mo10—O37T105.2 (2)
Co2—Co1—Mo2119.96 (3)O38T—Mo10—O28B101.3 (2)
Mo6—Co1—Mo2119.18 (3)O37T—Mo10—O28B104.3 (2)
Mo10—Co1—Mo282.85 (2)O38T—Mo10—O1D92.40 (19)
Mo4—Co1—Mo2174.10 (3)O37T—Mo10—O1D101.0 (2)
Mo5—Co1—Mo2120.67 (2)O28B—Mo10—O1D146.84 (17)
Co1—Co2—Mo368.45 (2)O38T—Mo10—O5D97.01 (19)
Mo4—Co2—Mo3135.88 (3)O37T—Mo10—O5D157.32 (19)
Co1—Co2—Mo659.31 (2)O28B—Mo10—O5D75.21 (16)
Mo4—Co2—Mo666.238 (19)O1D—Mo10—O5D73.20 (15)
Mo3—Co2—Mo692.76 (2)O38T—Mo10—O3Q163.06 (19)
Co1—Co2—Mo1059.51 (2)O37T—Mo10—O3Q88.05 (19)
Mo4—Co2—Mo1091.42 (2)O28B—Mo10—O3Q85.20 (17)
Mo3—Co2—Mo1064.292 (19)O1D—Mo10—O3Q74.46 (15)
Mo6—Co2—Mo10118.82 (2)O5D—Mo10—O3Q69.28 (14)
Co1—Co2—Mo7119.47 (3)O4Q—Co1—O2D86.85 (17)
Mo4—Co2—Mo783.84 (2)O4Q—Co1—O3Q84.16 (17)
Mo3—Co2—Mo7120.30 (3)O2D—Co1—O3Q87.36 (18)
Mo6—Co2—Mo760.465 (17)O4Q—Co1—O1D88.47 (18)
Mo10—Co2—Mo7175.05 (3)O2D—Co1—O1D173.81 (17)
O4W—La—O29T66.17 (15)O3Q—Co1—O1D88.13 (17)
O4W—La—O2W68.13 (17)O4Q—Co1—O7C94.97 (18)
O29T—La—O2W133.65 (15)O2D—Co1—O7C96.95 (17)
O4W—La—O22T122.37 (17)O3Q—Co1—O7C175.56 (18)
O29T—La—O22T70.86 (14)O1D—Co1—O7C87.49 (17)
O2W—La—O22T131.96 (16)O4Q—Co1—O8C171.94 (17)
O4W—La—O23T132.93 (17)O2D—Co1—O8C85.36 (16)
O29T—La—O23T79.26 (14)O3Q—Co1—O8C97.53 (18)
O2W—La—O23T141.80 (15)O1D—Co1—O8C99.44 (17)
O22T—La—O23T69.73 (14)O7C—Co1—O8C83.94 (17)
O4W—La—O6W71.4 (2)O4Q—Co2—O3Q83.85 (17)
O29T—La—O6W76.34 (18)O4Q—Co2—O6D87.29 (17)
O2W—La—O6W96.3 (2)O3Q—Co2—O6D87.93 (17)
O22T—La—O6W131.68 (19)O4Q—Co2—O5D88.76 (17)
O23T—La—O6W70.06 (18)O3Q—Co2—O5D87.67 (17)
O4W—La—O5W142.23 (18)O6D—Co2—O5D174.38 (17)
O29T—La—O5W136.00 (15)O4Q—Co2—O10C176.06 (18)
O2W—La—O5W80.62 (17)O3Q—Co2—O10C95.49 (18)
O22T—La—O5W65.16 (15)O6D—Co2—O10C96.57 (17)
O23T—La—O5W84.83 (16)O5D—Co2—O10C87.33 (17)
O6W—La—O5W134.97 (17)O4Q—Co2—O9C96.70 (17)
O4W—La—O1W76.1 (2)O3Q—Co2—O9C174.21 (19)
O29T—La—O1W89.71 (17)O6D—Co2—O9C86.34 (17)
O2W—La—O1W72.13 (18)O5D—Co2—O9C98.10 (18)
O22T—La—O1W67.04 (16)O10C—Co2—O9C84.35 (17)
O23T—La—O1W136.64 (16)O36T—K1—O38T72.89 (15)
O6W—La—O1W147.46 (19)O36T—K1—O7W139.94 (19)
O5W—La—O1W74.47 (19)O38T—K1—O7W73.50 (18)
O4W—La—O3W116.2 (2)O36T—K1—O19T77.21 (16)
O29T—La—O3W136.91 (17)O38T—K1—O19T63.57 (14)
O2W—La—O3W72.26 (18)O7W—K1—O19T68.66 (19)
O22T—La—O3W121.42 (18)O8W—K2—O15T67.5 (2)
O23T—La—O3W69.62 (17)O8W—K2—O11W67.2 (2)
O6W—La—O3W65.58 (19)O15T—K2—O11W70.08 (16)
O5W—La—O3W70.87 (19)O10W—K3—O9W80.8 (3)
O1W—La—O3W133.36 (18)O10W—K3—O13B143.2 (3)
O15T—Mo1—O16T105.6 (3)O9W—K3—O13B70.32 (19)
O15T—Mo1—O11B98.3 (2)O10W—K3—O12W75.3 (3)
O16T—Mo1—O11B101.7 (2)O9W—K3—O12W146.7 (3)
O15T—Mo1—O14B100.4 (2)O13B—K3—O12W118.57 (19)
O16T—Mo1—O14B98.0 (2)O10W—K3—O21T136.0 (3)
O11B—Mo1—O14B148.00 (18)O9W—K3—O21T124.7 (2)
O15T—Mo1—O8C95.2 (2)O13B—K3—O21T56.49 (13)
O16T—Mo1—O8C158.2 (2)O12W—K3—O21T64.78 (18)
O11B—Mo1—O8C81.34 (18)O10W—K3—O37T63.2 (2)
O14B—Mo1—O8C71.38 (16)O9W—K3—O37T61.4 (2)
O15T—Mo1—O7C162.4 (2)O13B—K3—O37T82.69 (15)
O16T—Mo1—O7C90.8 (2)O12W—K3—O37T86.96 (18)
O11B—Mo1—O7C71.57 (17)Co1—O1D—Mo10101.68 (17)
O14B—Mo1—O7C83.18 (16)Co1—O1D—Mo3102.32 (17)
O8C—Mo1—O7C69.45 (14)Mo10—O1D—Mo3102.24 (16)
O17T—Mo2—O18T105.6 (3)Co1—O1D—Mo2101.13 (16)
O17T—Mo2—O11B101.0 (2)Mo10—O1D—Mo2149.8 (2)
O18T—Mo2—O11B102.1 (2)Mo3—O1D—Mo291.87 (14)
O17T—Mo2—O12B93.1 (2)Co1—O2D—Mo6101.18 (17)
O18T—Mo2—O12B99.4 (2)Co1—O2D—Mo5102.60 (16)
O11B—Mo2—O12B149.98 (18)Mo6—O2D—Mo5148.9 (2)
O17T—Mo2—O7C94.8 (2)Co1—O2D—Mo499.97 (17)
O18T—Mo2—O7C159.6 (2)Mo6—O2D—Mo4104.06 (16)
O11B—Mo2—O7C71.90 (17)Mo5—O2D—Mo491.22 (14)
O12B—Mo2—O7C80.67 (16)Co1—O3Q—Co295.60 (18)
O17T—Mo2—O1D160.4 (2)Co1—O3Q—Mo4102.17 (18)
O18T—Mo2—O1D90.3 (2)Co2—O3Q—Mo492.20 (16)
O11B—Mo2—O1D86.44 (18)Co1—O3Q—Mo1091.93 (16)
O12B—Mo2—O1D72.67 (16)Co2—O3Q—Mo10101.58 (18)
O7C—Mo2—O1D70.10 (14)Mo4—O3Q—Mo10159.3 (2)
O19T—Mo3—O20T105.2 (3)Co1—O4Q—Co296.37 (18)
O19T—Mo3—O12B98.9 (2)Co1—O4Q—Mo693.67 (16)
O20T—Mo3—O12B103.0 (2)Co2—O4Q—Mo6103.37 (18)
O19T—Mo3—O5D95.2 (2)Co1—O4Q—Mo3100.57 (17)
O20T—Mo3—O5D101.8 (2)Co2—O4Q—Mo390.27 (15)
O12B—Mo3—O5D147.02 (18)Mo6—O4Q—Mo3159.10 (19)
O19T—Mo3—O1D99.8 (2)Co2—O5D—Mo3102.77 (18)
O20T—Mo3—O1D154.9 (2)Co2—O5D—Mo10101.07 (17)
O12B—Mo3—O1D74.24 (16)Mo3—O5D—Mo10103.20 (17)
O5D—Mo3—O1D74.05 (15)Co2—O5D—Mo9100.13 (17)
O19T—Mo3—O4Q165.8 (2)Mo3—O5D—Mo9150.7 (2)
O20T—Mo3—O4Q86.6 (2)Mo10—O5D—Mo989.97 (14)
O12B—Mo3—O4Q85.74 (16)Co2—O6D—Mo499.54 (17)
O5D—Mo3—O4Q74.38 (15)Co2—O6D—Mo7101.89 (16)
O1D—Mo3—O4Q68.36 (13)Mo4—O6D—Mo7152.5 (2)
O21T—Mo4—O22T105.9 (2)Co2—O6D—Mo699.41 (17)
O21T—Mo4—O13B102.6 (2)Mo4—O6D—Mo6103.42 (16)
O22T—Mo4—O13B97.43 (19)Mo7—O6D—Mo689.92 (14)
O21T—Mo4—O6D103.4 (2)Co1—O7C—Mo1103.82 (18)
O22T—Mo4—O6D91.90 (18)Co1—O7C—Mo2101.06 (17)
O13B—Mo4—O6D148.71 (17)Mo1—O7C—Mo292.75 (14)
O21T—Mo4—O3Q90.01 (19)Co1—O7C—H7109 (6)
O22T—Mo4—O3Q162.41 (17)Mo1—O7C—H7120 (6)
O13B—Mo4—O3Q86.14 (16)Mo2—O7C—H7126 (6)
O6D—Mo4—O3Q76.79 (15)Co1—O8C—Mo5101.83 (17)
O21T—Mo4—O2D160.03 (19)Co1—O8C—Mo1102.79 (18)
O22T—Mo4—O2D94.07 (17)Mo5—O8C—Mo194.00 (15)
O13B—Mo4—O2D75.14 (16)Co1—O8C—H8110 (6)
O6D—Mo4—O2D74.45 (15)Mo5—O8C—H8105 (6)
O3Q—Mo4—O2D70.10 (15)Mo1—O8C—H8137 (6)
O24T—Mo5—O23T106.0 (2)Co2—O9C—Mo7101.86 (18)
O24T—Mo5—O14B102.0 (2)Co2—O9C—Mo8103.17 (18)
O23T—Mo5—O14B103.2 (2)Mo7—O9C—Mo893.49 (16)
O24T—Mo5—O13B94.0 (2)Co2—O9C—H9124 (6)
O23T—Mo5—O13B96.80 (19)Mo7—O9C—H9107 (6)
O14B—Mo5—O13B149.63 (17)Mo8—O9C—H9121 (6)
O24T—Mo5—O8C97.73 (19)Co2—O10C—Mo9102.40 (18)
O23T—Mo5—O8C156.16 (18)Co2—O10C—Mo8102.77 (17)
O14B—Mo5—O8C73.36 (16)Mo9—O10C—Mo893.47 (15)
O13B—Mo5—O8C79.06 (16)Co2—O10C—H10114 (6)
O24T—Mo5—O2D163.6 (2)Mo9—O10C—H10127 (6)
O23T—Mo5—O2D86.08 (18)Mo8—O10C—H10113 (6)
O14B—Mo5—O2D85.50 (17)Mo2—O11B—Mo1118.5 (2)
O13B—Mo5—O2D73.24 (15)Mo3—O12B—Mo2117.0 (2)
O8C—Mo5—O2D70.21 (14)Mo4—O13B—Mo5114.7 (2)
O32T—Mo7—O31T105.8 (2)Mo5—O14B—Mo1117.2 (2)
O32T—Mo7—O26B101.1 (2)Mo6—O25B—Mo7117.8 (2)
O31T—Mo7—O26B98.9 (2)Mo8—O26B—Mo7117.8 (2)
O32T—Mo7—O25B95.7 (2)Mo8—O27B—Mo9118.4 (2)
O31T—Mo7—O25B102.3 (2)Mo10—O28B—Mo9117.6 (2)
O26B—Mo7—O25B148.24 (17)H1A—O1W—H1B144 (10)
O32T—Mo7—O9C95.2 (2)H2A—O2W—H2B118.6
O31T—Mo7—O9C158.44 (19)H3A—O3W—H3B109.5
O26B—Mo7—O9C71.65 (17)H4A—O4W—H4B109.5
O25B—Mo7—O9C80.17 (17)H5A—O5W—H5B108.4
O32T—Mo7—O6D162.4 (2)H6A—O6W—H6B119.8
O31T—Mo7—O6D90.14 (19)H7A—O7W—H7B99.6
O26B—Mo7—O6D83.51 (17)H8A—O8W—H8B109.5
O25B—Mo7—O6D73.08 (16)H9A—O9W—H9B111.5
O9C—Mo7—O6D69.90 (14)H10A—O10W—H10B117.6
O34T—Mo8—O33T106.0 (2)H11A—O11W—H11C109.5
O34T—Mo8—O27B101.2 (2)H12A—O12W—H12B94 (6)
O33T—Mo8—O27B98.2 (2)
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x, y1/2, z; (iv) x, y, z+1; (v) x+1, y+1/2, z+1; (vi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7C—H7···O30T0.79 (4)2.16 (5)2.891 (6)152 (8)
O8C—H8···O9W0.85 (4)2.26 (6)2.972 (10)141 (7)
O9C—H9···O8Wvii0.82 (4)2.21 (6)2.935 (9)147 (8)
O10C—H10···O21T0.80 (4)2.27 (6)2.932 (6)141 (8)
O1W—H1A···O12Wviii0.92 (7)1.97 (9)2.809 (8)151 (9)
O1W—H1B···O31T0.87 (8)1.99 (8)2.803 (7)154 (10)
O2W—H2A···O11Wv0.991.752.724 (8)171
O2W—H2B···O12Wviii0.962.032.951 (9)161
O3W—H3A···O38Tv0.962.553.055 (8)113
O3W—H3B···O34Tviii0.962.352.936 (7)119
O4W—H4A···O20Tix0.962.102.876 (7)137
O4W—H4B···O27Bix0.962.072.725 (7)124
O5W—H5A···O13W0.971.792.682 (9)151
O5W—H5B···O34Tviii0.971.872.768 (7)153
O6W—H6A···O37Tv0.772.152.880 (7)161
O6W—H6B···O33Tix0.762.052.761 (7)156
O7W—H7A···O30Ti0.942.382.991 (8)122
O7W—H7B···O18T0.822.272.915 (9)136
O8W—H8A···O32Tx0.962.052.950 (9)156
O8W—H8B···O6Wii0.962.473.105 (12)123
O9W—H9A···O24T0.942.102.955 (9)151
O9W—H9A···O32Tx0.942.312.817 (10)113
O9W—H9B···O33Tx0.802.082.861 (9)163
O10W—H10A···O7Wvi0.772.082.771 (12)150
O11W—H11A···O26Biv0.961.952.770 (7)142
O11W—H11C···O11B0.961.942.824 (7)152
O12W—H12A···O28B0.88 (5)1.97 (5)2.819 (8)161 (11)
O12W—H12B···O16Tii0.94 (5)2.30 (9)3.083 (9)140 (10)
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y1/2, z+1; (iv) x, y, z+1; (v) x+1, y+1/2, z+1; (vi) x+1, y, z; (vii) x1, y, z1; (viii) x+1, y+1/2, z; (ix) x, y+1/2, z; (x) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaLaK3[H4Mo10Co2O38]·13H2O
Mr2179.71
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)10.4487 (6), 18.598 (1), 12.3179 (8)
β (°) 112.957 (4)
V3)2204.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)4.83
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerStoe STADI-4
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1996)
Tmin, Tmax0.349, 0.527
No. of measured, independent and
observed [I > 2σ(I)] reflections
10417, 10104, 9949
Rint0.016
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.069, 1.10
No. of reflections10104
No. of parameters630
No. of restraints22
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.37, 1.27
Absolute structureFlack (1983)
Absolute structure parameter0.001 (10)

Computer programs: STADI-4 (Stoe & Cie, 1996), X-RED (Stoe & Cie, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7C—H7···O30T0.79 (4)2.16 (5)2.891 (6)152 (8)
O8C—H8···O9W0.85 (4)2.26 (6)2.972 (10)141 (7)
O9C—H9···O8Wi0.82 (4)2.21 (6)2.935 (9)147 (8)
O10C—H10···O21T0.80 (4)2.27 (6)2.932 (6)141 (8)
Symmetry code: (i) x1, y, z1.
 

Acknowledgements

This work was supported by the Pukyong National University Research Abroad Fund in 2006 (grant No. PS-2006-013).

References

First citationAma, T., Hidaka, J. & Shimura, Y. (1970). Bull. Chem. Soc. Jpn, 43, 2654.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEvans, H. T. Jr & Showell, J. S. (1969). J. Am. Chem. Soc. 91. 6881–6882.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHasenknopf, B., Micone, K., Lacôte, E., Thorimbert, S., Malacria, M. & Thouvenot, R. (2008). Eur. J. Inorg. Chem. pp. 5001–5013.  Web of Science CrossRef Google Scholar
First citationNolan, A. L., Allen, C. C., Burns, R. C., Craig, D. C. & Lawrance, G. A. (1998). Aust. J. Chem. 51. 825–834.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1996). STADI-4, X-RED and X-SHAPE. Stoe & Cie Gmbh, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds