organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Imatinibium dipicrate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 5 December 2009; accepted 5 January 2010; online 20 January 2010)

In the crystal structure of imatinibium dipicrate [systematic name: 1-methyl-4-(4-{4-methyl-3-[4-(3-pyrid­yl)pyrimidin-2-yl­amino]­anilinocarbon­yl}benz­yl)piperazine-1,4-diium dipicrate], C29H33N7O2+·2C6H2N3O7, the imatinibium cation is proton­ated at both of the pyrimidine N atoms. Each of the two picrate anions inter­acts with the diprotonated cation through bifurcated N—H⋯O hydrogen bonds forming R12(6) ring motifs. Also, an R22(24) graph set is formed between the benzamidium –NH– group and the 4-pyridyl N atom inter­acting through N—H⋯N hydrogen-bond inter­actions. Additional weak C—H⋯Cg π-ring and ππ inter­molecular inter­actions are observed which also influence crystal packing.

Related literature

For related structures, see: Bindya et al. (2007[Bindya, S., Wong, W.-T., Ashok, M. A., Yathirajan, H. S. & Rathore, R. S. (2007). Acta Cryst. C63, o546-o548.]); Harrison, Bindya et al. (2007[Harrison, W. T. A., Bindya, S., Ashok, M. A., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3143.]); Harrison, Sreevidya et al. (2007[Harrison, W. T. A., Sreevidya, T. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3871.]); Jasinski et al. (2009a[Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009a). Acta Cryst. E65, o1738-o1739.],b[Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009b). Acta Cryst. E65, o2201-o2202.]); Swamy et al. (2007[Swamy, M. T., Ashok, M. A., Yathirajan, H. S., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o4919.]); Szumma et al. (2000[Szumma, A., Jurczak, J. & Urbańczyk-Lipkowska, Z. (2000). J. Mol. Struct. 526, 165-175.]); Yathirajan et al. (2007a[Yathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007a). Acta Cryst. E63, o1691-o1692.],b[Yathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007b). Acta Cryst. E63, o1693-o1695.]). For a rationally developed anticancer drug, see: Capdeville et al. (2002[Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. (2002). Nat. Rev. Drug Discov. 1, 493-502.]). For its use in chronic myeloid leukaemia, see: Moen et al. (2007[Moen, M. D., Mckeage, K., Plosker, G. L. & Siddiqui, M. A. A. (2007). Drugs, 67, 299-320.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C29H33N7O2+·2C6H2N3O7

  • Mr = 951.84

  • Triclinic, [P \overline 1]

  • a = 8.560 (1) Å

  • b = 10.734 (1) Å

  • c = 23.060 (1) Å

  • α = 96.74 (3)°

  • β = 92.69 (2)°

  • γ = 101.46 (7)°

  • V = 2056.9 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.02 mm−1

  • T = 110 K

  • 0.45 × 0.39 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.596, Tmax = 0.782

  • 15890 measured reflections

  • 8082 independent reflections

  • 6946 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.158

  • S = 1.06

  • 8082 reflections

  • 640 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1B 0.85 (3) 1.85 (3) 2.658 (3) 157 (3)
N1—H1⋯O62B 0.85 (3) 2.35 (3) 2.890 (3) 122 (2)
N2—H2⋯O1A 0.89 (4) 1.85 (4) 2.678 (3) 154 (3)
N2—H2⋯O62A 0.89 (4) 2.41 (4) 3.009 (3) 125 (3)
N14—H14⋯N31i 0.85 (3) 2.23 (3) 3.069 (3) 171 (3)
C5—H5B⋯O41Aii 0.98 2.48 3.258 (4) 136
C4—H4B⋯O42Biii 0.99 2.33 3.199 (3) 146
C3—H3A⋯O61Biv 0.99 2.57 3.199 (3) 121
C3—H3B⋯O1B 0.99 2.34 3.072 (3) 130
C12—H12A⋯O42Biii 0.95 2.63 3.423 (3) 142
C19—H19A⋯O61Bv 0.98 2.50 3.435 (4) 159
C19—H19A⋯N6Bv 0.98 2.65 3.541 (4) 152
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z; (iii) x-1, y-1, z; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1.

Table 2
π-Ring hydrogen-bond geometry (Å, °) for (I)

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33ACg5vi 0.95 2.90 3.545 (8) 127
Symmetry code: (vi) x + 1, y, z. Cg5 is the centroid of the C15–C21 ring.

Table 3
ππ stacking geometry (Å) for (I)

Cg2⋯Cg7v 3.740 (4)
Cg3⋯Cg3v 3.496 (7)
Cg6⋯Cg6vii 3.396 (0)
Symmetry codes: (v) −x + 1, −y + 1, −z + 1; (vii) −x + 2, −y + 2, −z. Cg2, Cg3, Cg6 and Cg7 are the centroids of the C25–C27/N28/C23/N4, C32–C34/C29//C30/N31, C1A–C6A and C1B–C6B rings, respectively.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Imatinib, marketed as a cancer drug by Novartix, [Gleevec(USA), Glivec(Europe/Australia)] (systematic name: 4-(4-methyl-piperazin-1-yl-methyl-N-[4-methyl-3-(4-pyridin-3-ylpyrimidin-2-yl-amino)-phenyl]-benzamide) is a synthetic tyrosine kinase inhibitor used in treating chronic myelogenous leukemia (CML), gastrointestinal stromal tumours (GISTs) and a number of other malignancies. It is a 2-phenylaminopyrimidine derivative and is the first member of a new class of agents that act by inhibiting particular tyrpsine kinase enzymes, instead of non-specifically inhibiting rapidly dividing cells. Reviews on the use of imatinib in chronic myeloid leukaemia (Moen et al., 2007) and on the rationally developed targeted anticancer drug have been published (Capdeville et al., 2002). Picrates form charge-transfer complexes with organic compounds, function as acceptors in the formation of π- stacking complexes with aromatic biomolecules and as an acidic ligand forming salts with polar biomolecules. In this context, the crystal and molecular structures of related compounds include amitriptylinium picrate (Bindya et al., 2007), mepazinium picrate (Yathirajan et al., 2007a), trifluperazinium dipicrate (Yathirajan et al., 2007b), imipraminium picrate (Harrison, Bindya et al., 2007), nevirapiniumpicrate (Harrison, Sreevidya et al., 2007), desipraminium picrate (Swamy et al., 2007) and propiverinium picrate (Jasinski et al., 2009a) have been reported. In view of the importance of imatinib and to study the hydrogen bonding patterns in the title compound, (I), C29H33N7O2+ (C6H2N3O7-)2, a dipicrate salt of Imatinib, a crystal structure is reported.

The imatinibium cation contains a doubly charged methyl piperazine group bonded at the 4 position of a p-methyl benzamide group and a 2-phenylaminopyrimidine(pyridine) derivative bonded to the amino end. The 6-membered methyl piperazine group adopts a slightly distorted chair conformation (Cremer & Pople, 1975) with puckering parameters Q, θ and φ of 0.572 (5) Å, 176.1 (5)° and 168.174 (3)°, respectively (Fig. 1). For an ideal chair θ has a value of 0 or 180°. An R22(24) graph-set motif is formed between the benzamidium –NH– group and the 4-pyridiyl N atom interacting through a N–H···N hydrogen bond interaction (Fig.2a). The dihedral angle between the mean plane of the benzyl ring in the benzamide group and the mean planes of the piperazine, amino phenyl, pyrimidine and pyridine groups are 81.1 (7)°, 50.8 (5)°, 57.1 (7)° and 46.1 (4)°, respectively. The mean planes of the pyrimidine and pyridine rings are twisted by 11.1 (9)°. The dihedral angles between mean planes of the aminobenzyl group and the pyrimidine and pyridine groups are 30.7 (3)° and 32.3 (2)°, while the dihedral angles between the mean planes of the piperizine group and the aminobenzyl, pyrimidine and pyridine groups are 48.3 (9)°, 59.2 (1)° and 69.3 (9)°, respectively. The two picrate anions, labeled A and B, each interact with the diprotonated cation through bifurcated N–H···O hydrogen bonds forming an R21(6) ring-motif creating an ···ab··· and ···cd··· array of hydrogen bonding patterns (Fig.2 b,c). The mean plane of the two o-NO2 groups in the two picrate anions are twisted by 16.1 (9)° and 39.1 (9)° in the A-ring and 27.1 (5)° and 47.4 (1)° in the B-ring with respect to the mean planes of the 6-membered benzene rings. The difference in the twist angles of the mean planes of the two o-NO2 groups in each picrate anion can be attributed to an intermolecular "side" hydrogen bond interaction (Szumma et al., 2000) between the N1 and N2 atoms of the cation piperizine group with a two-centered hydrogen bond to the singly bonded oxygen atom (O1A & O1B) and to one oxygen atom of an adjacent o-NO2 group (O62A & O62B), respectively, [N1—H1···O1B & N1—H1···O62B and N2—H2···O1A & N2—H2···O62A, see Table 1, Fig.1]. The difference in angles between the mean planes of the o-O61A—N6A—O62A (16.1 (9)°) and o-O21a—N2a—O22A (39.1 (9)°) groups with the mean plane of the benzene ring in picrate A (23°) and those of the o-O21B—N2B—O22B (47.4 (1)°) and o-O61B—N6B—O62B (27.1 (5)°) with the mean plane of the benzene ringin picrate B (16.2 (3)°) are a direct result of the N2—H2···O62A and N1—H1···O62B hydrogen bonds. The p-NO2 groups in both picrate anions are essentially in the plane of the ring (torsion angles C5A—C4A—N4A—O41A = 179.9 (2)°; C5B—C4B—N4B—O41B = 176.1 (2)°). Crystal packing is also influenced by N—H···N hydrogen bond interactions between the benzamide and pyridine groups (N14—H14···N31), intermediate C—H···O hydrogen bond interactions (C5—H5B···O41A, C4—H4···H42B & C3—H3A···O61B) between the piperizine group and o-NO2 & p-NO2 groups of picrates A & B and weak C—H···O hydrogen bond interactions involving the benzamide, phenyl, o-NO2 andp-NO2 groups (C12—H12A···O42B, C19—H19···O61B & C19—H19A···N6B;Table 1) which produces a two-dimensional network arranged along the (101)plane of the unit cell (Fig.3). In addition there are weak C—H···π (Table 2) and weak π-π intermolecular interactions (Table 3) similar to that observed in 3-(2-Chloroethyl)-2-methyl-4H-pyrido[1,2-a] pyrimidinium-4-one picrate (Jasinski et al., 2009b).

Related literature top

For related structures, see: Bindya et al. (2007); Harrison, Bindya et al. (2007); Harrison, Sreevidya et al. (2007); Jasinski et al. (2009a,b); Swamy et al. (2007); Szumma et al. (2000); Yathirajan et al. (2007a,b). For related background, see: Capdeville et al. (2002); Moen et al. (2007). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was synthesized by mixing an aqueous solution (10 ml) of picric acid (0.92 g, 2 mmol) and N-(4-methyl-3-(4-(pyridin-3-yl)pyrimidin-2-ylamino)phenyl)-4-((4-methyl piperazin-1-yl)methyl)benzamide (1.18 g, 2 mmol) in methanolic aqueous solution (10 ml) and the resulting solution was stirred well at 313 K. The formation of a yellow precipitate of the charge transfer complex was noticed almost instantaneously. The formed complex was filtered off, washed with distilled water and dried in vacuo over CaCl2. The purity of the synthesized compound was improved by a successive recrystallization process with methanol (yield: 76.2%). The crystals for X-ray studies were grown from slow evaporation of a methanol solution. The melting range was found to be 490–493 K.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with N—H = 0.85–0.89, C—H = 0.95–0.99 Å, and with Uiso(H) = 1.15–1.51Ueq(C,N).

Structure description top

Imatinib, marketed as a cancer drug by Novartix, [Gleevec(USA), Glivec(Europe/Australia)] (systematic name: 4-(4-methyl-piperazin-1-yl-methyl-N-[4-methyl-3-(4-pyridin-3-ylpyrimidin-2-yl-amino)-phenyl]-benzamide) is a synthetic tyrosine kinase inhibitor used in treating chronic myelogenous leukemia (CML), gastrointestinal stromal tumours (GISTs) and a number of other malignancies. It is a 2-phenylaminopyrimidine derivative and is the first member of a new class of agents that act by inhibiting particular tyrpsine kinase enzymes, instead of non-specifically inhibiting rapidly dividing cells. Reviews on the use of imatinib in chronic myeloid leukaemia (Moen et al., 2007) and on the rationally developed targeted anticancer drug have been published (Capdeville et al., 2002). Picrates form charge-transfer complexes with organic compounds, function as acceptors in the formation of π- stacking complexes with aromatic biomolecules and as an acidic ligand forming salts with polar biomolecules. In this context, the crystal and molecular structures of related compounds include amitriptylinium picrate (Bindya et al., 2007), mepazinium picrate (Yathirajan et al., 2007a), trifluperazinium dipicrate (Yathirajan et al., 2007b), imipraminium picrate (Harrison, Bindya et al., 2007), nevirapiniumpicrate (Harrison, Sreevidya et al., 2007), desipraminium picrate (Swamy et al., 2007) and propiverinium picrate (Jasinski et al., 2009a) have been reported. In view of the importance of imatinib and to study the hydrogen bonding patterns in the title compound, (I), C29H33N7O2+ (C6H2N3O7-)2, a dipicrate salt of Imatinib, a crystal structure is reported.

The imatinibium cation contains a doubly charged methyl piperazine group bonded at the 4 position of a p-methyl benzamide group and a 2-phenylaminopyrimidine(pyridine) derivative bonded to the amino end. The 6-membered methyl piperazine group adopts a slightly distorted chair conformation (Cremer & Pople, 1975) with puckering parameters Q, θ and φ of 0.572 (5) Å, 176.1 (5)° and 168.174 (3)°, respectively (Fig. 1). For an ideal chair θ has a value of 0 or 180°. An R22(24) graph-set motif is formed between the benzamidium –NH– group and the 4-pyridiyl N atom interacting through a N–H···N hydrogen bond interaction (Fig.2a). The dihedral angle between the mean plane of the benzyl ring in the benzamide group and the mean planes of the piperazine, amino phenyl, pyrimidine and pyridine groups are 81.1 (7)°, 50.8 (5)°, 57.1 (7)° and 46.1 (4)°, respectively. The mean planes of the pyrimidine and pyridine rings are twisted by 11.1 (9)°. The dihedral angles between mean planes of the aminobenzyl group and the pyrimidine and pyridine groups are 30.7 (3)° and 32.3 (2)°, while the dihedral angles between the mean planes of the piperizine group and the aminobenzyl, pyrimidine and pyridine groups are 48.3 (9)°, 59.2 (1)° and 69.3 (9)°, respectively. The two picrate anions, labeled A and B, each interact with the diprotonated cation through bifurcated N–H···O hydrogen bonds forming an R21(6) ring-motif creating an ···ab··· and ···cd··· array of hydrogen bonding patterns (Fig.2 b,c). The mean plane of the two o-NO2 groups in the two picrate anions are twisted by 16.1 (9)° and 39.1 (9)° in the A-ring and 27.1 (5)° and 47.4 (1)° in the B-ring with respect to the mean planes of the 6-membered benzene rings. The difference in the twist angles of the mean planes of the two o-NO2 groups in each picrate anion can be attributed to an intermolecular "side" hydrogen bond interaction (Szumma et al., 2000) between the N1 and N2 atoms of the cation piperizine group with a two-centered hydrogen bond to the singly bonded oxygen atom (O1A & O1B) and to one oxygen atom of an adjacent o-NO2 group (O62A & O62B), respectively, [N1—H1···O1B & N1—H1···O62B and N2—H2···O1A & N2—H2···O62A, see Table 1, Fig.1]. The difference in angles between the mean planes of the o-O61A—N6A—O62A (16.1 (9)°) and o-O21a—N2a—O22A (39.1 (9)°) groups with the mean plane of the benzene ring in picrate A (23°) and those of the o-O21B—N2B—O22B (47.4 (1)°) and o-O61B—N6B—O62B (27.1 (5)°) with the mean plane of the benzene ringin picrate B (16.2 (3)°) are a direct result of the N2—H2···O62A and N1—H1···O62B hydrogen bonds. The p-NO2 groups in both picrate anions are essentially in the plane of the ring (torsion angles C5A—C4A—N4A—O41A = 179.9 (2)°; C5B—C4B—N4B—O41B = 176.1 (2)°). Crystal packing is also influenced by N—H···N hydrogen bond interactions between the benzamide and pyridine groups (N14—H14···N31), intermediate C—H···O hydrogen bond interactions (C5—H5B···O41A, C4—H4···H42B & C3—H3A···O61B) between the piperizine group and o-NO2 & p-NO2 groups of picrates A & B and weak C—H···O hydrogen bond interactions involving the benzamide, phenyl, o-NO2 andp-NO2 groups (C12—H12A···O42B, C19—H19···O61B & C19—H19A···N6B;Table 1) which produces a two-dimensional network arranged along the (101)plane of the unit cell (Fig.3). In addition there are weak C—H···π (Table 2) and weak π-π intermolecular interactions (Table 3) similar to that observed in 3-(2-Chloroethyl)-2-methyl-4H-pyrido[1,2-a] pyrimidinium-4-one picrate (Jasinski et al., 2009b).

For related structures, see: Bindya et al. (2007); Harrison, Bindya et al. (2007); Harrison, Sreevidya et al. (2007); Jasinski et al. (2009a,b); Swamy et al. (2007); Szumma et al. (2000); Yathirajan et al. (2007a,b). For related background, see: Capdeville et al. (2002); Moen et al. (2007). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Version 6.10; Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Version 6.10; Sheldrick, 2008), enCIFer (Allen et al., 2004) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, C29H33N7O2+ (C6H2N3O7-)2, showing the cation-dianion unit that comprises the asymmetric unit, the atom labeling scheme and 30% probability displacement ellipsoids. Picrate anions A & B are labeled accordingly.
[Figure 2] Fig. 2. Diagrams of the (a) R22(24) ···ee···, (b) R21(6) ···ab··· and (c) R21(6) ···cd··· graph-set motifs in the cation (a) and anions (b, c) of the title compound, (I).
[Figure 3] Fig. 3. Packing diagram of the title compound, (I), viewed down the b axis. Dashed lines indicate intermolecular N—H···O, N—H···N & C—H···O hydrogen bond interactions which produces a two-dimensional network arranged along the (101) plane of the unit cell.
1-Methyl-4-(4-{4-methyl-3-[4-(3-pyridyl)pyrimidin-2- ylamino]anilinocarbonyl}benzyl)piperazine-1,4-diium dipicrate top
Crystal data top
C29H33N7O2+·2C6H2N3O7Z = 2
Mr = 951.84F(000) = 988
Triclinic, P1Dx = 1.537 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 8.560 (1) ÅCell parameters from 9389 reflections
b = 10.734 (1) Åθ = 4.2–74.0°
c = 23.060 (1) ŵ = 1.02 mm1
α = 96.74 (3)°T = 110 K
β = 92.69 (2)°Chunk, pale yellow
γ = 101.46 (7)°0.45 × 0.39 × 0.24 mm
V = 2056.9 (6) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
8082 independent reflections
Radiation source: Enhance (Cu) X-ray Source6946 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.5081 pixels mm-1θmax = 74.1°, θmin = 4.2°
ω scansh = 108
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1313
Tmin = 0.596, Tmax = 0.782l = 2828
15890 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0615P)2 + 3.3059P]
where P = (Fo2 + 2Fc2)/3
8082 reflections(Δ/σ)max = 0.001
640 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C29H33N7O2+·2C6H2N3O7γ = 101.46 (7)°
Mr = 951.84V = 2056.9 (6) Å3
Triclinic, P1Z = 2
a = 8.560 (1) ÅCu Kα radiation
b = 10.734 (1) ŵ = 1.02 mm1
c = 23.060 (1) ÅT = 110 K
α = 96.74 (3)°0.45 × 0.39 × 0.24 mm
β = 92.69 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
8082 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
6946 reflections with I > 2σ(I)
Tmin = 0.596, Tmax = 0.782Rint = 0.023
15890 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.50 e Å3
8082 reflectionsΔρmin = 0.27 e Å3
640 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3153 (2)0.58462 (17)0.49702 (9)0.0356 (4)
N10.4213 (2)0.4360 (2)0.19545 (10)0.0242 (4)
H10.465 (4)0.514 (3)0.2058 (13)0.028 (8)*
N20.2325 (3)0.4773 (2)0.09313 (10)0.0259 (5)
H20.182 (4)0.397 (4)0.0809 (15)0.044 (9)*
C10.4665 (3)0.4017 (2)0.13475 (12)0.0274 (5)
H1A0.41870.31060.12110.033*
H1B0.58410.41270.13490.033*
C20.4094 (3)0.4851 (2)0.09331 (12)0.0291 (5)
H2A0.46550.57520.10490.035*
H2B0.43710.45810.05320.035*
C30.1853 (3)0.5056 (2)0.15391 (11)0.0264 (5)
H3A0.06750.49250.15340.032*
H3B0.23070.59650.16890.032*
C40.2433 (3)0.4209 (2)0.19414 (11)0.0255 (5)
H4A0.21180.44310.23420.031*
H4B0.19220.33030.18070.031*
C50.1813 (4)0.5660 (3)0.05447 (13)0.0342 (6)
H5A0.06610.56120.05580.051*
H5B0.20580.54130.01420.051*
H5C0.23860.65390.06800.051*
C60.4812 (3)0.3553 (2)0.23719 (12)0.0294 (6)
H6A0.43610.26370.22350.035*
H6B0.59900.36860.23700.035*
C70.4370 (3)0.3868 (2)0.29871 (12)0.0284 (5)
C80.5091 (3)0.5012 (2)0.33399 (12)0.0305 (6)
H8A0.59040.56080.31930.037*
C90.4627 (3)0.5279 (2)0.38995 (12)0.0304 (6)
H9A0.51080.60660.41300.036*
C100.3464 (3)0.4409 (2)0.41296 (12)0.0276 (5)
C110.2752 (3)0.3270 (2)0.37767 (12)0.0279 (5)
H11A0.19570.26670.39270.033*
C120.3182 (3)0.3006 (2)0.32147 (12)0.0289 (6)
H12A0.26680.22330.29800.035*
C130.2977 (3)0.4734 (2)0.47391 (12)0.0292 (5)
N140.2326 (3)0.3702 (2)0.49985 (10)0.0290 (5)
H140.250 (4)0.298 (3)0.4857 (13)0.030 (8)*
C150.1556 (3)0.3663 (2)0.55298 (12)0.0276 (5)
C160.0846 (3)0.4640 (3)0.57780 (12)0.0314 (6)
H16A0.09450.54280.56200.038*
C170.0012 (3)0.4419 (3)0.62653 (13)0.0339 (6)
H17A0.04980.50800.64380.041*
C180.0199 (3)0.3286 (3)0.65133 (12)0.0315 (6)
C190.1298 (4)0.3073 (3)0.70004 (14)0.0437 (7)
H19A0.07080.28710.73400.066*
H19B0.21940.23570.68670.066*
H19C0.17080.38510.71110.066*
C200.0583 (3)0.2345 (2)0.62720 (11)0.0264 (5)
C210.1447 (3)0.2542 (2)0.57814 (12)0.0274 (5)
H21A0.19710.18960.56170.033*
N220.0369 (3)0.1166 (2)0.65091 (10)0.0295 (5)
H220.053 (4)0.098 (3)0.6678 (15)0.040 (9)*
C230.1200 (3)0.0202 (2)0.64192 (11)0.0264 (5)
N240.0467 (3)0.0938 (2)0.65697 (10)0.0304 (5)
C250.1278 (3)0.1869 (3)0.64831 (13)0.0341 (6)
H25A0.08160.26840.65890.041*
C260.2749 (3)0.1733 (2)0.62498 (13)0.0322 (6)
H26A0.32860.24260.61890.039*
C270.3399 (3)0.0522 (2)0.61095 (11)0.0267 (5)
N280.2636 (3)0.0452 (2)0.62024 (9)0.0270 (5)
C290.4951 (3)0.0229 (2)0.58435 (11)0.0267 (5)
C300.5691 (3)0.1204 (2)0.56171 (12)0.0290 (5)
H30A0.51670.20650.56350.035*
N310.7095 (3)0.1001 (2)0.53756 (10)0.0314 (5)
C320.7788 (3)0.0217 (3)0.53364 (12)0.0303 (6)
H32A0.87900.03800.51690.036*
C330.7121 (3)0.1247 (3)0.55272 (12)0.0308 (6)
H33A0.76350.20940.54790.037*
C340.5695 (3)0.1028 (2)0.57896 (12)0.0291 (5)
H34A0.52250.17240.59320.035*
O1A0.1518 (2)0.22087 (16)0.07622 (8)0.0291 (4)
O21A0.3381 (2)0.07732 (17)0.12752 (9)0.0346 (4)
O22A0.3131 (2)0.0904 (2)0.06313 (10)0.0396 (5)
O41A0.2360 (2)0.33957 (17)0.04481 (10)0.0395 (5)
O42A0.4305 (2)0.2407 (2)0.03722 (12)0.0493 (6)
O61A0.3332 (3)0.2150 (2)0.07480 (12)0.0520 (6)
O62A0.1032 (3)0.32666 (18)0.06299 (11)0.0427 (5)
N2A0.2595 (3)0.0043 (2)0.08996 (10)0.0287 (5)
N4A0.2888 (3)0.2408 (2)0.04636 (10)0.0311 (5)
N6A0.1906 (3)0.2244 (2)0.06879 (10)0.0301 (5)
C1A0.0479 (3)0.1211 (2)0.07465 (10)0.0242 (5)
C2A0.0909 (3)0.0022 (2)0.07761 (11)0.0253 (5)
C3A0.0144 (3)0.1176 (2)0.06785 (11)0.0265 (5)
H3AA0.02230.19560.06740.032*
C4A0.1766 (3)0.1186 (2)0.05852 (11)0.0272 (5)
C5A0.2330 (3)0.0062 (2)0.06039 (11)0.0261 (5)
H5AA0.34450.00840.05620.031*
C6A0.1240 (3)0.1095 (2)0.06843 (11)0.0259 (5)
O1B0.4787 (2)0.68998 (16)0.21876 (9)0.0303 (4)
O21B0.2684 (2)0.84672 (18)0.19341 (9)0.0348 (4)
O22B0.3412 (3)0.9982 (2)0.26585 (11)0.0493 (6)
O41B0.8703 (3)1.24447 (18)0.21586 (10)0.0441 (5)
O42B1.0597 (2)1.13663 (18)0.20751 (9)0.0363 (5)
O61B0.9270 (2)0.6835 (2)0.16693 (9)0.0392 (5)
O62B0.7440 (2)0.58469 (18)0.21578 (10)0.0405 (5)
N2B0.3710 (3)0.9196 (2)0.22702 (11)0.0316 (5)
N4B0.9186 (3)1.1430 (2)0.21198 (10)0.0327 (5)
N6B0.8091 (3)0.6809 (2)0.19535 (10)0.0285 (5)
C1B0.5803 (3)0.7898 (2)0.21517 (11)0.0248 (5)
C2B0.5386 (3)0.9143 (2)0.22026 (11)0.0267 (5)
C3B0.6441 (3)1.0279 (2)0.22022 (12)0.0298 (6)
H3BA0.60991.10720.22550.036*
C4B0.8035 (3)1.0239 (2)0.21222 (11)0.0281 (5)
C5B0.8561 (3)0.9107 (2)0.20437 (11)0.0263 (5)
H5BA0.96500.91030.19820.032*
C6B0.7471 (3)0.7972 (2)0.20563 (11)0.0257 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0430 (11)0.0197 (9)0.0408 (11)0.0000 (8)0.0037 (9)0.0007 (8)
N10.0236 (10)0.0124 (10)0.0347 (12)0.0010 (8)0.0009 (8)0.0036 (8)
N20.0293 (11)0.0130 (10)0.0334 (11)0.0003 (8)0.0010 (9)0.0033 (8)
C10.0243 (12)0.0182 (12)0.0379 (14)0.0009 (9)0.0048 (10)0.0009 (10)
C20.0289 (13)0.0207 (12)0.0353 (14)0.0011 (10)0.0052 (11)0.0030 (10)
C30.0249 (12)0.0173 (12)0.0345 (13)0.0006 (9)0.0003 (10)0.0005 (9)
C40.0228 (12)0.0179 (11)0.0338 (13)0.0003 (9)0.0027 (10)0.0021 (9)
C50.0409 (16)0.0195 (13)0.0407 (15)0.0019 (11)0.0042 (12)0.0079 (11)
C60.0290 (13)0.0189 (12)0.0408 (15)0.0051 (10)0.0005 (11)0.0066 (10)
C70.0289 (13)0.0214 (12)0.0345 (14)0.0037 (10)0.0034 (10)0.0067 (10)
C80.0268 (13)0.0197 (12)0.0432 (15)0.0011 (10)0.0014 (11)0.0087 (11)
C90.0315 (14)0.0196 (12)0.0361 (14)0.0020 (10)0.0058 (11)0.0033 (10)
C100.0273 (13)0.0183 (12)0.0360 (14)0.0027 (10)0.0041 (10)0.0051 (10)
C110.0279 (13)0.0176 (12)0.0357 (14)0.0021 (10)0.0024 (10)0.0070 (10)
C120.0310 (13)0.0154 (11)0.0373 (14)0.0012 (10)0.0064 (11)0.0047 (10)
C130.0250 (12)0.0241 (13)0.0370 (14)0.0040 (10)0.0023 (10)0.0023 (10)
N140.0307 (12)0.0198 (11)0.0366 (12)0.0066 (9)0.0035 (9)0.0011 (9)
C150.0225 (12)0.0234 (12)0.0342 (14)0.0018 (10)0.0001 (10)0.0014 (10)
C160.0321 (14)0.0206 (12)0.0403 (15)0.0038 (10)0.0015 (11)0.0026 (10)
C170.0354 (15)0.0239 (13)0.0427 (16)0.0090 (11)0.0077 (12)0.0017 (11)
C180.0299 (14)0.0305 (14)0.0329 (14)0.0057 (11)0.0032 (11)0.0001 (11)
C190.0502 (19)0.0387 (17)0.0472 (18)0.0180 (14)0.0163 (15)0.0062 (13)
C200.0224 (12)0.0215 (12)0.0331 (13)0.0004 (9)0.0005 (10)0.0023 (10)
C210.0235 (12)0.0221 (12)0.0350 (14)0.0036 (10)0.0017 (10)0.0012 (10)
N220.0268 (11)0.0266 (12)0.0352 (12)0.0034 (9)0.0078 (9)0.0056 (9)
C230.0272 (13)0.0218 (12)0.0278 (12)0.0018 (10)0.0007 (10)0.0004 (9)
N240.0291 (11)0.0239 (11)0.0349 (12)0.0015 (9)0.0038 (9)0.0017 (9)
C250.0356 (15)0.0207 (13)0.0420 (16)0.0040 (11)0.0009 (12)0.0055 (11)
C260.0339 (14)0.0179 (12)0.0440 (16)0.0042 (10)0.0013 (12)0.0030 (11)
C270.0295 (13)0.0216 (12)0.0278 (13)0.0046 (10)0.0018 (10)0.0013 (9)
N280.0268 (11)0.0213 (10)0.0318 (11)0.0029 (8)0.0010 (9)0.0026 (8)
C290.0270 (13)0.0240 (13)0.0285 (13)0.0054 (10)0.0022 (10)0.0024 (10)
C300.0319 (14)0.0218 (12)0.0333 (14)0.0062 (10)0.0002 (11)0.0029 (10)
N310.0322 (12)0.0281 (12)0.0346 (12)0.0100 (9)0.0014 (9)0.0011 (9)
C320.0258 (13)0.0308 (14)0.0335 (14)0.0049 (11)0.0008 (10)0.0026 (11)
C330.0266 (13)0.0245 (13)0.0388 (15)0.0014 (10)0.0021 (11)0.0026 (11)
C340.0271 (13)0.0217 (13)0.0372 (14)0.0052 (10)0.0009 (11)0.0003 (10)
O1A0.0314 (10)0.0166 (9)0.0370 (10)0.0004 (7)0.0015 (8)0.0026 (7)
O21A0.0308 (10)0.0213 (9)0.0475 (12)0.0027 (8)0.0050 (8)0.0048 (8)
O22A0.0385 (11)0.0330 (11)0.0494 (12)0.0142 (9)0.0052 (9)0.0018 (9)
O41A0.0412 (11)0.0168 (9)0.0567 (13)0.0008 (8)0.0033 (9)0.0037 (8)
O42A0.0267 (11)0.0258 (11)0.0909 (18)0.0039 (8)0.0026 (11)0.0056 (11)
O61A0.0363 (12)0.0296 (11)0.0924 (19)0.0103 (9)0.0199 (12)0.0051 (11)
O62A0.0376 (11)0.0187 (10)0.0708 (15)0.0010 (8)0.0036 (10)0.0125 (9)
N2A0.0293 (11)0.0201 (11)0.0369 (12)0.0033 (9)0.0043 (9)0.0073 (9)
N4A0.0311 (12)0.0205 (11)0.0388 (13)0.0022 (9)0.0040 (9)0.0042 (9)
N6A0.0331 (12)0.0214 (11)0.0345 (12)0.0043 (9)0.0013 (9)0.0005 (9)
C1A0.0299 (13)0.0159 (11)0.0250 (12)0.0012 (10)0.0022 (10)0.0012 (9)
C2A0.0272 (13)0.0207 (12)0.0275 (12)0.0036 (10)0.0026 (10)0.0030 (9)
C3A0.0318 (13)0.0167 (11)0.0304 (13)0.0036 (10)0.0037 (10)0.0029 (9)
C4A0.0324 (14)0.0195 (12)0.0268 (12)0.0014 (10)0.0031 (10)0.0024 (9)
C5A0.0256 (12)0.0223 (12)0.0291 (13)0.0016 (10)0.0045 (10)0.0029 (10)
C6A0.0310 (13)0.0196 (12)0.0269 (12)0.0043 (10)0.0031 (10)0.0032 (9)
O1B0.0242 (9)0.0149 (8)0.0490 (11)0.0015 (7)0.0018 (8)0.0028 (7)
O21B0.0261 (9)0.0239 (10)0.0516 (12)0.0020 (7)0.0013 (8)0.0064 (8)
O22B0.0426 (12)0.0380 (12)0.0659 (15)0.0149 (10)0.0069 (11)0.0120 (11)
O41B0.0470 (13)0.0176 (10)0.0635 (14)0.0038 (9)0.0048 (10)0.0060 (9)
O42B0.0337 (11)0.0279 (10)0.0409 (11)0.0099 (8)0.0034 (8)0.0049 (8)
O61B0.0339 (11)0.0346 (11)0.0510 (12)0.0102 (9)0.0110 (9)0.0052 (9)
O62B0.0268 (10)0.0191 (9)0.0747 (15)0.0013 (8)0.0050 (9)0.0118 (9)
N2B0.0314 (12)0.0186 (11)0.0450 (13)0.0038 (9)0.0050 (10)0.0055 (9)
N4B0.0387 (14)0.0216 (11)0.0326 (12)0.0061 (10)0.0018 (10)0.0033 (9)
N6B0.0217 (10)0.0215 (11)0.0396 (12)0.0005 (8)0.0022 (9)0.0009 (9)
C1B0.0266 (13)0.0175 (12)0.0278 (12)0.0003 (10)0.0008 (10)0.0008 (9)
C2B0.0261 (13)0.0200 (12)0.0322 (13)0.0020 (10)0.0004 (10)0.0010 (10)
C3B0.0367 (14)0.0166 (12)0.0347 (14)0.0035 (10)0.0008 (11)0.0022 (10)
C4B0.0323 (14)0.0188 (12)0.0289 (13)0.0047 (10)0.0000 (10)0.0036 (9)
C5B0.0244 (12)0.0241 (13)0.0266 (12)0.0033 (10)0.0002 (9)0.0026 (9)
C6B0.0267 (13)0.0192 (12)0.0289 (13)0.0010 (10)0.0012 (10)0.0015 (9)
Geometric parameters (Å, º) top
O1—C131.226 (3)C23—N281.339 (3)
N1—C11.494 (3)C23—N241.352 (3)
N1—C41.498 (3)N24—C251.328 (4)
N1—C61.505 (3)C25—C261.380 (4)
N1—H10.85 (3)C25—H25A0.9500
N2—C31.490 (3)C26—C271.390 (4)
N2—C51.491 (3)C26—H26A0.9500
N2—C21.500 (3)C27—N281.341 (3)
N2—H20.89 (4)C27—C291.482 (4)
C1—C21.511 (4)C29—C301.391 (4)
C1—H1A0.9900C29—C341.395 (4)
C1—H1B0.9900C30—N311.338 (4)
C2—H2A0.9900C30—H30A0.9500
C2—H2B0.9900N31—C321.340 (4)
C3—C41.506 (3)C32—C331.379 (4)
C3—H3A0.9900C32—H32A0.9500
C3—H3B0.9900C33—C341.378 (4)
C4—H4A0.9900C33—H33A0.9500
C4—H4B0.9900C34—H34A0.9500
C5—H5A0.9800O1A—C1A1.245 (3)
C5—H5B0.9800O21A—N2A1.226 (3)
C5—H5C0.9800O22A—N2A1.228 (3)
C6—C71.503 (4)O41A—N4A1.231 (3)
C6—H6A0.9900O42A—N4A1.221 (3)
C6—H6B0.9900O61A—N6A1.221 (3)
C7—C121.399 (4)O62A—N6A1.225 (3)
C7—C81.403 (4)N2A—C2A1.463 (3)
C8—C91.383 (4)N4A—C4A1.452 (3)
C8—H8A0.9500N6A—C6A1.457 (3)
C9—C101.393 (4)C1A—C2A1.451 (3)
C9—H9A0.9500C1A—C6A1.451 (4)
C10—C111.397 (3)C2A—C3A1.367 (3)
C10—C131.506 (4)C3A—C4A1.393 (4)
C11—C121.377 (4)C3A—H3AA0.9500
C11—H11A0.9500C4A—C5A1.382 (4)
C12—H12A0.9500C5A—C6A1.384 (3)
C13—N141.356 (3)C5A—H5AA0.9500
N14—C151.419 (3)O1B—C1B1.252 (3)
N14—H140.85 (3)O21B—N2B1.227 (3)
C15—C211.385 (4)O22B—N2B1.228 (3)
C15—C161.394 (4)O41B—N4B1.235 (3)
C16—C171.389 (4)O42B—N4B1.232 (3)
C16—H16A0.9500O61B—N6B1.226 (3)
C17—C181.388 (4)O62B—N6B1.229 (3)
C17—H17A0.9500N2B—C2B1.462 (3)
C18—C201.396 (4)N4B—C4B1.451 (3)
C18—C191.508 (4)N6B—C6B1.450 (3)
C19—H19A0.9800C1B—C6B1.443 (4)
C19—H19B0.9800C1B—C2B1.443 (3)
C19—H19C0.9800C2B—C3B1.366 (4)
C20—C211.394 (4)C3B—C4B1.394 (4)
C20—N221.419 (3)C3B—H3BA0.9500
C21—H21A0.9500C4B—C5B1.373 (4)
N22—C231.369 (3)C5B—C6B1.384 (3)
N22—H220.87 (4)C5B—H5BA0.9500
C1—N1—C4108.6 (2)C18—C20—N22118.4 (2)
C1—N1—C6111.1 (2)C15—C21—C20121.1 (2)
C4—N1—C6111.62 (19)C15—C21—H21A119.5
C1—N1—H1107 (2)C20—C21—H21A119.5
C4—N1—H1109 (2)C23—N22—C20129.0 (2)
C6—N1—H1109 (2)C23—N22—H22116 (2)
C3—N2—C5110.9 (2)C20—N22—H22113 (2)
C3—N2—C2110.4 (2)N28—C23—N24125.8 (2)
C5—N2—C2110.8 (2)N28—C23—N22119.1 (2)
C3—N2—H2105 (2)N24—C23—N22115.2 (2)
C5—N2—H2110 (2)C25—N24—C23115.0 (2)
C2—N2—H2109 (2)N24—C25—C26124.4 (2)
N1—C1—C2110.9 (2)N24—C25—H25A117.8
N1—C1—H1A109.5C26—C25—H25A117.8
C2—C1—H1A109.5C25—C26—C27116.1 (2)
N1—C1—H1B109.5C25—C26—H26A121.9
C2—C1—H1B109.5C27—C26—H26A121.9
H1A—C1—H1B108.0N28—C27—C26121.4 (2)
N2—C2—C1112.1 (2)N28—C27—C29116.0 (2)
N2—C2—H2A109.2C26—C27—C29122.6 (2)
C1—C2—H2A109.2C23—N28—C27117.3 (2)
N2—C2—H2B109.2C30—C29—C34117.4 (2)
C1—C2—H2B109.2C30—C29—C27121.1 (2)
H2A—C2—H2B107.9C34—C29—C27121.5 (2)
N2—C3—C4111.5 (2)N31—C30—C29123.9 (2)
N2—C3—H3A109.3N31—C30—H30A118.0
C4—C3—H3A109.3C29—C30—H30A118.0
N2—C3—H3B109.3C30—N31—C32117.1 (2)
C4—C3—H3B109.3N31—C32—C33123.3 (3)
H3A—C3—H3B108.0N31—C32—H32A118.4
N1—C4—C3111.2 (2)C33—C32—H32A118.4
N1—C4—H4A109.4C34—C33—C32119.0 (2)
C3—C4—H4A109.4C34—C33—H33A120.5
N1—C4—H4B109.4C32—C33—H33A120.5
C3—C4—H4B109.4C33—C34—C29119.2 (2)
H4A—C4—H4B108.0C33—C34—H34A120.4
N2—C5—H5A109.5C29—C34—H34A120.4
N2—C5—H5B109.5O21A—N2A—O22A123.7 (2)
H5A—C5—H5B109.5O21A—N2A—C2A118.4 (2)
N2—C5—H5C109.5O22A—N2A—C2A117.9 (2)
H5A—C5—H5C109.5O42A—N4A—O41A123.1 (2)
H5B—C5—H5C109.5O42A—N4A—C4A118.6 (2)
C7—C6—N1112.6 (2)O41A—N4A—C4A118.2 (2)
C7—C6—H6A109.1O61A—N6A—O62A122.0 (2)
N1—C6—H6A109.1O61A—N6A—C6A118.4 (2)
C7—C6—H6B109.1O62A—N6A—C6A119.6 (2)
N1—C6—H6B109.1O1A—C1A—C2A121.3 (2)
H6A—C6—H6B107.8O1A—C1A—C6A126.9 (2)
C12—C7—C8118.6 (3)C2A—C1A—C6A111.7 (2)
C12—C7—C6119.2 (2)C3A—C2A—C1A124.6 (2)
C8—C7—C6122.2 (2)C3A—C2A—N2A117.3 (2)
C9—C8—C7120.4 (2)C1A—C2A—N2A118.0 (2)
C9—C8—H8A119.8C2A—C3A—C4A118.7 (2)
C7—C8—H8A119.8C2A—C3A—H3AA120.6
C8—C9—C10120.9 (2)C4A—C3A—H3AA120.6
C8—C9—H9A119.5C5A—C4A—C3A121.5 (2)
C10—C9—H9A119.5C5A—C4A—N4A119.4 (2)
C9—C10—C11118.4 (3)C3A—C4A—N4A119.1 (2)
C9—C10—C13119.6 (2)C4A—C5A—C6A118.8 (2)
C11—C10—C13122.1 (2)C4A—C5A—H5AA120.6
C12—C11—C10121.2 (2)C6A—C5A—H5AA120.6
C12—C11—H11A119.4C5A—C6A—C1A124.0 (2)
C10—C11—H11A119.4C5A—C6A—N6A116.2 (2)
C11—C12—C7120.4 (2)C1A—C6A—N6A119.7 (2)
C11—C12—H12A119.8O21B—N2B—O22B123.7 (2)
C7—C12—H12A119.8O21B—N2B—C2B118.5 (2)
O1—C13—N14123.9 (3)O22B—N2B—C2B117.8 (2)
O1—C13—C10121.8 (2)O42B—N4B—O41B123.7 (2)
N14—C13—C10114.3 (2)O42B—N4B—C4B117.7 (2)
C13—N14—C15129.0 (2)O41B—N4B—C4B118.7 (2)
C13—N14—H14117 (2)O61B—N6B—O62B122.5 (2)
C15—N14—H14113 (2)O61B—N6B—C6B118.1 (2)
C21—C15—C16120.2 (2)O62B—N6B—C6B119.4 (2)
C21—C15—N14116.1 (2)O1B—C1B—C6B126.3 (2)
C16—C15—N14123.6 (2)O1B—C1B—C2B121.7 (2)
C17—C16—C15117.5 (2)C6B—C1B—C2B112.0 (2)
C17—C16—H16A121.2C3B—C2B—C1B125.1 (2)
C15—C16—H16A121.2C3B—C2B—N2B117.4 (2)
C18—C17—C16123.6 (2)C1B—C2B—N2B117.6 (2)
C18—C17—H17A118.2C2B—C3B—C4B117.9 (2)
C16—C17—H17A118.2C2B—C3B—H3BA121.1
C17—C18—C20117.6 (3)C4B—C3B—H3BA121.1
C17—C18—C19120.0 (3)C5B—C4B—C3B122.3 (2)
C20—C18—C19122.2 (3)C5B—C4B—N4B118.5 (2)
C18—C19—H19A109.5C3B—C4B—N4B119.3 (2)
C18—C19—H19B109.5C4B—C5B—C6B118.6 (2)
H19A—C19—H19B109.5C4B—C5B—H5BA120.7
C18—C19—H19C109.5C6B—C5B—H5BA120.7
H19A—C19—H19C109.5C5B—C6B—C1B124.1 (2)
H19B—C19—H19C109.5C5B—C6B—N6B115.8 (2)
C21—C20—C18119.8 (2)C1B—C6B—N6B120.1 (2)
C21—C20—N22121.6 (2)
C4—N1—C1—C258.2 (2)C27—C29—C30—N31179.5 (2)
C6—N1—C1—C2178.6 (2)C29—C30—N31—C322.2 (4)
C3—N2—C2—C153.6 (3)C30—N31—C32—C330.4 (4)
C5—N2—C2—C1176.8 (2)N31—C32—C33—C342.2 (4)
N1—C1—C2—N256.6 (3)C32—C33—C34—C291.4 (4)
C5—N2—C3—C4177.2 (2)C30—C29—C34—C331.0 (4)
C2—N2—C3—C454.0 (3)C27—C29—C34—C33178.6 (2)
C1—N1—C4—C359.2 (3)O1A—C1A—C2A—C3A170.2 (2)
C6—N1—C4—C3177.9 (2)C6A—C1A—C2A—C3A8.4 (4)
N2—C3—C4—N158.1 (3)O1A—C1A—C2A—N2A7.6 (4)
C1—N1—C6—C7179.7 (2)C6A—C1A—C2A—N2A173.8 (2)
C4—N1—C6—C758.3 (3)O21A—N2A—C2A—C3A140.1 (2)
N1—C6—C7—C12107.2 (3)O22A—N2A—C2A—C3A37.9 (3)
N1—C6—C7—C871.7 (3)O21A—N2A—C2A—C1A41.9 (3)
C12—C7—C8—C90.3 (4)O22A—N2A—C2A—C1A140.1 (2)
C6—C7—C8—C9178.6 (2)C1A—C2A—C3A—C4A4.9 (4)
C7—C8—C9—C101.5 (4)N2A—C2A—C3A—C4A177.2 (2)
C8—C9—C10—C111.3 (4)C2A—C3A—C4A—C5A1.6 (4)
C8—C9—C10—C13179.5 (2)C2A—C3A—C4A—N4A178.2 (2)
C9—C10—C11—C120.0 (4)O42A—N4A—C4A—C5A1.1 (4)
C13—C10—C11—C12178.1 (2)O41A—N4A—C4A—C5A179.9 (2)
C10—C11—C12—C71.2 (4)O42A—N4A—C4A—C3A178.7 (3)
C8—C7—C12—C111.0 (4)O41A—N4A—C4A—C3A0.1 (4)
C6—C7—C12—C11180.0 (2)C3A—C4A—C5A—C6A3.7 (4)
C9—C10—C13—O123.7 (4)N4A—C4A—C5A—C6A176.1 (2)
C11—C10—C13—O1154.5 (3)C4A—C5A—C6A—C1A0.5 (4)
C9—C10—C13—N14156.9 (2)C4A—C5A—C6A—N6A178.8 (2)
C11—C10—C13—N1425.0 (4)O1A—C1A—C6A—C5A172.4 (2)
O1—C13—N14—C158.6 (4)C2A—C1A—C6A—C5A6.1 (3)
C10—C13—N14—C15170.8 (2)O1A—C1A—C6A—N6A5.8 (4)
C13—N14—C15—C21160.7 (3)C2A—C1A—C6A—N6A175.8 (2)
C13—N14—C15—C1623.3 (4)O61A—N6A—C6A—C5A15.5 (4)
C21—C15—C16—C172.5 (4)O62A—N6A—C6A—C5A164.3 (2)
N14—C15—C16—C17173.3 (3)O61A—N6A—C6A—C1A166.2 (3)
C15—C16—C17—C180.2 (4)O62A—N6A—C6A—C1A14.0 (4)
C16—C17—C18—C202.9 (4)O1B—C1B—C2B—C3B176.0 (3)
C16—C17—C18—C19173.3 (3)C6B—C1B—C2B—C3B4.2 (4)
C17—C18—C20—C213.0 (4)O1B—C1B—C2B—N2B2.9 (4)
C19—C18—C20—C21173.1 (3)C6B—C1B—C2B—N2B176.9 (2)
C17—C18—C20—N22178.2 (2)O21B—N2B—C2B—C3B132.4 (3)
C19—C18—C20—N222.1 (4)O22B—N2B—C2B—C3B46.8 (4)
C16—C15—C21—C202.4 (4)O21B—N2B—C2B—C1B48.7 (3)
N14—C15—C21—C20173.7 (2)O22B—N2B—C2B—C1B132.2 (3)
C18—C20—C21—C150.4 (4)C1B—C2B—C3B—C4B2.8 (4)
N22—C20—C21—C15175.5 (2)N2B—C2B—C3B—C4B178.3 (2)
C21—C20—N22—C2317.2 (4)C2B—C3B—C4B—C5B0.2 (4)
C18—C20—N22—C23167.7 (3)C2B—C3B—C4B—N4B180.0 (2)
C20—N22—C23—N2818.2 (4)O42B—N4B—C4B—C5B3.4 (4)
C20—N22—C23—N24162.5 (2)O41B—N4B—C4B—C5B176.1 (2)
N28—C23—N24—C250.6 (4)O42B—N4B—C4B—C3B176.7 (2)
N22—C23—N24—C25179.8 (2)O41B—N4B—C4B—C3B3.7 (4)
C23—N24—C25—C261.0 (4)C3B—C4B—C5B—C6B1.3 (4)
N24—C25—C26—C271.0 (4)N4B—C4B—C5B—C6B178.9 (2)
C25—C26—C27—N280.6 (4)C4B—C5B—C6B—C1B0.5 (4)
C25—C26—C27—C29178.6 (2)C4B—C5B—C6B—N6B178.3 (2)
N24—C23—N28—C272.1 (4)O1B—C1B—C6B—C5B177.2 (3)
N22—C23—N28—C27178.7 (2)C2B—C1B—C6B—C5B3.0 (4)
C26—C27—N28—C232.0 (4)O1B—C1B—C6B—N6B4.1 (4)
C29—C27—N28—C23177.2 (2)C2B—C1B—C6B—N6B175.7 (2)
N28—C27—C29—C30166.7 (2)O61B—N6B—C6B—C5B25.5 (3)
C26—C27—C29—C3012.6 (4)O62B—N6B—C6B—C5B153.6 (2)
N28—C27—C29—C3410.8 (4)O61B—N6B—C6B—C1B153.3 (2)
C26—C27—C29—C34170.0 (3)O62B—N6B—C6B—C1B27.6 (4)
C34—C29—C30—N313.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1B0.85 (3)1.85 (3)2.658 (3)157 (3)
N1—H1···O62B0.85 (3)2.35 (3)2.890 (3)122 (2)
N2—H2···O1A0.89 (4)1.85 (4)2.678 (3)154 (3)
N2—H2···O62A0.89 (4)2.41 (4)3.009 (3)125 (3)
N14—H14···N31i0.85 (3)2.23 (3)3.069 (3)171 (3)
C5—H5B···O41Aii0.982.483.258 (4)136
C4—H4B···O42Biii0.992.333.199 (3)146
C3—H3A···O61Biv0.992.573.199 (3)121
C3—H3B···O1B0.992.343.072 (3)130
C12—H12A···O42Biii0.952.633.423 (3)142
C19—H19A···O61Bv0.982.503.435 (4)159
C19—H19A···N6Bv0.982.653.541 (4)152
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z; (iii) x1, y1, z; (iv) x1, y, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC29H33N7O2+·2C6H2N3O7
Mr951.84
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)8.560 (1), 10.734 (1), 23.060 (1)
α, β, γ (°)96.74 (3), 92.69 (2), 101.46 (7)
V3)2056.9 (6)
Z2
Radiation typeCu Kα
µ (mm1)1.02
Crystal size (mm)0.45 × 0.39 × 0.24
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.596, 0.782
No. of measured, independent and
observed [I > 2σ(I)] reflections
15890, 8082, 6946
Rint0.023
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.158, 1.06
No. of reflections8082
No. of parameters640
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.27

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Version 6.10; Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Version 6.10; Sheldrick, 2008), enCIFer (Allen et al., 2004) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1B0.85 (3)1.85 (3)2.658 (3)157 (3)
N1—H1···O62B0.85 (3)2.35 (3)2.890 (3)122 (2)
N2—H2···O1A0.89 (4)1.85 (4)2.678 (3)154 (3)
N2—H2···O62A0.89 (4)2.41 (4)3.009 (3)125 (3)
N14—H14···N31i0.85 (3)2.23 (3)3.069 (3)171 (3)
C5—H5B···O41Aii0.982.483.258 (4)135.7
C4—H4B···O42Biii0.992.333.199 (3)146.2
C3—H3A···O61Biv0.992.573.199 (3)121.3
C3—H3B···O1B0.992.343.072 (3)129.8
C12—H12A···O42Biii0.952.633.423 (3)141.6
C19—H19A···O61Bv0.982.503.435 (4)159.4
C19—H19A···N6Bv0.982.653.541 (4)151.7
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z; (iii) x1, y1, z; (iv) x1, y, z; (v) x+1, y+1, z+1.
π-Ring hydrogen-bond geometry (Å, °) for (I). top
Cg5 is the centroid of the C15–C21 ring.
D—H···AD—HH···AD···AD—H···A
C33—H33A···Cg5vi0.952.903.545 (8)127
Symmetry code: (vi) x+1, y, z.
ππ stacking geometry (Å, °) for (I). top
Cg2···Cg7v3.740 (4)
Cg3···Cg3v3.496 (7)
Cg6···Cg6vii3.396 (0)
Symmetry codes: (v) -x+1, -y+1, -z+1; (vii) -x+2, -y+2, -z. Notes: Cg2, Cg3, Cg6 and Cg7 are the centroids of the C25/C26/C27/N28/C23/N4, C32/C33/C34/C29//C30/N31, C1A–C6A and C1B–C6B rings, respectively.
 

Acknowledgements

QNMHA thanks the University of Mysore for use of its research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBindya, S., Wong, W.-T., Ashok, M. A., Yathirajan, H. S. & Rathore, R. S. (2007). Acta Cryst. C63, o546–o548.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCapdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. (2002). Nat. Rev. Drug Discov. 1, 493–502.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHarrison, W. T. A., Bindya, S., Ashok, M. A., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Sreevidya, T. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009a). Acta Cryst. E65, o1738–o1739.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009b). Acta Cryst. E65, o2201–o2202.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoen, M. D., Mckeage, K., Plosker, G. L. & Siddiqui, M. A. A. (2007). Drugs, 67, 299–320.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwamy, M. T., Ashok, M. A., Yathirajan, H. S., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o4919.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSzumma, A., Jurczak, J. & Urbańczyk-Lipkowska, Z. (2000). J. Mol. Struct. 526, 165–175.  Web of Science CSD CrossRef Google Scholar
First citationYathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007a). Acta Cryst. E63, o1691–o1692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007b). Acta Cryst. E63, o1693–o1695.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds