organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Acetyl-t-3-ethyl-r-2,c-6-bis­­(4-meth­oxy­phen­yl)piperidin-4-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 17 December 2009; accepted 19 December 2009; online 9 January 2010)

In the title compound, C23H27NO4, the piperidine ring adopts a distorted boat conformation. The meth­oxy groups lie in the plane of benzene rings to which they are attached [maximum deviations of 0.014 (3) and 0.007 (3) Å]. The benzene rings are oriented at angles of 67.2 (1) and 87.0 (1)° with respect to the best plane through the four co-planar atoms of the piperidine ring.

Related literature

For general background to piperidine derivatives, see: Aridoss et al. (2008[Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M. Kabilan, S. & Jeong, Y. T. (2008). Eur. J. Med. Chem. pp. 1-16.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H27NO4

  • Mr = 381.46

  • Orthorhombic, P n a 21

  • a = 8.6736 (11) Å

  • b = 13.4578 (16) Å

  • c = 17.547 (2) Å

  • V = 2048.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.983

  • 11102 measured reflections

  • 2646 independent reflections

  • 1926 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.138

  • S = 1.08

  • 2646 reflections

  • 257 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidine derivatives are the valued heterocyclic compounds in the field of medicinal chemistry. The compounds possessing an amide bond linkage have a wide range of biological activities such as antimicrobial, antinflammatory, antiviral, antimalarial and general anaesthetics. Furtheremore, the amides derived from chloroacetylchloride also gain significant importance in medicinal field as evidenced by their varied pharmacological activities (Aridoss et al., 2008). The crystallographic study of the title compound has been carried out to establish the molecular structur

The ORTEP diagram of the title compound is shown in Fig. 1. The piperidine ring in the molecule adopts a distorted boat conformation. The puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2 = 0.636 (3) Å, q3 = 0.089 (3) Å, φ2 = 286.2 (2)° and Δs(C3 & C6)= 15.4 (3)°. The methoxy groups lie in the plane of phenyl rings and the phenyl rings are oriented at angles of 67.2 (1)° and 87.0(1°) with the best plane of piperidine ring. The sum of the bond angles around the atom N1(358.5°) of the piperidine ring in the molecule is in accordance with sp2 hybridization. The crystal structure is stabilized by intramolecular C—H···O interactions.

Related literature top

For general background to piperidine derivatives, see: Aridoss et al. (2008). For asymmetry parameters, see: Nardelli (1983). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

To a solution of t-3-ethyl-r-2,c-6-bis(4-methoxyphenyl)piperidin-4-one (3.39 g) in anhydrous benzene (60 ml) was added triethylamine (2.78) and acetylchloride (1.42 ml). The contents were allowed to reflux on a water bath for 12 h. The precipitated ammonium salt was filtered off and the filterate was washed with water. The organic layer was dried over anhydrous Na2SO4, concentrated and crystallized from benzene:pet-ether (60–80°C) in the ratio of 9:1.

Refinement top

In the absense of anomalous scatterers Friedel pairs were merged. The C bound H atoms positioned geometrically (C—H=0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Structure description top

Piperidine derivatives are the valued heterocyclic compounds in the field of medicinal chemistry. The compounds possessing an amide bond linkage have a wide range of biological activities such as antimicrobial, antinflammatory, antiviral, antimalarial and general anaesthetics. Furtheremore, the amides derived from chloroacetylchloride also gain significant importance in medicinal field as evidenced by their varied pharmacological activities (Aridoss et al., 2008). The crystallographic study of the title compound has been carried out to establish the molecular structur

The ORTEP diagram of the title compound is shown in Fig. 1. The piperidine ring in the molecule adopts a distorted boat conformation. The puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2 = 0.636 (3) Å, q3 = 0.089 (3) Å, φ2 = 286.2 (2)° and Δs(C3 & C6)= 15.4 (3)°. The methoxy groups lie in the plane of phenyl rings and the phenyl rings are oriented at angles of 67.2 (1)° and 87.0(1°) with the best plane of piperidine ring. The sum of the bond angles around the atom N1(358.5°) of the piperidine ring in the molecule is in accordance with sp2 hybridization. The crystal structure is stabilized by intramolecular C—H···O interactions.

For general background to piperidine derivatives, see: Aridoss et al. (2008). For asymmetry parameters, see: Nardelli (1983). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing the thermal ellipsoids are drawn at 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down a–axis.
1-Acetyl-t-3-ethyl-r-2,c-6-bis(4- methoxyphenyl)piperidin-4-one top
Crystal data top
C23H27NO4F(000) = 816
Mr = 381.46Dx = 1.237 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1987 reflections
a = 8.6736 (11) Åθ = 1.9–28.5°
b = 13.4578 (16) ŵ = 0.08 mm1
c = 17.547 (2) ÅT = 293 K
V = 2048.2 (4) Å3Block, colorless
Z = 40.25 × 0.23 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2646 independent reflections
Radiation source: fine-focus sealed tube1926 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and φ scansθmax = 28.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 118
Tmin = 0.979, Tmax = 0.983k = 1713
11102 measured reflectionsl = 1623
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.077P)2 + 0.0634P]
where P = (Fo2 + 2Fc2)/3
2646 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.42 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C23H27NO4V = 2048.2 (4) Å3
Mr = 381.46Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 8.6736 (11) ŵ = 0.08 mm1
b = 13.4578 (16) ÅT = 293 K
c = 17.547 (2) Å0.25 × 0.23 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2646 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1926 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.036
11102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.138H-atom parameters constrained
S = 1.08Δρmax = 0.42 e Å3
2646 reflectionsΔρmin = 0.19 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2257 (3)0.72781 (16)0.10022 (18)0.0773 (7)
O20.1555 (3)0.37114 (19)0.38952 (16)0.0789 (7)
O30.6511 (3)0.3748 (2)0.11657 (17)0.0849 (8)
O40.6382 (3)0.68839 (18)0.45689 (13)0.0698 (6)
N10.2969 (3)0.57593 (15)0.14275 (14)0.0496 (5)
C20.2612 (3)0.4685 (2)0.15230 (17)0.0519 (6)
H20.22120.44370.10370.062*
C30.4078 (4)0.4093 (2)0.1716 (2)0.0607 (8)
H3A0.42840.41690.22560.073*
H3B0.38700.33950.16240.073*
C40.5522 (4)0.4374 (2)0.12812 (19)0.0633 (8)
C50.5648 (3)0.5426 (2)0.10367 (18)0.0591 (7)
H50.67160.56430.11130.071*
C60.4594 (3)0.6100 (2)0.15094 (17)0.0517 (6)
H60.46380.67540.12650.062*
C70.1935 (3)0.6403 (2)0.11167 (19)0.0578 (7)
C80.0345 (4)0.6026 (3)0.0908 (3)0.0780 (10)
H8A0.02100.65380.06440.117*
H8B0.02020.58470.13640.117*
H8C0.04400.54540.05850.117*
C90.1414 (3)0.4477 (2)0.21308 (17)0.0506 (6)
C100.1417 (3)0.4952 (2)0.28316 (19)0.0597 (7)
H100.21130.54650.29190.072*
C110.0419 (4)0.4682 (3)0.3394 (2)0.0655 (8)
H110.04510.50120.38590.079*
C120.0635 (4)0.3930 (2)0.32890 (18)0.0550 (7)
C130.0700 (4)0.3475 (3)0.2595 (2)0.0731 (10)
H130.14350.29870.25030.088*
C140.0336 (5)0.3744 (3)0.2025 (2)0.0738 (10)
H140.02960.34170.15580.089*
C150.2642 (7)0.2920 (4)0.3811 (4)0.120 (2)
H15A0.33930.30980.34330.181*
H15B0.31490.28040.42890.181*
H15C0.21130.23280.36550.181*
C160.5258 (5)0.5529 (3)0.0179 (2)0.0792 (10)
H16A0.43260.51540.00760.095*
H16B0.50410.62210.00710.095*
C170.6463 (6)0.5190 (5)0.0336 (3)0.1079 (16)
H17A0.73290.56320.03060.162*
H17B0.60750.51820.08480.162*
H17C0.67800.45320.01940.162*
C180.5072 (3)0.62705 (19)0.23351 (17)0.0509 (6)
C190.6239 (3)0.5761 (2)0.27049 (19)0.0586 (7)
H190.67700.52650.24450.070*
C200.6632 (3)0.5970 (2)0.34454 (19)0.0580 (7)
H200.74080.56080.36830.070*
C210.5885 (3)0.6715 (2)0.38383 (18)0.0541 (7)
C220.4715 (4)0.7235 (2)0.3481 (2)0.0611 (8)
H220.41990.77380.37390.073*
C230.4317 (3)0.7002 (2)0.2739 (2)0.0583 (7)
H230.35180.73490.25060.070*
C240.5793 (5)0.7729 (3)0.4950 (2)0.0799 (10)
H24A0.59580.83090.46410.120*
H24B0.63140.78090.54290.120*
H24C0.47090.76440.50370.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0703 (13)0.0523 (12)0.1093 (19)0.0031 (10)0.0158 (14)0.0160 (12)
O20.0801 (16)0.0746 (16)0.0820 (16)0.0055 (12)0.0234 (13)0.0043 (13)
O30.0738 (15)0.0847 (17)0.0962 (19)0.0267 (13)0.0087 (14)0.0157 (15)
O40.0709 (14)0.0749 (15)0.0637 (13)0.0019 (11)0.0078 (12)0.0087 (11)
N10.0480 (12)0.0419 (11)0.0591 (13)0.0018 (9)0.0053 (10)0.0002 (10)
C20.0573 (15)0.0446 (14)0.0538 (14)0.0033 (12)0.0011 (13)0.0076 (12)
C30.0660 (18)0.0446 (15)0.0714 (19)0.0091 (13)0.0066 (15)0.0021 (14)
C40.0606 (17)0.0687 (19)0.0606 (17)0.0108 (15)0.0008 (14)0.0132 (15)
C50.0490 (15)0.0695 (18)0.0588 (16)0.0026 (13)0.0018 (13)0.0014 (15)
C60.0467 (14)0.0494 (14)0.0590 (15)0.0025 (11)0.0046 (12)0.0019 (13)
C70.0560 (16)0.0556 (16)0.0620 (17)0.0023 (13)0.0056 (14)0.0024 (14)
C80.0608 (19)0.071 (2)0.102 (3)0.0010 (16)0.0243 (19)0.008 (2)
C90.0516 (14)0.0403 (13)0.0599 (16)0.0020 (11)0.0060 (12)0.0043 (12)
C100.0532 (15)0.0583 (17)0.0677 (18)0.0134 (13)0.0010 (14)0.0164 (15)
C110.0628 (18)0.070 (2)0.0634 (18)0.0034 (15)0.0004 (15)0.0217 (16)
C120.0527 (15)0.0481 (15)0.0642 (18)0.0015 (12)0.0054 (13)0.0045 (13)
C130.080 (2)0.0620 (19)0.077 (2)0.0282 (17)0.0116 (18)0.0147 (17)
C140.088 (2)0.070 (2)0.0634 (18)0.0273 (18)0.0077 (18)0.0215 (17)
C150.120 (4)0.100 (3)0.141 (4)0.048 (3)0.058 (4)0.017 (3)
C160.076 (2)0.101 (3)0.0604 (18)0.010 (2)0.0017 (17)0.004 (2)
C170.103 (3)0.139 (5)0.082 (3)0.006 (3)0.011 (3)0.012 (3)
C180.0487 (13)0.0449 (14)0.0591 (15)0.0048 (12)0.0038 (12)0.0002 (12)
C190.0541 (15)0.0527 (16)0.0690 (19)0.0091 (13)0.0027 (14)0.0082 (14)
C200.0498 (15)0.0583 (17)0.0658 (18)0.0051 (12)0.0100 (14)0.0008 (14)
C210.0489 (13)0.0492 (16)0.0642 (17)0.0092 (12)0.0038 (13)0.0049 (13)
C220.0526 (15)0.0519 (16)0.079 (2)0.0045 (12)0.0048 (15)0.0137 (15)
C230.0527 (14)0.0508 (15)0.0715 (19)0.0069 (12)0.0114 (14)0.0053 (14)
C240.091 (2)0.076 (2)0.073 (2)0.0085 (19)0.006 (2)0.0173 (19)
Geometric parameters (Å, º) top
O1—C71.227 (4)C11—C121.376 (5)
O2—C121.362 (4)C11—H110.9300
O2—C151.430 (5)C12—C131.364 (5)
O3—C41.219 (4)C13—C141.393 (5)
O4—C211.372 (4)C13—H130.9300
O4—C241.415 (5)C14—H140.9300
N1—C71.361 (4)C15—H15A0.9600
N1—C21.488 (4)C15—H15B0.9600
N1—C61.489 (3)C15—H15C0.9600
C2—C91.515 (4)C16—C171.456 (6)
C2—C31.538 (4)C16—H16A0.9700
C2—H20.9800C16—H16B0.9700
C3—C41.514 (5)C17—H17A0.9600
C3—H3A0.9700C17—H17B0.9600
C3—H3B0.9700C17—H17C0.9600
C4—C51.484 (5)C18—C231.379 (4)
C5—C61.532 (4)C18—C191.384 (4)
C5—C161.548 (5)C19—C201.373 (5)
C5—H50.9800C19—H190.9300
C6—C181.525 (4)C20—C211.378 (4)
C6—H60.9800C20—H200.9300
C7—C81.514 (4)C21—C221.382 (4)
C8—H8A0.9600C22—C231.383 (5)
C8—H8B0.9600C22—H220.9300
C8—H8C0.9600C23—H230.9300
C9—C141.371 (4)C24—H24A0.9600
C9—C101.386 (4)C24—H24B0.9600
C10—C111.362 (5)C24—H24C0.9600
C10—H100.9300
C12—O2—C15117.8 (3)C13—C12—C11118.5 (3)
C21—O4—C24117.5 (3)O2—C12—C11116.3 (3)
C7—N1—C2121.7 (2)C12—C13—C14119.9 (3)
C7—N1—C6117.8 (2)C12—C13—H13120.1
C2—N1—C6119.0 (2)C14—C13—H13120.1
N1—C2—C9113.7 (2)C9—C14—C13121.9 (3)
N1—C2—C3110.9 (2)C9—C14—H14119.0
C9—C2—C3108.5 (2)C13—C14—H14119.0
N1—C2—H2107.9O2—C15—H15A109.5
C9—C2—H2107.9O2—C15—H15B109.5
C3—C2—H2107.9H15A—C15—H15B109.5
C4—C3—C2116.3 (3)O2—C15—H15C109.5
C4—C3—H3A108.2H15A—C15—H15C109.5
C2—C3—H3A108.2H15B—C15—H15C109.5
C4—C3—H3B108.2C17—C16—C5114.8 (4)
C2—C3—H3B108.2C17—C16—H16A108.6
H3A—C3—H3B107.4C5—C16—H16A108.6
O3—C4—C5124.0 (3)C17—C16—H16B108.6
O3—C4—C3119.6 (3)C5—C16—H16B108.6
C5—C4—C3116.4 (3)H16A—C16—H16B107.5
C4—C5—C6111.4 (3)C16—C17—H17A109.5
C4—C5—C16110.5 (3)C16—C17—H17B109.5
C6—C5—C16110.1 (3)H17A—C17—H17B109.5
C4—C5—H5108.3C16—C17—H17C109.5
C6—C5—H5108.3H17A—C17—H17C109.5
C16—C5—H5108.3H17B—C17—H17C109.5
N1—C6—C18113.3 (2)C23—C18—C19117.4 (3)
N1—C6—C5109.3 (2)C23—C18—C6117.8 (3)
C18—C6—C5116.2 (2)C19—C18—C6124.7 (3)
N1—C6—H6105.7C20—C19—C18121.6 (3)
C18—C6—H6105.7C20—C19—H19119.2
C5—C6—H6105.7C18—C19—H19119.2
O1—C7—N1121.8 (3)C19—C20—C21120.4 (3)
O1—C7—C8119.3 (3)C19—C20—H20119.8
N1—C7—C8118.9 (3)C21—C20—H20119.8
C7—C8—H8A109.5O4—C21—C20116.1 (3)
C7—C8—H8B109.5O4—C21—C22124.8 (3)
H8A—C8—H8B109.5C20—C21—C22119.1 (3)
C7—C8—H8C109.5C21—C22—C23119.7 (3)
H8A—C8—H8C109.5C21—C22—H22120.2
H8B—C8—H8C109.5C23—C22—H22120.2
C14—C9—C10117.0 (3)C22—C23—C18121.8 (3)
C14—C9—C2120.3 (3)C22—C23—H23119.1
C10—C9—C2122.5 (2)C18—C23—H23119.1
C11—C10—C9121.2 (3)O4—C24—H24A109.5
C11—C10—H10119.4O4—C24—H24B109.5
C9—C10—H10119.4H24A—C24—H24B109.5
C10—C11—C12121.4 (3)O4—C24—H24C109.5
C10—C11—H11119.3H24A—C24—H24C109.5
C12—C11—H11119.3H24B—C24—H24C109.5
C13—C12—O2125.2 (3)
C7—N1—C2—C970.2 (3)C2—C9—C10—C11173.5 (3)
C6—N1—C2—C9123.6 (3)C9—C10—C11—C120.3 (5)
C7—N1—C2—C3167.3 (3)C15—O2—C12—C132.3 (6)
C6—N1—C2—C31.1 (4)C15—O2—C12—C11178.7 (4)
N1—C2—C3—C441.2 (4)C10—C11—C12—C132.1 (5)
C9—C2—C3—C4166.7 (3)C10—C11—C12—O2178.8 (3)
C2—C3—C4—O3151.4 (3)O2—C12—C13—C14178.1 (3)
C2—C3—C4—C530.1 (4)C11—C12—C13—C143.0 (6)
O3—C4—C5—C6157.9 (3)C10—C9—C14—C130.8 (6)
C3—C4—C5—C620.6 (4)C2—C9—C14—C13174.5 (3)
O3—C4—C5—C1679.5 (4)C12—C13—C14—C91.5 (7)
C3—C4—C5—C16102.0 (3)C4—C5—C16—C1775.5 (5)
C7—N1—C6—C18110.1 (3)C6—C5—C16—C17161.1 (4)
C2—N1—C6—C1883.1 (3)N1—C6—C18—C2363.3 (3)
C7—N1—C6—C5118.6 (3)C5—C6—C18—C23168.9 (3)
C2—N1—C6—C548.2 (3)N1—C6—C18—C19118.4 (3)
C4—C5—C6—N158.7 (3)C5—C6—C18—C199.4 (4)
C16—C5—C6—N164.1 (3)C23—C18—C19—C200.2 (5)
C4—C5—C6—C1871.0 (3)C6—C18—C19—C20178.4 (3)
C16—C5—C6—C18166.1 (3)C18—C19—C20—C211.2 (5)
C2—N1—C7—O1176.2 (3)C24—O4—C21—C20171.3 (3)
C6—N1—C7—O19.9 (5)C24—O4—C21—C228.4 (4)
C2—N1—C7—C83.8 (5)C19—C20—C21—O4178.5 (3)
C6—N1—C7—C8170.2 (3)C19—C20—C21—C221.2 (5)
N1—C2—C9—C14142.0 (3)O4—C21—C22—C23179.6 (3)
C3—C2—C9—C1494.2 (4)C20—C21—C22—C230.1 (5)
N1—C2—C9—C1043.0 (4)C21—C22—C23—C181.0 (5)
C3—C2—C9—C1080.8 (3)C19—C18—C23—C220.9 (5)
C14—C9—C10—C111.7 (5)C6—C18—C23—C22177.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.982.232.723 (3)110

Experimental details

Crystal data
Chemical formulaC23H27NO4
Mr381.46
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)8.6736 (11), 13.4578 (16), 17.547 (2)
V3)2048.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.979, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
11102, 2646, 1926
Rint0.036
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.138, 1.08
No. of reflections2646
No. of parameters257
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.19

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.982.232.723 (3)109.8
 

Acknowledgements

KR thanks the GNR X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the management of Kandaswami Kandar's College, Velur, Namakkal, TN, India, for the encouragement to pursue the programme.

References

First citationAridoss, G., Parthiban, P., Ramachandran, R., Prakash, M. Kabilan, S. & Jeong, Y. T. (2008). Eur. J. Med. Chem. pp. 1–16.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds