organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Di­chloro­acetyl-r-2,c-6-bis­­(4-meth­oxy­phen­yl)-t-3-methyl­piperidin-4-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 17 December 2009; accepted 19 December 2009; online 9 January 2010)

In the title compound, C22H23Cl2NO4, the piperidine ring adopts a distorted boat conformation. The meth­oxy groups lie in the plane of the benzene rings to which they are attached. The benzene rings are oriented at angles of 84.3 (1) and 76.8 (1)° with respect to the best plane through the piperidine ring. The crystal packing is stabilized by intermolecular C—H⋯O inter­actions.

Related literature

For general background to piperidine derivatives, see: Perumal et al. (2001[Perumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159]); Dimmock et al. (2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santhos, C. L., Balsarini, J., Clercq, E. D. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C22H23Cl2NO4

  • Mr = 436.31

  • Monoclinic, P 21 /c

  • a = 19.3021 (16) Å

  • b = 10.5886 (9) Å

  • c = 10.3241 (10) Å

  • β = 91.445 (5)°

  • V = 2109.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.25 × 0.24 × 0.23 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.919, Tmax = 0.926

  • 17272 measured reflections

  • 5140 independent reflections

  • 2632 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.210

  • S = 1.05

  • 5140 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.98 2.31 3.264 (4) 164
C8—H8⋯O1i 0.98 2.52 3.363 (4) 144
C18—H18⋯O1i 0.93 2.57 3.391 (4) 147
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidine derivatives are the valued heterocyclic compounds in the field of medicinal chemistry. piperidin-4-ones are reported to possess analgesic, anti-inflammatory, central nervous system (CNS), local anaesthetic, anticancer and antimicrobial activity (Perumal et al. (2001); Dimmock et al., 2001). The crystallographic study of the title compound has been carried out to establish the molecular structure

The ORTEP diagram of the title compound is shown in Fig.1. The piperidine ring in the molecule adopts a distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2 = 0.685 (3) Å, q3 = 0.039 (3) Å, φ2 = 72.1 (3)° and Δs(C2 & C5)= 14.9 (3)°. The methoxy groups lie in the plane of phenyl rings and these phenyl rings are oriented at angles of 84.3 (1)° and 76.8 (1)° with best plane of piperidine ring.The sum of the bond angles around the atom N1(359.7°) of the piperidine ring in the molecule is in accordance with sp2 hybridization.

The crystal packing is stabilized by C—H···O types of intra and intermolecular interactions, which link the molecules into a chain extending along the c axis. Atoms C6, C18 and C4 of the molecule at (x, y, z) donate a proton to trifurcated acceptor atom O1 of the molecule at (x, 1/2 - y, -1/2 + z). Intermolecular interactions C6—H6···O1 and C18—H18···O1 form C5 & C7 zigzag chains (Bernstein et al., 1995), whereas the other interaction C8—H8···O1 forms a C4 one-dimensional chain, running along the c axis, as shown in Fig. 2.

Related literature top

For general background to piperidine derivatives, see: Perumal et al. (2001); Dimmock et al. (2001). For asymmetry parameters, see: Nardelli (1983). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a solution of r-2,c-6-bis(4-methoxyphenyl)-t-3-methylpiperidin-4-one (1.625 g) in anhydrous benzene (60 ml) was added triethylamine (2.1 ml) and dichloroacetylchloride (1.42 ml). The reaction mixture was allowed to stirr at room teperature for 2hrs. The resulting solution was washed with sodium bicarbonate solution (10%) and water. The organic layer was dried over anhydrous sodium sulfate, evaporated and crystallized from benzene: pet-ether (60–80°C) in the ratio of 9:1.

Refinement top

H atoms were positioned geometrically (C—H=0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Structure description top

Piperidine derivatives are the valued heterocyclic compounds in the field of medicinal chemistry. piperidin-4-ones are reported to possess analgesic, anti-inflammatory, central nervous system (CNS), local anaesthetic, anticancer and antimicrobial activity (Perumal et al. (2001); Dimmock et al., 2001). The crystallographic study of the title compound has been carried out to establish the molecular structure

The ORTEP diagram of the title compound is shown in Fig.1. The piperidine ring in the molecule adopts a distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2 = 0.685 (3) Å, q3 = 0.039 (3) Å, φ2 = 72.1 (3)° and Δs(C2 & C5)= 14.9 (3)°. The methoxy groups lie in the plane of phenyl rings and these phenyl rings are oriented at angles of 84.3 (1)° and 76.8 (1)° with best plane of piperidine ring.The sum of the bond angles around the atom N1(359.7°) of the piperidine ring in the molecule is in accordance with sp2 hybridization.

The crystal packing is stabilized by C—H···O types of intra and intermolecular interactions, which link the molecules into a chain extending along the c axis. Atoms C6, C18 and C4 of the molecule at (x, y, z) donate a proton to trifurcated acceptor atom O1 of the molecule at (x, 1/2 - y, -1/2 + z). Intermolecular interactions C6—H6···O1 and C18—H18···O1 form C5 & C7 zigzag chains (Bernstein et al., 1995), whereas the other interaction C8—H8···O1 forms a C4 one-dimensional chain, running along the c axis, as shown in Fig. 2.

For general background to piperidine derivatives, see: Perumal et al. (2001); Dimmock et al. (2001). For asymmetry parameters, see: Nardelli (1983). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing the thermal ellipsoids are drawn at 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down a–axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
1-Dichloroacetyl-r-2,c-6-bis(4-methoxyphenyl)-t- 3-methylpiperidin-4-one top
Crystal data top
C22H23Cl2NO4F(000) = 912
Mr = 436.31Dx = 1.374 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2564 reflections
a = 19.3021 (16) Åθ = 1.1–28.7°
b = 10.5886 (9) ŵ = 0.34 mm1
c = 10.3241 (10) ÅT = 293 K
β = 91.445 (5)°Block, colorless
V = 2109.4 (3) Å30.25 × 0.24 × 0.23 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5140 independent reflections
Radiation source: fine-focus sealed tube2632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω and φ scansθmax = 28.7°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2525
Tmin = 0.919, Tmax = 0.926k = 1314
17272 measured reflectionsl = 1310
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.210H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1035P)2 + 0.3613P]
where P = (Fo2 + 2Fc2)/3
5140 reflections(Δ/σ)max = 0.001
265 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C22H23Cl2NO4V = 2109.4 (3) Å3
Mr = 436.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.3021 (16) ŵ = 0.34 mm1
b = 10.5886 (9) ÅT = 293 K
c = 10.3241 (10) Å0.25 × 0.24 × 0.23 mm
β = 91.445 (5)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5140 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2632 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.926Rint = 0.050
17272 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.210H-atom parameters constrained
S = 1.05Δρmax = 0.37 e Å3
5140 reflectionsΔρmin = 0.34 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.06236 (4)0.37763 (8)0.02208 (10)0.0600 (3)
Cl20.10261 (5)0.12850 (8)0.06850 (10)0.0618 (3)
O10.18680 (12)0.2296 (2)0.1496 (2)0.0611 (7)
O20.37098 (13)0.6870 (3)0.4740 (3)0.0714 (8)
O30.43242 (15)0.3729 (4)0.1711 (4)0.1125 (13)
O40.06912 (12)0.8442 (2)0.1071 (3)0.0607 (7)
N10.24905 (12)0.3470 (2)0.0117 (2)0.0378 (6)
C20.31270 (15)0.3183 (3)0.0888 (3)0.0433 (8)
H20.30250.24220.13880.052*
C30.36826 (17)0.2806 (3)0.0059 (4)0.0568 (9)
H3A0.41100.26330.04230.068*
H3B0.35410.20320.04930.068*
C40.38194 (18)0.3784 (4)0.1054 (4)0.0617 (10)
C50.32820 (16)0.4799 (3)0.1204 (3)0.0481 (8)
H50.33640.54020.04960.058*
C60.25383 (14)0.4284 (3)0.1064 (3)0.0379 (7)
H60.24310.37550.18210.046*
C70.19106 (15)0.2871 (3)0.0469 (3)0.0407 (7)
C80.12870 (15)0.2872 (3)0.0465 (3)0.0413 (7)
H80.14160.32380.12970.050*
C90.33116 (14)0.4193 (3)0.1869 (3)0.0424 (7)
C100.28014 (16)0.4676 (3)0.2662 (3)0.0502 (8)
H100.23480.43930.25480.060*
C110.29471 (17)0.5556 (4)0.3605 (3)0.0562 (9)
H110.25950.58630.41170.067*
C120.36200 (18)0.5987 (3)0.3792 (3)0.0530 (9)
C130.41367 (17)0.5519 (4)0.3030 (4)0.0584 (10)
H130.45910.57950.31510.070*
C140.39748 (16)0.4635 (4)0.2082 (3)0.0543 (9)
H140.43270.43280.15710.065*
C150.4393 (2)0.7283 (4)0.5030 (5)0.0878 (14)
H15A0.46780.65690.52550.132*
H15B0.43890.78630.57440.132*
H15C0.45770.76980.42860.132*
C160.3347 (2)0.5526 (4)0.2460 (4)0.0691 (11)
H16A0.38210.57700.25660.104*
H16B0.30610.62670.24360.104*
H16C0.31990.50010.31730.104*
C170.20227 (14)0.5359 (3)0.1064 (3)0.0348 (7)
C180.15426 (15)0.5514 (3)0.2067 (3)0.0399 (7)
H180.15290.49280.27380.048*
C190.10828 (16)0.6511 (3)0.2103 (3)0.0428 (7)
H190.07590.65810.27810.051*
C200.11057 (16)0.7406 (3)0.1126 (3)0.0425 (7)
C210.15861 (16)0.7270 (3)0.0128 (3)0.0456 (8)
H210.16080.78710.05280.055*
C220.20341 (16)0.6263 (3)0.0083 (3)0.0419 (7)
H220.23480.61830.06100.050*
C230.0234 (2)0.8678 (3)0.2145 (5)0.0703 (11)
H23A0.04970.87610.29170.105*
H23B0.00180.94440.19990.105*
H23C0.00850.79870.22430.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0590 (5)0.0573 (5)0.0641 (7)0.0081 (4)0.0103 (4)0.0020 (4)
Cl20.0749 (6)0.0441 (5)0.0665 (7)0.0149 (4)0.0003 (5)0.0053 (4)
O10.0674 (15)0.0703 (16)0.0452 (15)0.0148 (12)0.0051 (12)0.0270 (13)
O20.0731 (17)0.0837 (18)0.0570 (18)0.0107 (14)0.0054 (14)0.0164 (15)
O30.0646 (18)0.161 (3)0.114 (3)0.0281 (19)0.0481 (19)0.042 (2)
O40.0657 (15)0.0398 (12)0.076 (2)0.0079 (11)0.0022 (14)0.0061 (12)
N10.0424 (13)0.0422 (14)0.0288 (15)0.0000 (11)0.0011 (11)0.0049 (11)
C20.0434 (17)0.0500 (18)0.037 (2)0.0071 (14)0.0012 (14)0.0052 (15)
C30.0512 (19)0.068 (2)0.051 (2)0.0129 (17)0.0018 (16)0.0085 (19)
C40.0458 (19)0.088 (3)0.052 (2)0.0024 (18)0.0091 (17)0.006 (2)
C50.0497 (18)0.058 (2)0.037 (2)0.0090 (15)0.0100 (14)0.0009 (16)
C60.0457 (16)0.0459 (17)0.0223 (16)0.0058 (13)0.0028 (12)0.0004 (13)
C70.0467 (17)0.0386 (16)0.0367 (19)0.0007 (13)0.0002 (14)0.0030 (14)
C80.0463 (16)0.0394 (15)0.0382 (19)0.0059 (13)0.0011 (14)0.0018 (13)
C90.0397 (16)0.0568 (19)0.0307 (18)0.0009 (14)0.0018 (13)0.0029 (15)
C100.0420 (17)0.068 (2)0.041 (2)0.0006 (15)0.0010 (14)0.0059 (17)
C110.0478 (19)0.077 (2)0.043 (2)0.0032 (17)0.0017 (15)0.0102 (19)
C120.060 (2)0.065 (2)0.033 (2)0.0035 (17)0.0043 (16)0.0014 (17)
C130.0459 (19)0.083 (3)0.046 (2)0.0115 (18)0.0030 (16)0.001 (2)
C140.0411 (17)0.083 (3)0.038 (2)0.0005 (17)0.0037 (14)0.0004 (19)
C150.086 (3)0.098 (3)0.078 (3)0.025 (3)0.013 (3)0.022 (3)
C160.079 (3)0.078 (3)0.051 (3)0.019 (2)0.019 (2)0.010 (2)
C170.0474 (16)0.0344 (15)0.0228 (16)0.0052 (12)0.0054 (12)0.0021 (12)
C180.0579 (18)0.0344 (15)0.0276 (18)0.0022 (13)0.0029 (14)0.0015 (13)
C190.0543 (18)0.0383 (16)0.0356 (19)0.0048 (13)0.0026 (14)0.0099 (14)
C200.0512 (17)0.0336 (16)0.043 (2)0.0036 (13)0.0078 (15)0.0030 (14)
C210.0567 (18)0.0443 (17)0.036 (2)0.0033 (15)0.0074 (15)0.0106 (15)
C220.0478 (17)0.0485 (18)0.0294 (18)0.0010 (14)0.0010 (13)0.0004 (14)
C230.068 (2)0.051 (2)0.090 (3)0.0093 (18)0.012 (2)0.014 (2)
Geometric parameters (Å, º) top
Cl1—C81.762 (3)C10—C111.372 (5)
Cl2—C81.768 (3)C10—H100.9300
O1—C71.228 (4)C11—C121.385 (4)
O2—C121.362 (4)C11—H110.9300
O2—C151.415 (4)C12—C131.378 (5)
O3—C41.203 (4)C13—C141.383 (5)
O4—C201.360 (4)C13—H130.9300
O4—C231.422 (4)C14—H140.9300
N1—C71.344 (4)C15—H15A0.9600
N1—C21.479 (4)C15—H15B0.9600
N1—C61.498 (4)C15—H15C0.9600
C2—C91.509 (4)C16—H16A0.9600
C2—C31.523 (4)C16—H16B0.9600
C2—H20.9800C16—H16C0.9600
C3—C41.487 (5)C17—C181.382 (4)
C3—H3A0.9700C17—C221.394 (4)
C3—H3B0.9700C18—C191.379 (4)
C4—C51.499 (5)C18—H180.9300
C5—C161.516 (5)C19—C201.384 (4)
C5—C61.546 (4)C19—H190.9300
C5—H50.9800C20—C211.377 (4)
C6—C171.512 (4)C21—C221.372 (4)
C6—H60.9800C21—H210.9300
C7—C81.523 (4)C22—H220.9300
C8—H80.9800C23—H23A0.9600
C9—C141.375 (4)C23—H23B0.9600
C9—C101.393 (4)C23—H23C0.9600
C12—O2—C15117.7 (3)C10—C11—H11120.1
C20—O4—C23117.6 (3)C12—C11—H11120.1
C7—N1—C2116.4 (2)O2—C12—C13125.2 (3)
C7—N1—C6124.0 (2)O2—C12—C11115.3 (3)
C2—N1—C6119.3 (2)C13—C12—C11119.4 (3)
N1—C2—C9113.3 (2)C12—C13—C14119.5 (3)
N1—C2—C3107.3 (3)C12—C13—H13120.2
C9—C2—C3117.3 (3)C14—C13—H13120.2
N1—C2—H2106.1C9—C14—C13122.4 (3)
C9—C2—H2106.1C9—C14—H14118.8
C3—C2—H2106.1C13—C14—H14118.8
C4—C3—C2113.6 (3)O2—C15—H15A109.5
C4—C3—H3A108.8O2—C15—H15B109.5
C2—C3—H3A108.8H15A—C15—H15B109.5
C4—C3—H3B108.8O2—C15—H15C109.5
C2—C3—H3B108.8H15A—C15—H15C109.5
H3A—C3—H3B107.7H15B—C15—H15C109.5
O3—C4—C3121.1 (4)C5—C16—H16A109.5
O3—C4—C5123.0 (4)C5—C16—H16B109.5
C3—C4—C5115.9 (3)H16A—C16—H16B109.5
C4—C5—C16112.4 (3)C5—C16—H16C109.5
C4—C5—C6112.3 (3)H16A—C16—H16C109.5
C16—C5—C6110.9 (3)H16B—C16—H16C109.5
C4—C5—H5107.0C18—C17—C22117.5 (3)
C16—C5—H5107.0C18—C17—C6121.2 (3)
C6—C5—H5107.0C22—C17—C6121.3 (3)
N1—C6—C17112.3 (2)C19—C18—C17122.0 (3)
N1—C6—C5110.8 (2)C19—C18—H18119.0
C17—C6—C5110.3 (2)C17—C18—H18119.0
N1—C6—H6107.7C18—C19—C20119.7 (3)
C17—C6—H6107.7C18—C19—H19120.1
C5—C6—H6107.7C20—C19—H19120.1
O1—C7—N1122.8 (3)O4—C20—C21116.0 (3)
O1—C7—C8118.6 (3)O4—C20—C19125.1 (3)
N1—C7—C8118.6 (3)C21—C20—C19118.9 (3)
C7—C8—Cl1108.5 (2)C22—C21—C20121.3 (3)
C7—C8—Cl2107.4 (2)C22—C21—H21119.4
Cl1—C8—Cl2111.14 (16)C20—C21—H21119.4
C7—C8—H8109.9C21—C22—C17120.7 (3)
Cl1—C8—H8109.9C21—C22—H22119.7
Cl2—C8—H8109.9C17—C22—H22119.7
C14—C9—C10116.7 (3)O4—C23—H23A109.5
C14—C9—C2123.5 (3)O4—C23—H23B109.5
C10—C9—C2119.7 (3)H23A—C23—H23B109.5
C11—C10—C9122.1 (3)O4—C23—H23C109.5
C11—C10—H10119.0H23A—C23—H23C109.5
C9—C10—H10119.0H23B—C23—H23C109.5
C10—C11—C12119.8 (3)
C7—N1—C2—C9101.3 (3)N1—C2—C9—C1046.9 (4)
C6—N1—C2—C984.8 (3)C3—C2—C9—C10172.8 (3)
C7—N1—C2—C3127.6 (3)C14—C9—C10—C110.5 (5)
C6—N1—C2—C346.3 (3)C2—C9—C10—C11177.3 (3)
N1—C2—C3—C457.2 (4)C9—C10—C11—C120.2 (6)
C9—C2—C3—C471.6 (4)C15—O2—C12—C134.4 (6)
C2—C3—C4—O3166.1 (4)C15—O2—C12—C11176.0 (3)
C2—C3—C4—C515.7 (4)C10—C11—C12—O2179.3 (3)
O3—C4—C5—C1614.5 (5)C10—C11—C12—C130.3 (6)
C3—C4—C5—C16163.6 (3)O2—C12—C13—C14179.0 (3)
O3—C4—C5—C6140.2 (4)C11—C12—C13—C140.6 (6)
C3—C4—C5—C637.8 (4)C10—C9—C14—C130.2 (5)
C7—N1—C6—C1757.7 (4)C2—C9—C14—C13176.9 (3)
C2—N1—C6—C17128.9 (3)C12—C13—C14—C90.3 (6)
C7—N1—C6—C5178.4 (3)N1—C6—C17—C18122.7 (3)
C2—N1—C6—C55.1 (4)C5—C6—C17—C18113.1 (3)
C4—C5—C6—N148.3 (4)N1—C6—C17—C2260.2 (3)
C16—C5—C6—N1174.9 (3)C5—C6—C17—C2264.0 (3)
C4—C5—C6—C17173.3 (3)C22—C17—C18—C190.8 (4)
C16—C5—C6—C1760.1 (3)C6—C17—C18—C19178.0 (3)
C2—N1—C7—O112.7 (4)C17—C18—C19—C201.4 (4)
C6—N1—C7—O1173.7 (3)C23—O4—C20—C21174.2 (3)
C2—N1—C7—C8165.4 (3)C23—O4—C20—C195.0 (4)
C6—N1—C7—C88.2 (4)C18—C19—C20—O4178.5 (3)
O1—C7—C8—Cl169.3 (3)C18—C19—C20—C210.7 (4)
N1—C7—C8—Cl1112.5 (3)O4—C20—C21—C22179.8 (3)
O1—C7—C8—Cl250.9 (3)C19—C20—C21—C220.6 (4)
N1—C7—C8—Cl2127.3 (3)C20—C21—C22—C171.2 (4)
N1—C2—C9—C14136.5 (3)C18—C17—C22—C210.5 (4)
C3—C2—C9—C1410.6 (5)C6—C17—C22—C21176.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.982.313.264 (4)164
C8—H8···O1i0.982.523.363 (4)144
C18—H18···O1i0.932.573.391 (4)147
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H23Cl2NO4
Mr436.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)19.3021 (16), 10.5886 (9), 10.3241 (10)
β (°) 91.445 (5)
V3)2109.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.25 × 0.24 × 0.23
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.919, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
17272, 5140, 2632
Rint0.050
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.210, 1.05
No. of reflections5140
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.34

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.982.313.264 (4)163.9
C8—H8···O1i0.982.523.363 (4)143.5
C18—H18···O1i0.932.573.391 (4)146.8
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

KR thanks the GNR X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the management of Kandaswami Kandar's College, Velur, Namakkal, TN, India, for the encouragement to pursue the programme.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santhos, C. L., Balsarini, J., Clercq, E. D. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPerumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds