organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[2-(Hy­droxy­meth­yl)phen­yl]-1-(1-naphth­yl)ethanol

aChemistry Division, School of Advanced Science, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cChemistry Department, Hindu College, Delhi University, Delhi 110 007, India
*Correspondence e-mail: nawaz_f@yahoo.co.in

(Received 17 December 2009; accepted 5 January 2010; online 16 January 2010)

The mol­ecular conformation of the title compound, C19H18O2, is stabilized by an intra­molecular O—H—O hydrogen bond. In addition, inter­molecular O—H—O inter­actions link the mol­ecules into zigzag chains running along the c axis.

Related literature

For related structures, see: Gałdecki et al. (1984[Gałdecki, Z., Grochulski, P., Luciak, B., Wawrzak, Z. & Duax, W. L. (1984). Acta Cryst. C40, 1197-1198.]); Hoyos-Guerrero et al. (1983[Hoyos-Guerrero, M. A., Martínez-Carrera, S. & García-Blanco, S. (1983). Acta Cryst. C39, 118-119.]); Manivel et al. (2009[Manivel, P., Hathwar, V. R., Mohanaroopan, S., Prabakaran, K. & Khan, F. N. (2009). Acta Cryst. E65, o406.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18O2

  • Mr = 278.33

  • Monoclinic, C c

  • a = 16.207 (4) Å

  • b = 12.820 (3) Å

  • c = 7.7888 (18) Å

  • β = 111.172 (3)°

  • V = 1509.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 290 K

  • 0.60 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.943, Tmax = 0.992

  • 5447 measured reflections

  • 1447 independent reflections

  • 1216 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.085

  • S = 1.07

  • 1447 reflections

  • 198 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.87 (4) 1.94 (4) 2.721 (3) 148 (4)
O2—H2O⋯O1 0.94 (5) 1.79 (4) 2.721 (3) 169 (4)
Symmetry code: (i) [x, -y, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The molecular conformation of the title compound is stabilized by an intramolecular O—H—O hydrogen bond. In addition, intermolecular O—H—O interactions link the molecules to zigzag chains running along the c axis.

Related literature top

For related structures, see: Gałdecki et al. (1984); Hoyos-Guerrero et al. (1983); Manivel et al. (2009).

Experimental top

3-(naphthalen-1-yl)isocoumarin (1 eq.) was dissolved in 10 volumes of methanol, sodium borohydride (4 eq.) was added to it and stirred at 50° C under nitrogen atmosphere for 4 hrs. Then two more equivalents of NaBH4 was further added and left overnight at 50° C for completion of the reaction. After TLC analysis, solvent methanol was removed, extracted with ethyl acetate. The ethyl acetate layer was washed with water, dried with anhydrous Na2SO4, evaporated to yield the title compound, which was further purified by washing with petroleum ether. Single-crystals for the structure analysis were obtained by slow evaporation of the ethanol solution.

Refinement top

In the absence of anomalous scatterers, 1191 Friedel pairs were merged and the absolute configuration was arbitrarily set. All H atoms were located from difference fourier maps Those bonded to C were positioned geometrically and refined using a riding model with C—H bond lengths of 0.93 Å and 0.97 Å for aromatic and for methylene H atoms, respectively, and Uiso(H) = 1.2Ueq(C). The hydroxyl H atoms were freely refined.

Structure description top

The molecular conformation of the title compound is stabilized by an intramolecular O—H—O hydrogen bond. In addition, intermolecular O—H—O interactions link the molecules to zigzag chains running along the c axis.

For related structures, see: Gałdecki et al. (1984); Hoyos-Guerrero et al. (1983); Manivel et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing diagram. The dotted lines indicate intermolecular O—H···O hydrogen bonds.
2-[2-(Hydroxymethyl)phenyl]-1-(1-naphthyl)ethanol top
Crystal data top
C19H18O2F(000) = 592
Mr = 278.33Dx = 1.225 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2097 reflections
a = 16.207 (4) Åθ = 2.7–26.3°
b = 12.820 (3) ŵ = 0.08 mm1
c = 7.7888 (18) ÅT = 290 K
β = 111.172 (3)°Needle, colorless
V = 1509.2 (6) Å30.60 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1447 independent reflections
Radiation source: fine-focus sealed tube1216 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 25.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.943, Tmax = 0.992k = 1515
5447 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0524P)2]
where P = (Fo2 + 2Fc2)/3
1447 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.15 e Å3
2 restraintsΔρmin = 0.14 e Å3
Crystal data top
C19H18O2V = 1509.2 (6) Å3
Mr = 278.33Z = 4
Monoclinic, CcMo Kα radiation
a = 16.207 (4) ŵ = 0.08 mm1
b = 12.820 (3) ÅT = 290 K
c = 7.7888 (18) Å0.60 × 0.10 × 0.10 mm
β = 111.172 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1447 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1216 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.992Rint = 0.039
5447 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.15 e Å3
1447 reflectionsΔρmin = 0.14 e Å3
198 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07843 (13)0.13119 (13)0.4503 (3)0.0541 (5)
H1O0.074 (2)0.091 (3)0.357 (6)0.100 (13)*
O20.05537 (13)0.04804 (13)0.7513 (3)0.0541 (5)
H2O0.068 (3)0.070 (3)0.647 (6)0.112 (14)*
C10.12467 (16)0.27456 (16)0.2976 (3)0.0391 (5)
C20.03809 (18)0.2984 (2)0.2052 (4)0.0513 (6)
H20.00520.26690.23990.062*
C30.0124 (2)0.3708 (2)0.0562 (4)0.0633 (8)
H30.04720.38590.00560.076*
C40.0748 (2)0.4177 (2)0.0047 (4)0.0609 (8)
H40.05750.46480.09260.073*
C50.2323 (3)0.4454 (2)0.0452 (4)0.0681 (9)
H50.21570.49220.05270.082*
C60.3193 (3)0.4256 (2)0.1359 (5)0.0760 (9)
H60.36170.45970.10200.091*
C70.3451 (2)0.3536 (2)0.2810 (5)0.0672 (8)
H70.40490.33930.34190.081*
C80.28404 (18)0.30420 (19)0.3341 (4)0.0514 (7)
H80.30290.25660.43050.062*
C90.19190 (16)0.32361 (16)0.2457 (3)0.0405 (5)
C100.16515 (18)0.39629 (17)0.0958 (3)0.0476 (6)
C110.15080 (17)0.19895 (15)0.4609 (3)0.0414 (5)
H110.20070.15630.45910.050*
C120.17832 (17)0.25725 (16)0.6467 (3)0.0445 (6)
H12A0.21150.31910.64000.053*
H12B0.12540.27990.66680.053*
C130.23412 (17)0.19156 (17)0.8103 (3)0.0415 (5)
C140.32550 (19)0.1898 (2)0.8541 (4)0.0556 (7)
H140.35000.23200.78770.067*
C150.3809 (2)0.1274 (2)0.9933 (4)0.0640 (8)
H150.44150.12701.01840.077*
C160.3454 (2)0.0655 (2)1.0947 (4)0.0625 (8)
H160.38180.02231.18680.075*
C170.2558 (2)0.06847 (18)1.0582 (3)0.0551 (7)
H170.23250.02831.12920.066*
C180.19887 (17)0.13022 (15)0.9173 (3)0.0430 (6)
C190.1015 (2)0.1264 (2)0.8835 (4)0.0537 (7)
H19A0.09360.11230.99900.064*
H19B0.07560.19400.83990.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0811 (13)0.0413 (9)0.0459 (10)0.0112 (9)0.0300 (9)0.0034 (8)
O20.0705 (11)0.0446 (9)0.0504 (10)0.0041 (8)0.0259 (9)0.0052 (8)
C10.0571 (15)0.0258 (10)0.0338 (12)0.0073 (10)0.0156 (11)0.0023 (10)
C20.0587 (17)0.0462 (14)0.0491 (15)0.0068 (12)0.0194 (13)0.0007 (12)
C30.0707 (18)0.0563 (16)0.0486 (16)0.0238 (15)0.0042 (14)0.0046 (14)
C40.093 (2)0.0376 (13)0.0428 (15)0.0156 (15)0.0134 (15)0.0089 (12)
C50.119 (3)0.0344 (14)0.0600 (18)0.0026 (16)0.0431 (19)0.0079 (13)
C60.098 (3)0.0610 (19)0.084 (2)0.0149 (18)0.051 (2)0.0039 (18)
C70.0674 (19)0.0587 (18)0.081 (2)0.0007 (14)0.0338 (17)0.0029 (16)
C80.0678 (18)0.0395 (13)0.0498 (16)0.0080 (12)0.0248 (14)0.0057 (12)
C90.0617 (16)0.0258 (10)0.0339 (12)0.0059 (10)0.0172 (11)0.0024 (9)
C100.0792 (19)0.0254 (10)0.0388 (14)0.0043 (11)0.0220 (14)0.0010 (10)
C110.0572 (14)0.0286 (10)0.0410 (13)0.0049 (11)0.0210 (11)0.0027 (10)
C120.0638 (17)0.0292 (11)0.0421 (13)0.0002 (11)0.0211 (12)0.0019 (10)
C130.0595 (17)0.0294 (11)0.0350 (12)0.0003 (10)0.0162 (11)0.0034 (9)
C140.0640 (19)0.0554 (16)0.0471 (15)0.0051 (14)0.0197 (13)0.0004 (13)
C150.0588 (17)0.0668 (18)0.0540 (18)0.0036 (14)0.0055 (14)0.0052 (15)
C160.083 (2)0.0468 (15)0.0401 (15)0.0099 (14)0.0012 (14)0.0023 (12)
C170.091 (2)0.0349 (13)0.0390 (14)0.0010 (13)0.0228 (14)0.0008 (11)
C180.0658 (17)0.0276 (10)0.0372 (13)0.0008 (10)0.0205 (12)0.0053 (10)
C190.078 (2)0.0406 (14)0.0529 (16)0.0035 (12)0.0364 (14)0.0016 (12)
Geometric parameters (Å, º) top
O1—C111.438 (3)C8—H80.9300
O1—H1O0.87 (4)C9—C101.433 (3)
O2—C191.439 (3)C11—C121.544 (3)
O2—H2O0.94 (5)C11—H110.9800
C1—C21.361 (3)C12—C131.523 (3)
C1—C91.437 (3)C12—H12A0.9700
C1—C111.533 (3)C12—H12B0.9700
C2—C31.425 (4)C13—C141.395 (4)
C2—H20.9300C13—C181.408 (3)
C3—C41.356 (5)C14—C151.386 (4)
C3—H30.9300C14—H140.9300
C4—C101.404 (4)C15—C161.382 (4)
C4—H40.9300C15—H150.9300
C5—C61.353 (5)C16—C171.375 (5)
C5—C101.430 (4)C16—H160.9300
C5—H50.9300C17—C181.397 (3)
C6—C71.402 (5)C17—H170.9300
C6—H60.9300C18—C191.504 (4)
C7—C81.358 (4)C19—H19A0.9700
C7—H70.9300C19—H19B0.9700
C8—C91.422 (4)
C11—O1—H1O103 (3)C1—C11—C12111.80 (16)
C19—O2—H2O101 (3)O1—C11—H11108.8
C2—C1—C9119.7 (2)C1—C11—H11108.8
C2—C1—C11120.3 (2)C12—C11—H11108.8
C9—C1—C11120.0 (2)C13—C12—C11113.55 (17)
C1—C2—C3121.3 (3)C13—C12—H12A108.9
C1—C2—H2119.4C11—C12—H12A108.9
C3—C2—H2119.4C13—C12—H12B108.9
C4—C3—C2120.0 (3)C11—C12—H12B108.9
C4—C3—H3120.0H12A—C12—H12B107.7
C2—C3—H3120.0C14—C13—C18117.9 (2)
C3—C4—C10121.1 (2)C14—C13—C12118.1 (2)
C3—C4—H4119.4C18—C13—C12124.0 (2)
C10—C4—H4119.4C15—C14—C13122.1 (3)
C6—C5—C10121.8 (3)C15—C14—H14119.0
C6—C5—H5119.1C13—C14—H14119.0
C10—C5—H5119.1C16—C15—C14119.5 (3)
C5—C6—C7119.7 (3)C16—C15—H15120.2
C5—C6—H6120.2C14—C15—H15120.2
C7—C6—H6120.2C17—C16—C15119.5 (3)
C8—C7—C6120.9 (3)C17—C16—H16120.3
C8—C7—H7119.5C15—C16—H16120.3
C6—C7—H7119.5C16—C17—C18121.8 (2)
C7—C8—C9121.6 (2)C16—C17—H17119.1
C7—C8—H8119.2C18—C17—H17119.1
C9—C8—H8119.2C17—C18—C13119.2 (2)
C8—C9—C10117.6 (2)C17—C18—C19118.2 (2)
C8—C9—C1123.9 (2)C13—C18—C19122.6 (2)
C10—C9—C1118.5 (2)O2—C19—C18112.9 (2)
C4—C10—C5122.2 (2)O2—C19—H19A109.0
C4—C10—C9119.5 (2)C18—C19—H19A109.0
C5—C10—C9118.3 (3)O2—C19—H19B109.0
O1—C11—C1111.1 (2)C18—C19—H19B109.0
O1—C11—C12107.45 (19)H19A—C19—H19B107.8
C9—C1—C2—C30.5 (3)C2—C1—C11—O123.3 (3)
C11—C1—C2—C3178.2 (2)C9—C1—C11—O1159.00 (19)
C1—C2—C3—C40.3 (4)C2—C1—C11—C1296.7 (3)
C2—C3—C4—C100.0 (4)C9—C1—C11—C1281.0 (2)
C10—C5—C6—C71.4 (5)O1—C11—C12—C1378.1 (2)
C5—C6—C7—C81.0 (5)C1—C11—C12—C13159.79 (19)
C6—C7—C8—C90.2 (4)C11—C12—C13—C1486.8 (3)
C7—C8—C9—C100.9 (3)C11—C12—C13—C1891.5 (3)
C7—C8—C9—C1179.2 (3)C18—C13—C14—C152.4 (3)
C2—C1—C9—C8179.7 (2)C12—C13—C14—C15176.0 (2)
C11—C1—C9—C82.1 (3)C13—C14—C15—C160.9 (4)
C2—C1—C9—C100.4 (3)C14—C15—C16—C171.2 (4)
C11—C1—C9—C10178.10 (18)C15—C16—C17—C181.9 (4)
C3—C4—C10—C5179.4 (3)C16—C17—C18—C130.3 (3)
C3—C4—C10—C90.1 (4)C16—C17—C18—C19178.3 (2)
C6—C5—C10—C4178.8 (3)C14—C13—C18—C171.8 (3)
C6—C5—C10—C90.7 (4)C12—C13—C18—C17176.5 (2)
C8—C9—C10—C4180.0 (2)C14—C13—C18—C19179.7 (2)
C1—C9—C10—C40.2 (3)C12—C13—C18—C192.0 (3)
C8—C9—C10—C50.5 (3)C17—C18—C19—O290.6 (3)
C1—C9—C10—C5179.7 (2)C13—C18—C19—O288.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.87 (4)1.94 (4)2.721 (3)148 (4)
O2—H2O···O10.94 (5)1.79 (4)2.721 (3)169 (4)
Symmetry code: (i) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC19H18O2
Mr278.33
Crystal system, space groupMonoclinic, Cc
Temperature (K)290
a, b, c (Å)16.207 (4), 12.820 (3), 7.7888 (18)
β (°) 111.172 (3)
V3)1509.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.60 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.943, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
5447, 1447, 1216
Rint0.039
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.085, 1.07
No. of reflections1447
No. of parameters198
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.87 (4)1.94 (4)2.721 (3)148 (4)
O2—H2O···O10.94 (5)1.79 (4)2.721 (3)169 (4)
Symmetry code: (i) x, y, z1/2.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGałdecki, Z., Grochulski, P., Luciak, B., Wawrzak, Z. & Duax, W. L. (1984). Acta Cryst. C40, 1197–1198.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHoyos-Guerrero, M. A., Martínez-Carrera, S. & García-Blanco, S. (1983). Acta Cryst. C39, 118–119.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationManivel, P., Hathwar, V. R., Mohanaroopan, S., Prabakaran, K. & Khan, F. N. (2009). Acta Cryst. E65, o406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds