organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-methyl-4-(oxiran-2-ylmeth­­oxy)-2H-1,2-benzo­thia­zine-3-carboxyl­ate 1,1-dioxide

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpure Road, Lahore 54600, Pakistan, and cChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England
*Correspondence e-mail: rehman_pcsir@hotmail.com

(Received 17 December 2009; accepted 6 January 2010; online 9 January 2010)

In the title compound, C14H15NO6S, the thia­zine ring adopts a distorted half-chair conformation. The structure displays several cooperative weak inter­molecular C—H⋯O hydrogen-bonding inter­actions, giving rise to a two-dimensional sheet packing motif. The CH2 group in the meth­oxy linker to the oxirane ring, and the CH group in that ring, exhibit twofold positional disorder. The three-membered oxirane ring is twisted approximately perpendicular with respect to thia­zine ring (dihedral angle = 60/86° for the major/minor disorder components). 1,2-Benzothia­zines of this kind have a wide range of biological activities and are mainly used as medicines in the treatment of inflammation and rheumatoid arthritis.

Related literature

For the synthesis of related mol­ecules, see: Zia-ur-Rehman et al. (2006[Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.], 2007[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Ahmad, S. (2007). Acta Cryst. E63, o900-o901.], 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]). For the biological activity of 1,2-benzothia­zine 1,1-dioxides, see: Bihovsky et al. (2004[Bihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). Bioorg. Med. Chem. Lett. 14, 1035-1038.]); Fabiola et al. (1998[Fabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001-2003.]); Kojić-Prodić & Rużić-Toroš (1982[Kojić-Prodić, B. & Rużić-Toroš, Ž. (1982). Acta Cryst. B38, 2948-2951.]). For similar mol­ecules, see: Ahmad et al. (2008[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788.]); Arshad et al. (2009[Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o2596.]). For reference bond-length data, see: Weast et al. (1984[Weast, R. C., Astle, M. J. & Beyer, W. H. (1984). Handbook of Chemistry and Physics, 65th ed., pp. 134-135. Boca Raton: CRC Press.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15NO6S

  • Mr = 325.33

  • Monoclinic, P 21 /c

  • a = 7.2007 (3) Å

  • b = 12.8435 (6) Å

  • c = 15.7820 (7) Å

  • β = 96.5250 (7)°

  • V = 1450.10 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 300 K

  • 0.44 × 0.37 × 0.24 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.897, Tmax = 0.942

  • 11439 measured reflections

  • 4516 independent reflections

  • 3651 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.155

  • S = 1.08

  • 4516 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O6i 0.93 2.49 3.377 (3) 158
C15—H15⋯O3ii 0.98 2.50 3.317 (4) 140
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Due to the verstaile applications of 1,2-benzothiazine 1,1-dioxides, much attention has been given to their synthesis. Some derivatives act as potent calpain I inhibitors (Bihovsky et al., 2004) while others possess anti-bacterial, anti-fungal and anti-oxidant properties (Zia-ur-Rehman et al., 2006, 2009). In continuation of our work on the synthesis (Zia-ur-Rehman et al., 2006), biological activity (Zia-ur-Rehman et al., 2009) and crystal structures (Zia-ur-Rehman et al., 2007; Ahmad et al., 2008; Arshad et al., 2009) of various 1,2-benzothiazine-1,1-dioxides, we herein report the crystal structure of the title compound (I) (scheme and Fig. 1). Like the previously reported 1,2-benzothiazine1,1-dioxides (Zia-ur-Rehman et al., 2007; Ahmad et al., 2008; Arshad et al., 2009), the thiazine ring involving two double bonds, exhibits a distorted half-chair conformation; with atoms S1/C10/C5/C4 coplanar within ±0.022 Å and N2 and C3 lying 0.961 and 0.525 Å respectively out of this plane. The geometry at N2 is pyramidal. The C10—S1 [1.7484 (17) Å] bond is shorter than a normal C—S single bond (1.81–2.55 Å) (Weast et al., 1984) due to partial double bond character and this value is in agreement with similar, partially delocalized, bonds (Kojić-Prodić & Rużić-Toroš, 1982; Fabiola et al., 1998]. The

positions the partially disordered oxirane group approximately perpendicular to the planar portion of the thiazine ring; dihedral angles between C4/C5/C10/S1 and the two diordered oxirane positions: 103 (major) and 108° (minor). There are two significant, intermolecular C—H···O interactions (Fig 2 & Table 1). Each molecule makes a total of four such interactions, two as donor and two as acceptor, resulting in a two-dimensional thick sheet structure, where the depth of the sheet is due to the elevation of the methoxy-oxirane group with respect to the thiazine ring system.

Related literature top

For the synthesis of related molecules, see: Zia-ur-Rehman et al. (2006, 2007, 2009). For the biological activity of 1,2-benzothiazine 1,1-dioxides, see: Bihovsky et al. (2004); Fabiola et al. (1998); Kojić-Prodić & Rużić-Toroš (1982). For similar molecules, see: Ahmad et al. (2008); Arshad et al. (2009). For reference bond-length data, see: Weast et al. (1984).

Experimental top

A mixture of methyl 4-hydroxy-2-methyl-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide (1.33 g, 5.0 mmol), 1-chloro-2,3-epoxypropane (2.313 g, 25.0 mmol), anhydrous potassium carbonate (10.0 g) and acetonitrile (100 ml) was stirred and refluxed for a period of 7 h. After removal of acetonitrile and excess 1-chloro-2,3-epoxypropane under vacuum, chloroform (30 ml) was added and the resultant mixture was filtered. The filtrate was washed with water to remove potassium carbonate, dried with anhydrous sodium sulfate and filtered. Slow evaporation of the solvent afforded the crystalline product.

Refinement top

H atoms were refined using a riding model with Ueq set to be 1.2 times that of the carrier atom (1.5 times for methyl H, and refined with rotational freedom). Atoms C14, C15, and that H atoms on C16 were refined over two sets of positions with major occupancy 64.8 (6)%.

Structure description top

Due to the verstaile applications of 1,2-benzothiazine 1,1-dioxides, much attention has been given to their synthesis. Some derivatives act as potent calpain I inhibitors (Bihovsky et al., 2004) while others possess anti-bacterial, anti-fungal and anti-oxidant properties (Zia-ur-Rehman et al., 2006, 2009). In continuation of our work on the synthesis (Zia-ur-Rehman et al., 2006), biological activity (Zia-ur-Rehman et al., 2009) and crystal structures (Zia-ur-Rehman et al., 2007; Ahmad et al., 2008; Arshad et al., 2009) of various 1,2-benzothiazine-1,1-dioxides, we herein report the crystal structure of the title compound (I) (scheme and Fig. 1). Like the previously reported 1,2-benzothiazine1,1-dioxides (Zia-ur-Rehman et al., 2007; Ahmad et al., 2008; Arshad et al., 2009), the thiazine ring involving two double bonds, exhibits a distorted half-chair conformation; with atoms S1/C10/C5/C4 coplanar within ±0.022 Å and N2 and C3 lying 0.961 and 0.525 Å respectively out of this plane. The geometry at N2 is pyramidal. The C10—S1 [1.7484 (17) Å] bond is shorter than a normal C—S single bond (1.81–2.55 Å) (Weast et al., 1984) due to partial double bond character and this value is in agreement with similar, partially delocalized, bonds (Kojić-Prodić & Rużić-Toroš, 1982; Fabiola et al., 1998]. The

positions the partially disordered oxirane group approximately perpendicular to the planar portion of the thiazine ring; dihedral angles between C4/C5/C10/S1 and the two diordered oxirane positions: 103 (major) and 108° (minor). There are two significant, intermolecular C—H···O interactions (Fig 2 & Table 1). Each molecule makes a total of four such interactions, two as donor and two as acceptor, resulting in a two-dimensional thick sheet structure, where the depth of the sheet is due to the elevation of the methoxy-oxirane group with respect to the thiazine ring system.

For the synthesis of related molecules, see: Zia-ur-Rehman et al. (2006, 2007, 2009). For the biological activity of 1,2-benzothiazine 1,1-dioxides, see: Bihovsky et al. (2004); Fabiola et al. (1998); Kojić-Prodić & Rużić-Toroš (1982). For similar molecules, see: Ahmad et al. (2008); Arshad et al. (2009). For reference bond-length data, see: Weast et al. (1984).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids at the 40% probability level. The minor occupied site of the disordered atoms has been omitted.
[Figure 2] Fig. 2. Perspective view of one thick layer of the crystal packing showing weak hydrogen-bonding interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity. i = 1 - x, y - 1/2, 1.5 - z; ii = x, 1/2 - y, z - 1/2
Methyl 2-methyl-4-(oxiran-2-ylmethoxy)-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide top
Crystal data top
C14H15NO6SF(000) = 680
Mr = 325.33Dx = 1.490 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4610 reflections
a = 7.2007 (3) Åθ = 2.6–31.4°
b = 12.8435 (6) ŵ = 0.25 mm1
c = 15.7820 (7) ÅT = 300 K
β = 96.5250 (7)°Block, colourless
V = 1450.10 (11) Å30.44 × 0.37 × 0.24 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4516 independent reflections
Radiation source: fine-focus sealed tube3651 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω rotation with narrow frames scansθmax = 31.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.897, Tmax = 0.942k = 1814
11439 measured reflectionsl = 2217
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0788P)2 + 0.4338P]
where P = (Fo2 + 2Fc2)/3
4516 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H15NO6SV = 1450.10 (11) Å3
Mr = 325.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2007 (3) ŵ = 0.25 mm1
b = 12.8435 (6) ÅT = 300 K
c = 15.7820 (7) Å0.44 × 0.37 × 0.24 mm
β = 96.5250 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
4516 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3651 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.942Rint = 0.016
11439 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.08Δρmax = 0.70 e Å3
4516 reflectionsΔρmin = 0.27 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.34508 (6)0.47351 (3)0.61034 (2)0.04004 (14)
O10.53323 (19)0.44619 (11)0.64070 (9)0.0512 (3)
O20.2622 (2)0.43268 (12)0.53097 (8)0.0601 (4)
N20.2133 (2)0.44064 (11)0.68409 (9)0.0387 (3)
C30.2671 (2)0.48744 (13)0.76543 (10)0.0373 (3)
C40.3247 (2)0.58822 (13)0.76958 (10)0.0368 (3)
C50.3205 (2)0.65332 (13)0.69280 (10)0.0366 (3)
C60.3032 (3)0.76159 (14)0.69774 (14)0.0481 (4)
H60.30460.79370.75060.058*
C70.2842 (3)0.82078 (16)0.62423 (17)0.0594 (5)
H70.27240.89270.62830.071*
C80.2823 (3)0.77530 (17)0.54444 (16)0.0571 (5)
H80.26840.81630.49560.069*
C90.3014 (3)0.66804 (16)0.53801 (12)0.0465 (4)
H90.30060.63640.48500.056*
C100.3215 (2)0.60897 (13)0.61187 (10)0.0364 (3)
C110.0099 (3)0.43184 (18)0.65850 (14)0.0550 (5)
H11A0.04080.49960.64430.082*
H11B0.04930.40340.70480.082*
H11C0.01210.38690.60980.082*
C120.2533 (3)0.42003 (16)0.84103 (11)0.0456 (4)
O30.2713 (3)0.44879 (15)0.91356 (10)0.0813 (6)
O40.2175 (2)0.32170 (12)0.81730 (9)0.0546 (3)
C130.2062 (3)0.2467 (2)0.88466 (17)0.0661 (6)
H13A0.10270.26360.91540.099*
H13B0.31990.24820.92290.099*
H13C0.18850.17830.86050.099*
O50.37071 (18)0.63669 (11)0.84539 (8)0.0469 (3)
C140.5579 (4)0.6871 (3)0.8572 (2)0.0451 (8)0.646 (6)
H14A0.58110.72170.80490.054*0.646 (6)
H14B0.56050.73920.90180.054*0.646 (6)
C150.7068 (5)0.6087 (3)0.8807 (2)0.0500 (8)0.646 (6)
H150.68750.56040.92700.060*0.646 (6)
C160.8933 (4)0.6281 (2)0.8656 (2)0.0836 (8)
H16A0.99170.59410.90280.100*0.646 (6)
H16B0.92380.69770.84770.100*0.646 (6)
H16C0.92730.59990.92230.100*0.354 (6)
H16D0.98860.67110.84440.100*0.354 (6)
O60.7826 (3)0.56506 (15)0.80605 (13)0.0782 (5)
C14X0.5510 (8)0.6227 (7)0.8916 (4)0.057 (2)0.354 (6)
H14C0.56880.54970.90590.069*0.354 (6)
H14D0.55780.66180.94440.069*0.354 (6)
C15X0.7008 (8)0.6571 (6)0.8428 (5)0.0577 (19)0.354 (6)
H15X0.67610.71790.80570.069*0.354 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0542 (3)0.0363 (2)0.0306 (2)0.00076 (16)0.00890 (16)0.00584 (14)
O10.0530 (7)0.0515 (7)0.0514 (8)0.0115 (6)0.0160 (6)0.0025 (6)
O20.0911 (11)0.0555 (8)0.0335 (6)0.0064 (7)0.0059 (7)0.0133 (6)
N20.0468 (7)0.0380 (7)0.0313 (6)0.0071 (6)0.0045 (5)0.0030 (5)
C30.0402 (8)0.0430 (8)0.0289 (7)0.0018 (6)0.0050 (6)0.0006 (6)
C40.0378 (7)0.0428 (8)0.0304 (7)0.0006 (6)0.0065 (5)0.0093 (6)
C50.0362 (7)0.0358 (7)0.0384 (8)0.0005 (6)0.0070 (6)0.0037 (6)
C60.0459 (9)0.0390 (8)0.0603 (11)0.0014 (7)0.0103 (8)0.0083 (8)
C70.0552 (11)0.0375 (9)0.0866 (16)0.0056 (8)0.0125 (10)0.0097 (10)
C80.0519 (10)0.0546 (11)0.0655 (13)0.0047 (9)0.0095 (9)0.0221 (10)
C90.0444 (9)0.0561 (10)0.0393 (8)0.0004 (8)0.0062 (7)0.0092 (8)
C100.0398 (7)0.0362 (7)0.0336 (7)0.0002 (6)0.0064 (6)0.0001 (6)
C110.0496 (10)0.0624 (12)0.0509 (11)0.0095 (9)0.0028 (8)0.0024 (9)
C120.0443 (9)0.0565 (10)0.0362 (8)0.0017 (8)0.0059 (6)0.0082 (7)
O30.1263 (17)0.0833 (12)0.0346 (7)0.0132 (11)0.0108 (9)0.0083 (7)
O40.0625 (8)0.0499 (8)0.0511 (8)0.0061 (6)0.0045 (6)0.0157 (6)
C130.0581 (12)0.0672 (14)0.0722 (15)0.0055 (10)0.0040 (10)0.0354 (12)
O50.0506 (7)0.0567 (8)0.0339 (6)0.0054 (6)0.0068 (5)0.0157 (5)
C140.0521 (16)0.0411 (16)0.0413 (15)0.0052 (11)0.0025 (11)0.0107 (13)
C150.0631 (19)0.0476 (18)0.0383 (15)0.0020 (14)0.0021 (12)0.0019 (13)
C160.0560 (13)0.0798 (17)0.112 (2)0.0020 (12)0.0028 (14)0.0217 (17)
O60.0746 (11)0.0750 (11)0.0880 (13)0.0021 (9)0.0224 (10)0.0291 (10)
C14X0.043 (3)0.092 (6)0.035 (3)0.005 (3)0.003 (2)0.016 (3)
C15X0.049 (3)0.057 (4)0.067 (4)0.002 (3)0.007 (3)0.010 (3)
Geometric parameters (Å, º) top
S1—O21.4249 (14)C12—O41.334 (3)
S1—O11.4285 (15)O4—C131.444 (2)
S1—N21.6384 (14)C13—H13A0.9600
S1—C101.7484 (17)C13—H13B0.9600
N2—C31.430 (2)C13—H13C0.9600
N2—C111.478 (2)O5—C14X1.426 (6)
C3—C41.358 (2)O5—C141.488 (3)
C3—C121.487 (2)C14—C151.486 (5)
C4—O51.3559 (18)C14—H14A0.9700
C4—C51.470 (2)C14—H14B0.9700
C5—C61.399 (2)C15—C161.413 (5)
C5—C101.399 (2)C15—O61.465 (4)
C6—C71.381 (3)C15—H150.9800
C6—H60.9300C16—O61.416 (3)
C7—C81.387 (3)C16—C15X1.441 (7)
C7—H70.9300C16—H16A0.9700
C8—C91.389 (3)C16—H16B0.9700
C8—H80.9300C16—H16C0.9699
C9—C101.385 (2)C16—H16D0.9701
C9—H90.9300O6—C15X1.469 (7)
C11—H11A0.9600C14X—C15X1.462 (11)
C11—H11B0.9600C14X—H14C0.9700
C11—H11C0.9600C14X—H14D0.9700
C12—O31.196 (2)C15X—H15X0.9800
O2—S1—O1119.39 (9)H13B—C13—H13C109.5
O2—S1—N2108.14 (9)C4—O5—C14X120.7 (3)
O1—S1—N2107.59 (8)C4—O5—C14115.97 (16)
O2—S1—C10110.29 (9)C15—C14—O5110.7 (3)
O1—S1—C10109.25 (8)C15—C14—H14A109.5
N2—S1—C10100.47 (7)O5—C14—H14A109.5
C3—N2—C11115.86 (14)C15—C14—H14B109.5
C3—N2—S1114.17 (11)O5—C14—H14B109.5
C11—N2—S1117.46 (12)H14A—C14—H14B108.1
C4—C3—N2119.59 (14)C16—C15—O658.9 (2)
C4—C3—C12124.33 (15)C16—C15—C14120.8 (4)
N2—C3—C12116.07 (15)O6—C15—C14112.5 (3)
O5—C4—C3121.52 (15)C16—C15—H15117.0
O5—C4—C5116.50 (15)O6—C15—H15117.0
C3—C4—C5121.65 (14)C14—C15—H15117.0
C6—C5—C10117.72 (16)C15—C16—O662.37 (18)
C6—C5—C4120.88 (15)O6—C16—C15X61.9 (3)
C10—C5—C4121.28 (14)C15—C16—H16A117.5
C7—C6—C5120.10 (19)O6—C16—H16A117.5
C7—C6—H6120.0C15X—C16—H16A152.0
C5—C6—H6120.0C15—C16—H16B117.5
C6—C7—C8121.39 (19)O6—C16—H16B117.5
C6—C7—H7119.3C15X—C16—H16B86.1
C8—C7—H7119.3H16A—C16—H16B114.6
C7—C8—C9119.55 (19)C15—C16—H16C85.6
C7—C8—H8120.2O6—C16—H16C117.6
C9—C8—H8120.2C15X—C16—H16C117.5
C10—C9—C8118.92 (18)H16B—C16—H16C124.8
C10—C9—H9120.5C15—C16—H16D151.9
C8—C9—H9120.5O6—C16—H16D117.6
C9—C10—C5122.31 (16)C15X—C16—H16D117.7
C9—C10—S1122.33 (13)H16A—C16—H16D88.2
C5—C10—S1115.35 (12)H16C—C16—H16D114.7
N2—C11—H11A109.5C16—O6—C1558.70 (19)
N2—C11—H11B109.5C16—O6—C15X59.9 (3)
H11A—C11—H11B109.5O5—C14X—C15X112.1 (6)
N2—C11—H11C109.5O5—C14X—H14C109.2
H11A—C11—H11C109.5C15X—C14X—H14C109.2
H11B—C11—H11C109.5O5—C14X—H14D109.2
O3—C12—O4123.89 (18)C15X—C14X—H14D109.2
O3—C12—C3125.4 (2)H14C—C14X—H14D107.9
O4—C12—C3110.75 (15)C16—C15X—C14X122.4 (8)
C12—O4—C13116.76 (18)C16—C15X—O658.2 (3)
O4—C13—H13A109.5C14X—C15X—O6108.5 (7)
O4—C13—H13B109.5C16—C15X—H15X117.4
H13A—C13—H13B109.5C14X—C15X—H15X117.4
O4—C13—H13C109.5O6—C15X—H15X117.4
H13A—C13—H13C109.5
O2—S1—N2—C3172.61 (13)N2—S1—C10—C539.59 (14)
O1—S1—N2—C357.18 (14)C4—C3—C12—O38.5 (3)
C10—S1—N2—C357.04 (13)N2—C3—C12—O3170.9 (2)
O2—S1—N2—C1132.06 (16)C4—C3—C12—O4171.60 (16)
O1—S1—N2—C11162.27 (14)N2—C3—C12—O49.0 (2)
C10—S1—N2—C1183.50 (14)O3—C12—O4—C132.0 (3)
C11—N2—C3—C4101.63 (19)C3—C12—O4—C13178.12 (16)
S1—N2—C3—C439.6 (2)C3—C4—O5—C14X81.6 (5)
C11—N2—C3—C1277.8 (2)C5—C4—O5—C14X104.9 (5)
S1—N2—C3—C12141.04 (13)C3—C4—O5—C14126.8 (2)
N2—C3—C4—O5177.68 (14)C5—C4—O5—C1459.7 (2)
C12—C3—C4—O51.7 (3)C4—O5—C14—C1579.8 (3)
N2—C3—C4—C54.5 (2)C14X—O5—C14—C1527.8 (4)
C12—C3—C4—C5174.86 (15)O5—C14—C15—C16157.0 (3)
O5—C4—C5—C620.4 (2)O5—C14—C15—O690.8 (3)
C3—C4—C5—C6153.18 (17)C14—C15—C16—O699.3 (3)
O5—C4—C5—C10163.78 (14)O6—C15—C16—C15X79.6 (5)
C3—C4—C5—C1022.7 (2)C14—C15—C16—C15X19.7 (5)
C10—C5—C6—C71.3 (3)C15X—C16—O6—C1539.9 (4)
C4—C5—C6—C7174.71 (17)C15—C16—O6—C15X39.9 (4)
C5—C6—C7—C80.2 (3)C14—C15—O6—C16113.4 (4)
C6—C7—C8—C90.5 (3)C16—C15—O6—C15X81.5 (5)
C7—C8—C9—C100.1 (3)C14—C15—O6—C15X31.9 (5)
C8—C9—C10—C51.0 (3)C4—O5—C14X—C15X60.1 (8)
C8—C9—C10—S1179.64 (14)C14—O5—C14X—C15X34.6 (5)
C6—C5—C10—C91.7 (2)C15—C16—C15X—C14X11.7 (5)
C4—C5—C10—C9174.28 (15)O6—C16—C15X—C14X92.8 (6)
C6—C5—C10—S1179.57 (13)C15—C16—C15X—O681.2 (5)
C4—C5—C10—S14.4 (2)O5—C14X—C15X—C16164.2 (5)
O2—S1—C10—C925.20 (17)O5—C14X—C15X—O6100.7 (7)
O1—S1—C10—C9107.90 (15)C15—O6—C15X—C1677.6 (5)
N2—S1—C10—C9139.14 (15)C16—O6—C15X—C14X117.2 (7)
O2—S1—C10—C5153.53 (13)C15—O6—C15X—C14X39.7 (5)
O1—S1—C10—C573.37 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O6i0.932.493.377 (3)158
C15—H15···O3ii0.982.503.317 (4)140
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC14H15NO6S
Mr325.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)300
a, b, c (Å)7.2007 (3), 12.8435 (6), 15.7820 (7)
β (°) 96.5250 (7)
V3)1450.10 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.44 × 0.37 × 0.24
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.897, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
11439, 4516, 3651
Rint0.016
(sin θ/λ)max1)0.739
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.155, 1.08
No. of reflections4516
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.27

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O6i0.932.493.377 (3)158
C15—H15···O3ii0.982.503.317 (4)140.2
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+2.
 

Acknowledgements

The authors are grateful to Loughborough University for the analysis of the title compound.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o2596.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). Bioorg. Med. Chem. Lett. 14, 1035–1038.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001–2003.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKojić-Prodić, B. & Rużić-Toroš, Ž. (1982). Acta Cryst. B38, 2948–2951.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeast, R. C., Astle, M. J. & Beyer, W. H. (1984). Handbook of Chemistry and Physics, 65th ed., pp. 134–135. Boca Raton: CRC Press.  Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Ahmad, S. (2007). Acta Cryst. E63, o900–o901.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds