organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[4-(p-Toluenesulfonamido)phen­ylsulfon­yl]acetamide

aDepartment of Chemistry, University of Gujrat, Gujrat 50700, Pakistan, bMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, and cDepartment of Chemistry, Forman Christian College (A Chartered University), Ferozpur Road, Lahore 56400, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 18 December 2009; accepted 29 December 2009; online 9 January 2010)

In the title compound, C15H16N2O5S2, the dihedral between the two aromatic rings is 81.33 (6)°. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers, which are further connected via N—H⋯O hydrogen bonds into a chain running along [[\overline{1}]01].

Related literature

For the synthesis and biological activity of the title compound, see: Deng & Mani (2006[Deng, X. & Mani, N. S. (2006). Green Chem. 8, 835-838.]). For a related structure, see: Ashfaq et al. (2009[Ashfaq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Saeed-ul-Hassan, S. (2009). Acta Cryst. E65, o1180.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N2O5S2

  • Mr = 368.42

  • Monoclinic, P 21 /n

  • a = 9.8077 (4) Å

  • b = 10.0782 (4) Å

  • c = 17.3081 (7) Å

  • β = 100.290 (2)°

  • V = 1683.28 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 296 K

  • 0.48 × 0.14 × 0.05 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.852, Tmax = 0.981

  • 16294 measured reflections

  • 3715 independent reflections

  • 2787 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.114

  • S = 1.02

  • 3715 reflections

  • 225 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O5i 0.81 (2) 2.06 (2) 2.848 (2) 162 (2)
N2—H2N⋯O1ii 0.82 (2) 2.15 (2) 2.950 (2) 167 (2)
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The bond angles and length are in comparison with the previously published crystal structure of N-Acetyl-4-(benzenesulfonamido)benzenesulfonamide (II) (Ashfaq et al., 2009). The dihedral angle between the two aromatic rings is 81.33( 0.06 )° , the acetamido group is oriented at 79.13( 0.11 )° and 14.42 ( 0.26 )° with respect to the central aromatic ring (C7/C8/C9/C10/C11/C12) and toluene ring. The compound may be stabilized by the formation of N–H···O type hydrogen bondings. The acitamido N–H interact with oxygen of C==O moiety and forms a R22(20) ring. The hydrogen bonding interaction between the sulfonamido N–H and SO2 gives rise in the formation of infite long chain along [-1 0 1] (Fig. 2 Table, 1).

Related literature top

For the synthesis and biological activity of the title compound, see: Deng & Mani et al. (2006). For a related structure, see: Ashfaq et al. (2009).

Experimental top

The title compound was prepared using a literature method (Deng & Mani, 2006). Sodium sulphacetamide (2 g, 9.3 mmol) was dissolved in distilled water, and then toluene sulfonyl chloride (1.77 g, 9.3 mmol) was added with stirring at room temperature. The pH was maintained at 8-9, strictly using Na2CO3 (1 M). The completion of reaction was observed by the consumption of the suspended toluene sulfonyl chloride. On completion, pH was adjusted to 2-3 using HCl (2 N). The precipitate formed was filtered, washed with distilled water and recrystalyzed from methanol.

Refinement top

The H-atoms bonded to C were positioned geometrically and refined using a riding model with C–H = 0.93 Å, U(H) = 1.2 Ueq(C) for aromatic and C–H = 0.96 Å for CH3, U(H) = 1.5 Ueq(C) for CH3. The N-H H atoms were located in difference map and their coordinates were refined with U(H) = 1.2 Ueq(N) for N atoms.

Structure description top

The bond angles and length are in comparison with the previously published crystal structure of N-Acetyl-4-(benzenesulfonamido)benzenesulfonamide (II) (Ashfaq et al., 2009). The dihedral angle between the two aromatic rings is 81.33( 0.06 )° , the acetamido group is oriented at 79.13( 0.11 )° and 14.42 ( 0.26 )° with respect to the central aromatic ring (C7/C8/C9/C10/C11/C12) and toluene ring. The compound may be stabilized by the formation of N–H···O type hydrogen bondings. The acitamido N–H interact with oxygen of C==O moiety and forms a R22(20) ring. The hydrogen bonding interaction between the sulfonamido N–H and SO2 gives rise in the formation of infite long chain along [-1 0 1] (Fig. 2 Table, 1).

For the synthesis and biological activity of the title compound, see: Deng & Mani et al. (2006). For a related structure, see: Ashfaq et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with atomic label and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram for the title compound with hydrogen bonding drawn as dashed lines. Hydrogen atoms not involve in hydrogen bonding have been omitted.
N-[4-(p-Toluenesulfonamido)phenylsulfonyl]acetamide top
Crystal data top
C15H16N2O5S2F(000) = 768
Mr = 368.42Dx = 1.454 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4606 reflections
a = 9.8077 (4) Åθ = 2.4–26.8°
b = 10.0782 (4) ŵ = 0.34 mm1
c = 17.3081 (7) ÅT = 296 K
β = 100.290 (2)°Needle, red
V = 1683.28 (12) Å30.48 × 0.14 × 0.05 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3715 independent reflections
Radiation source: fine-focus sealed tube2787 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 27.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1112
Tmin = 0.852, Tmax = 0.981k = 1212
16294 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0603P)2 + 0.5119P]
where P = (Fo2 + 2Fc2)/3
3715 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C15H16N2O5S2V = 1683.28 (12) Å3
Mr = 368.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8077 (4) ŵ = 0.34 mm1
b = 10.0782 (4) ÅT = 296 K
c = 17.3081 (7) Å0.48 × 0.14 × 0.05 mm
β = 100.290 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3715 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2787 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.981Rint = 0.032
16294 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.34 e Å3
3715 reflectionsΔρmin = 0.31 e Å3
225 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.58372 (5)0.79324 (5)1.04610 (3)0.03142 (15)
S20.91252 (5)0.97819 (6)0.73350 (3)0.03660 (16)
O10.55834 (15)0.82933 (16)1.12253 (9)0.0429 (4)
O20.47119 (14)0.75141 (16)0.98763 (9)0.0422 (4)
O30.82154 (16)0.9285 (2)0.66630 (9)0.0553 (5)
O40.96901 (18)1.10836 (16)0.73294 (11)0.0532 (5)
O51.16225 (16)0.96040 (18)0.85525 (9)0.0501 (4)
N10.65425 (17)0.92526 (18)1.01581 (10)0.0315 (4)
H1N0.693 (2)0.971 (2)1.0518 (14)0.038*
N21.04204 (18)0.86957 (19)0.74560 (10)0.0341 (4)
H2N1.034 (2)0.811 (2)0.7122 (14)0.041*
C10.9121 (2)0.4715 (2)1.08120 (15)0.0427 (5)
C20.9326 (2)0.5914 (2)1.12183 (15)0.0470 (6)
H21.01460.60521.15720.056*
C30.8338 (2)0.6893 (2)1.11050 (13)0.0413 (5)
H30.84850.76861.13820.050*
C40.7115 (2)0.6690 (2)1.05720 (12)0.0316 (4)
C50.6907 (2)0.5522 (2)1.01500 (13)0.0382 (5)
H50.61000.53950.97840.046*
C60.7907 (2)0.4546 (2)1.02772 (15)0.0436 (5)
H60.77610.37560.99970.052*
C70.71121 (19)0.93381 (19)0.94715 (11)0.0278 (4)
C80.8064 (2)1.0347 (2)0.94356 (13)0.0404 (5)
H80.82911.09270.98560.048*
C90.8672 (2)1.0495 (2)0.87847 (14)0.0422 (5)
H90.93051.11760.87640.051*
C100.83393 (19)0.9629 (2)0.81628 (12)0.0306 (4)
C110.7379 (2)0.8629 (2)0.81853 (12)0.0330 (5)
H110.71520.80550.77610.040*
C120.6760 (2)0.8483 (2)0.88342 (12)0.0326 (5)
H120.61100.78150.88470.039*
C131.1547 (2)0.8753 (2)0.80521 (12)0.0354 (5)
C141.2619 (3)0.7714 (3)0.80379 (15)0.0567 (7)
H14A1.33950.80900.78470.085*
H14B1.22340.70030.76980.085*
H14C1.29210.73770.85590.085*
C151.0205 (3)0.3644 (3)1.09553 (19)0.0622 (8)
H15A1.10450.39591.08060.093*
H15B0.98820.28761.06490.093*
H15C1.03810.34141.15020.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0265 (2)0.0369 (3)0.0317 (3)0.0007 (2)0.00741 (19)0.0050 (2)
S20.0365 (3)0.0453 (3)0.0291 (3)0.0072 (2)0.0089 (2)0.0104 (2)
O10.0458 (9)0.0506 (10)0.0363 (9)0.0046 (7)0.0186 (7)0.0054 (7)
O20.0288 (7)0.0490 (9)0.0467 (9)0.0064 (7)0.0012 (7)0.0068 (7)
O30.0435 (9)0.0934 (14)0.0263 (8)0.0096 (9)0.0005 (7)0.0080 (9)
O40.0615 (11)0.0412 (9)0.0638 (11)0.0059 (8)0.0301 (9)0.0200 (9)
O50.0470 (9)0.0621 (11)0.0386 (9)0.0020 (8)0.0001 (7)0.0165 (8)
N10.0343 (9)0.0320 (10)0.0286 (9)0.0029 (7)0.0069 (7)0.0014 (7)
N20.0366 (9)0.0396 (11)0.0259 (9)0.0044 (8)0.0051 (7)0.0057 (8)
C10.0388 (12)0.0384 (13)0.0519 (14)0.0012 (10)0.0107 (10)0.0152 (11)
C20.0344 (11)0.0510 (15)0.0502 (15)0.0006 (10)0.0070 (10)0.0055 (12)
C30.0388 (12)0.0413 (13)0.0412 (13)0.0034 (10)0.0004 (9)0.0022 (10)
C40.0293 (10)0.0340 (11)0.0314 (11)0.0024 (8)0.0054 (8)0.0043 (9)
C50.0334 (11)0.0390 (12)0.0408 (12)0.0047 (9)0.0024 (9)0.0011 (10)
C60.0458 (13)0.0312 (12)0.0541 (15)0.0019 (10)0.0095 (11)0.0002 (11)
C70.0261 (9)0.0279 (10)0.0294 (10)0.0036 (8)0.0048 (7)0.0034 (8)
C80.0468 (12)0.0374 (12)0.0399 (13)0.0130 (10)0.0157 (10)0.0106 (10)
C90.0472 (12)0.0362 (12)0.0474 (14)0.0133 (10)0.0203 (10)0.0059 (10)
C100.0299 (10)0.0337 (11)0.0290 (10)0.0040 (8)0.0077 (8)0.0049 (9)
C110.0343 (10)0.0363 (12)0.0270 (10)0.0003 (9)0.0014 (8)0.0019 (9)
C120.0298 (10)0.0345 (11)0.0328 (11)0.0069 (8)0.0035 (8)0.0002 (9)
C130.0328 (10)0.0478 (13)0.0260 (11)0.0016 (9)0.0069 (8)0.0010 (10)
C140.0453 (14)0.080 (2)0.0434 (14)0.0217 (13)0.0050 (11)0.0013 (13)
C150.0514 (15)0.0450 (15)0.092 (2)0.0109 (12)0.0188 (14)0.0226 (15)
Geometric parameters (Å, º) top
S1—O21.4215 (15)C5—C61.379 (3)
S1—O11.4359 (15)C5—H50.9300
S1—N11.6289 (18)C6—H60.9300
S1—C41.758 (2)C7—C81.389 (3)
S2—O31.4244 (17)C7—C121.394 (3)
S2—O41.4247 (18)C8—C91.374 (3)
S2—N21.6615 (18)C8—H80.9300
S2—C101.751 (2)C9—C101.379 (3)
O5—C131.211 (3)C9—H90.9300
N1—C71.403 (2)C10—C111.385 (3)
N1—H1N0.81 (2)C11—C121.377 (3)
N2—C131.372 (3)C11—H110.9300
N2—H2N0.82 (2)C12—H120.9300
C1—C61.382 (3)C13—C141.488 (3)
C1—C21.394 (4)C14—H14A0.9600
C1—C151.504 (3)C14—H14B0.9600
C2—C31.372 (3)C14—H14C0.9600
C2—H20.9300C15—H15A0.9600
C3—C41.392 (3)C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
C4—C51.381 (3)
O2—S1—O1119.38 (9)C1—C6—H6119.3
O2—S1—N1109.48 (9)C8—C7—C12119.38 (18)
O1—S1—N1104.07 (9)C8—C7—N1117.08 (18)
O2—S1—C4108.32 (10)C12—C7—N1123.53 (18)
O1—S1—C4108.50 (9)C9—C8—C7120.7 (2)
N1—S1—C4106.35 (9)C9—C8—H8119.7
O3—S2—O4120.38 (11)C7—C8—H8119.7
O3—S2—N2102.99 (10)C8—C9—C10119.6 (2)
O4—S2—N2108.54 (10)C8—C9—H9120.2
O3—S2—C10109.52 (10)C10—C9—H9120.2
O4—S2—C10108.37 (10)C9—C10—C11120.42 (19)
N2—S2—C10106.09 (9)C9—C10—S2120.36 (16)
C7—N1—S1125.38 (15)C11—C10—S2119.22 (16)
C7—N1—H1N114.3 (17)C12—C11—C10120.14 (19)
S1—N1—H1N112.5 (17)C12—C11—H11119.9
C13—N2—S2124.19 (16)C10—C11—H11119.9
C13—N2—H2N121.9 (17)C11—C12—C7119.76 (19)
S2—N2—H2N113.9 (17)C11—C12—H12120.1
C6—C1—C2118.3 (2)C7—C12—H12120.1
C6—C1—C15121.4 (2)O5—C13—N2120.4 (2)
C2—C1—C15120.3 (2)O5—C13—C14123.8 (2)
C3—C2—C1121.1 (2)N2—C13—C14115.8 (2)
C3—C2—H2119.5C13—C14—H14A109.5
C1—C2—H2119.5C13—C14—H14B109.5
C2—C3—C4119.5 (2)H14A—C14—H14B109.5
C2—C3—H3120.2C13—C14—H14C109.5
C4—C3—H3120.2H14A—C14—H14C109.5
C5—C4—C3120.3 (2)H14B—C14—H14C109.5
C5—C4—S1120.96 (16)C1—C15—H15A109.5
C3—C4—S1118.77 (17)C1—C15—H15B109.5
C6—C5—C4119.3 (2)H15A—C15—H15B109.5
C6—C5—H5120.3C1—C15—H15C109.5
C4—C5—H5120.3H15A—C15—H15C109.5
C5—C6—C1121.5 (2)H15B—C15—H15C109.5
C5—C6—H6119.3
O2—S1—N1—C758.48 (18)C15—C1—C6—C5179.4 (2)
O1—S1—N1—C7172.83 (16)S1—N1—C7—C8158.64 (16)
C4—S1—N1—C758.34 (18)S1—N1—C7—C1222.1 (3)
O3—S2—N2—C13178.58 (18)C12—C7—C8—C90.9 (3)
O4—S2—N2—C1352.8 (2)N1—C7—C8—C9179.8 (2)
C10—S2—N2—C1363.5 (2)C7—C8—C9—C100.3 (4)
C6—C1—C2—C31.4 (4)C8—C9—C10—C111.2 (3)
C15—C1—C2—C3178.9 (2)C8—C9—C10—S2178.87 (18)
C1—C2—C3—C40.4 (4)O3—S2—C10—C9151.90 (18)
C2—C3—C4—C51.1 (3)O4—S2—C10—C918.8 (2)
C2—C3—C4—S1177.79 (18)N2—S2—C10—C997.58 (19)
O2—S1—C4—C52.5 (2)O3—S2—C10—C1128.04 (19)
O1—S1—C4—C5128.50 (18)O4—S2—C10—C11161.13 (16)
N1—S1—C4—C5120.07 (18)N2—S2—C10—C1182.47 (17)
O2—S1—C4—C3178.62 (17)C9—C10—C11—C120.8 (3)
O1—S1—C4—C350.4 (2)S2—C10—C11—C12179.30 (16)
N1—S1—C4—C361.02 (19)C10—C11—C12—C70.5 (3)
C3—C4—C5—C61.7 (3)C8—C7—C12—C111.3 (3)
S1—C4—C5—C6177.20 (17)N1—C7—C12—C11179.41 (18)
C4—C5—C6—C10.7 (3)S2—N2—C13—O52.9 (3)
C2—C1—C6—C50.8 (4)S2—N2—C13—C14177.73 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.81 (2)2.06 (2)2.848 (2)162 (2)
N2—H2N···O1ii0.82 (2)2.15 (2)2.950 (2)167 (2)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H16N2O5S2
Mr368.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.8077 (4), 10.0782 (4), 17.3081 (7)
β (°) 100.290 (2)
V3)1683.28 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.48 × 0.14 × 0.05
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.852, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
16294, 3715, 2787
Rint0.032
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.114, 1.02
No. of reflections3715
No. of parameters225
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.81 (2)2.06 (2)2.848 (2)162 (2)
N2—H2N···O1ii0.82 (2)2.15 (2)2.950 (2)167 (2)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1/2, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant for the project to strengthen the Materials Chemistry Laboratory at GC University Lahore, Pakistan.

References

First citationAshfaq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Saeed-ul-Hassan, S. (2009). Acta Cryst. E65, o1180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, X. & Mani, N. S. (2006). Green Chem. 8, 835–838.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds