organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­benzo­yl)-4-methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 23 December 2009; accepted 28 December 2009; online 9 January 2010)

The asymmetric unit of the title compound, C14H12ClNO3S, contains two independent mol­ecules. The dihedral angles between the two aromatic rings in each mol­ecule are 81.0 (1) and 76.3 (1)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds.

Related literature

For background literature and similar structures, see: Gowda et al. (2009a[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009a). Acta Cryst. E65, o2516.],b[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009b). Acta Cryst. E65, o2750.]); Suchetan et al. (2009[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3156.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO3S

  • Mr = 309.76

  • Monoclinic, C 2/c

  • a = 25.675 (3) Å

  • b = 12.0508 (8) Å

  • c = 22.191 (3) Å

  • β = 122.16 (1)°

  • V = 5812.5 (11) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 299 K

  • 0.50 × 0.48 × 0.44 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.821, Tmax = 0.840

  • 12864 measured reflections

  • 5931 independent reflections

  • 3733 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.130

  • S = 1.07

  • 5931 reflections

  • 367 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O5i 0.84 (1) 2.35 (1) 3.133 (3) 156 (2)
N2—H2N⋯O2ii 0.87 (1) 2.03 (1) 2.890 (3) 170 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As part of a study of the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2009a,b; Suchetan et al., 2009), in the present work, the structure of N-(4-chlorobenzoyl)4-methylbenzenesulfonamide (I) has been determined (Fig.1). The conformations of the N—H bonds in the C—SO2—NH—C(O) segments of the structure are anti to the C=O bonds, similar to that observed in N-(benzoyl)benzenesulfonamide (II) (Gowda et al., 2009a) and N-(4-chlorobenzoyl) benzenesulfonamide (III)(Suchetan et al., 2009).

The molecules are twisted at the S atom with the torsional angles of 67.1 (2)° and 67.7 (2)°, in the two molecules. The dihedral angles between the sulfonyl benzene ring and the —SO2—NH—C—O segment are 83.6 (1)° and 81.0 (1)°, compared to the values of 86.5(0.1) in (II) and 75.7 (1)° in (III). Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene rings in (I) are 81.0 (1)° and 76.3 (1)°, compared to the values of 80.3(0.1) in (II) and 68.6 (1)° in (III).

The dihedral angle between the sulfonyl benzene rings of the two molecules in the asymmetric unit is 45.8 (1)°. The packing of molecules linked by of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For background literature and similar structures, see: Gowda et al. (2009a,b); Suchetan et al. (2009).

Experimental top

N-(4-Chlorobenzoyl)4-methylbenzenesulfonamide was prepared by heating a mixture of 4-methylbenzenesulfonamide and 4-chlorobenzoyl chloride at 60° C for one hour. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in sodium hydrogen carbonate solution. The compound was precipitated by acidifying the filtered solution with dil. HCl. It was filtered and dried. The purity of the compound was checked by recording its melting point (168–170° C). Single crystals were obtained from slow evaporation of a solution of the compound in toluene. Prism like colourless single crystals of the title compound were obtained from a slow evaporation of its toluene solution at room temperature and the X-ray diffraction studies were also carried out at room temperature.

Refinement top

The H atoms of the NH groups were located in a difference map and later restrained to N—H = 0.86 (1) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Structure description top

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As part of a study of the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2009a,b; Suchetan et al., 2009), in the present work, the structure of N-(4-chlorobenzoyl)4-methylbenzenesulfonamide (I) has been determined (Fig.1). The conformations of the N—H bonds in the C—SO2—NH—C(O) segments of the structure are anti to the C=O bonds, similar to that observed in N-(benzoyl)benzenesulfonamide (II) (Gowda et al., 2009a) and N-(4-chlorobenzoyl) benzenesulfonamide (III)(Suchetan et al., 2009).

The molecules are twisted at the S atom with the torsional angles of 67.1 (2)° and 67.7 (2)°, in the two molecules. The dihedral angles between the sulfonyl benzene ring and the —SO2—NH—C—O segment are 83.6 (1)° and 81.0 (1)°, compared to the values of 86.5(0.1) in (II) and 75.7 (1)° in (III). Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene rings in (I) are 81.0 (1)° and 76.3 (1)°, compared to the values of 80.3(0.1) in (II) and 68.6 (1)° in (III).

The dihedral angle between the sulfonyl benzene rings of the two molecules in the asymmetric unit is 45.8 (1)°. The packing of molecules linked by of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

For background literature and similar structures, see: Gowda et al. (2009a,b); Suchetan et al. (2009).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and the displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N-(4-Chlorobenzoyl)-4-methylbenzenesulfonamide top
Crystal data top
C14H12ClNO3SF(000) = 2560
Mr = 309.76Dx = 1.416 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3720 reflections
a = 25.675 (3) Åθ = 2.4–27.8°
b = 12.0508 (8) ŵ = 0.41 mm1
c = 22.191 (3) ÅT = 299 K
β = 122.16 (1)°Prism, colourless
V = 5812.5 (11) Å30.50 × 0.48 × 0.44 mm
Z = 16
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
5931 independent reflections
Radiation source: fine-focus sealed tube3733 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Rotation method data acquisition using ω and phi scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 2532
Tmin = 0.821, Tmax = 0.840k = 1015
12864 measured reflectionsl = 2726
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0686P)2 + 0.2769P]
where P = (Fo2 + 2Fc2)/3
5931 reflections(Δ/σ)max < 0.001
367 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = 0.35 e Å3
Crystal data top
C14H12ClNO3SV = 5812.5 (11) Å3
Mr = 309.76Z = 16
Monoclinic, C2/cMo Kα radiation
a = 25.675 (3) ŵ = 0.41 mm1
b = 12.0508 (8) ÅT = 299 K
c = 22.191 (3) Å0.50 × 0.48 × 0.44 mm
β = 122.16 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
5931 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
3733 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.840Rint = 0.018
12864 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0452 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.22 e Å3
5931 reflectionsΔρmin = 0.35 e Å3
367 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.38789 (4)0.05434 (7)0.38377 (5)0.0983 (3)
S10.14332 (3)0.10122 (5)0.50954 (3)0.05366 (19)
O10.11216 (9)0.19893 (15)0.47163 (12)0.0881 (6)
O20.18104 (8)0.10514 (17)0.58521 (9)0.0788 (6)
O30.22829 (9)0.08559 (16)0.54283 (10)0.0806 (6)
N10.18659 (8)0.06886 (16)0.47816 (9)0.0452 (5)
H1N0.1773 (10)0.1095 (16)0.4431 (9)0.054*
C10.09034 (10)0.00583 (18)0.48616 (12)0.0442 (5)
C20.09089 (11)0.0707 (2)0.53769 (14)0.0585 (7)
H20.12090.06050.58550.070*
C30.04631 (14)0.1506 (2)0.51720 (18)0.0740 (8)
H30.04620.19410.55180.089*
C40.00175 (14)0.1678 (3)0.4465 (2)0.0793 (9)
C50.00290 (14)0.1015 (3)0.39662 (17)0.0886 (10)
H50.02690.11180.34870.106*
C60.04580 (12)0.0223 (2)0.41515 (14)0.0691 (7)
H60.04550.02110.38030.083*
C70.22739 (10)0.01850 (19)0.50176 (12)0.0477 (6)
C80.26807 (10)0.02355 (18)0.47333 (11)0.0417 (5)
C90.28899 (10)0.12670 (19)0.46694 (13)0.0532 (6)
H90.27780.19010.48120.064*
C100.32578 (11)0.1362 (2)0.44001 (13)0.0566 (7)
H100.33970.20550.43610.068*
C110.34187 (11)0.0432 (2)0.41897 (13)0.0547 (6)
C120.32329 (11)0.0603 (2)0.42626 (13)0.0580 (7)
H120.33600.12330.41330.070*
C130.28596 (10)0.06994 (19)0.45281 (12)0.0494 (6)
H130.27260.13960.45700.059*
C140.04607 (16)0.2566 (3)0.4263 (2)0.1319 (16)
H14A0.02630.32460.45000.158*
H14B0.07400.23410.44020.158*
H14C0.06840.26790.37570.158*
Cl20.10332 (4)0.14098 (7)0.31950 (5)0.0936 (3)
S20.33983 (3)0.23886 (6)0.17178 (3)0.0584 (2)
O40.31253 (8)0.18435 (17)0.10439 (8)0.0764 (6)
O50.35779 (10)0.35126 (16)0.17631 (11)0.0853 (6)
O60.33220 (8)0.33394 (15)0.29154 (9)0.0688 (5)
N20.28714 (9)0.22737 (16)0.19241 (10)0.0510 (5)
H2N0.2582 (8)0.1838 (16)0.1619 (10)0.061*
C150.40193 (10)0.1613 (2)0.23652 (12)0.0501 (6)
C160.39912 (11)0.0479 (2)0.23028 (13)0.0613 (7)
H160.36440.01420.19260.074*
C170.44735 (13)0.0156 (3)0.27945 (16)0.0755 (8)
H170.44500.09240.27450.091*
C180.49838 (13)0.0307 (4)0.33503 (16)0.0806 (9)
C190.50120 (13)0.1440 (4)0.34170 (15)0.0901 (11)
H190.53610.17660.37970.108*
C200.45307 (13)0.2109 (3)0.29301 (14)0.0734 (8)
H200.45520.28760.29840.088*
C210.29100 (11)0.27162 (19)0.25229 (12)0.0486 (6)
C220.24186 (10)0.23757 (18)0.26438 (11)0.0433 (5)
C230.22642 (11)0.3098 (2)0.30130 (12)0.0533 (6)
H230.24540.37880.31540.064*
C240.18339 (12)0.2803 (2)0.31707 (13)0.0585 (7)
H240.17250.32960.34080.070*
C250.15648 (11)0.1773 (2)0.29750 (13)0.0555 (6)
C260.17150 (12)0.1034 (2)0.26192 (13)0.0576 (6)
H260.15310.03380.24900.069*
C270.21412 (11)0.13404 (19)0.24571 (12)0.0517 (6)
H270.22460.08440.22180.062*
C280.55230 (14)0.0392 (4)0.38905 (19)0.1392 (17)
H28A0.57480.06530.36850.167*
H28B0.53740.10140.40260.167*
H28C0.57890.00500.43030.167*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1146 (7)0.0990 (6)0.1408 (8)0.0175 (5)0.1081 (6)0.0329 (5)
S10.0629 (4)0.0522 (4)0.0623 (4)0.0014 (3)0.0443 (3)0.0062 (3)
O10.1045 (15)0.0493 (11)0.1475 (19)0.0261 (11)0.0920 (15)0.0236 (12)
O20.0802 (12)0.1132 (16)0.0579 (12)0.0377 (12)0.0467 (10)0.0363 (11)
O30.0916 (14)0.0817 (14)0.0988 (15)0.0321 (11)0.0711 (13)0.0506 (12)
N10.0521 (11)0.0500 (12)0.0439 (11)0.0115 (9)0.0326 (10)0.0143 (9)
C10.0444 (12)0.0488 (14)0.0459 (14)0.0055 (10)0.0283 (11)0.0032 (10)
C20.0564 (15)0.0642 (17)0.0577 (16)0.0022 (13)0.0323 (13)0.0058 (13)
C30.080 (2)0.0623 (19)0.107 (3)0.0012 (16)0.069 (2)0.0054 (17)
C40.0615 (18)0.074 (2)0.124 (3)0.0162 (16)0.064 (2)0.042 (2)
C50.0615 (18)0.129 (3)0.074 (2)0.020 (2)0.0349 (17)0.041 (2)
C60.0667 (17)0.091 (2)0.0517 (17)0.0017 (16)0.0326 (14)0.0052 (15)
C70.0526 (14)0.0490 (14)0.0448 (14)0.0029 (12)0.0281 (11)0.0081 (11)
C80.0420 (12)0.0412 (13)0.0431 (13)0.0006 (10)0.0233 (10)0.0018 (10)
C90.0556 (14)0.0412 (14)0.0663 (16)0.0040 (11)0.0348 (13)0.0005 (11)
C100.0555 (15)0.0457 (15)0.0730 (18)0.0020 (12)0.0372 (14)0.0153 (12)
C110.0552 (14)0.0602 (17)0.0630 (16)0.0089 (13)0.0411 (13)0.0166 (13)
C120.0678 (16)0.0494 (15)0.0771 (18)0.0106 (13)0.0522 (15)0.0037 (13)
C130.0585 (14)0.0401 (14)0.0625 (16)0.0003 (11)0.0408 (13)0.0012 (11)
C140.101 (3)0.113 (3)0.227 (5)0.051 (2)0.118 (3)0.081 (3)
Cl20.0976 (6)0.1036 (7)0.1202 (7)0.0049 (5)0.0852 (6)0.0033 (5)
S20.0639 (4)0.0694 (5)0.0533 (4)0.0019 (3)0.0388 (3)0.0103 (3)
O40.0730 (12)0.1215 (16)0.0424 (10)0.0038 (12)0.0358 (9)0.0008 (10)
O50.1050 (15)0.0662 (13)0.1101 (17)0.0067 (11)0.0744 (14)0.0229 (11)
O60.0759 (12)0.0704 (12)0.0660 (12)0.0237 (10)0.0417 (10)0.0165 (10)
N20.0519 (12)0.0614 (14)0.0430 (11)0.0046 (10)0.0275 (10)0.0021 (9)
C150.0492 (14)0.0624 (17)0.0465 (14)0.0135 (12)0.0307 (12)0.0030 (12)
C160.0503 (15)0.0705 (19)0.0578 (17)0.0067 (14)0.0252 (13)0.0029 (14)
C170.0630 (18)0.082 (2)0.080 (2)0.0059 (16)0.0372 (18)0.0178 (17)
C180.0546 (18)0.127 (3)0.064 (2)0.000 (2)0.0343 (16)0.024 (2)
C190.0490 (17)0.157 (4)0.0515 (19)0.036 (2)0.0178 (15)0.010 (2)
C200.0704 (18)0.087 (2)0.0611 (18)0.0333 (17)0.0337 (16)0.0167 (16)
C210.0584 (15)0.0430 (14)0.0453 (14)0.0013 (12)0.0281 (12)0.0025 (11)
C220.0521 (13)0.0399 (13)0.0380 (12)0.0053 (11)0.0241 (11)0.0052 (10)
C230.0672 (16)0.0379 (13)0.0566 (15)0.0008 (12)0.0341 (13)0.0041 (11)
C240.0702 (17)0.0538 (16)0.0626 (17)0.0121 (14)0.0428 (14)0.0011 (13)
C250.0586 (15)0.0609 (17)0.0552 (15)0.0058 (13)0.0358 (13)0.0081 (13)
C260.0703 (16)0.0476 (15)0.0643 (16)0.0079 (13)0.0421 (14)0.0018 (13)
C270.0667 (16)0.0457 (14)0.0510 (15)0.0020 (12)0.0369 (13)0.0026 (11)
C280.069 (2)0.233 (5)0.096 (3)0.032 (3)0.030 (2)0.081 (3)
Geometric parameters (Å, º) top
Cl1—C111.734 (2)Cl2—C251.732 (2)
S1—O11.4205 (19)S2—O51.4170 (19)
S1—O21.4242 (18)S2—O41.4294 (18)
S1—N11.6417 (18)S2—N21.6487 (19)
S1—C11.741 (2)S2—C151.744 (2)
O3—C71.209 (2)O6—C211.209 (3)
N1—C71.377 (3)N2—C211.385 (3)
N1—H1N0.838 (9)N2—H2N0.867 (9)
C1—C21.379 (3)C15—C161.371 (3)
C1—C61.383 (3)C15—C201.378 (3)
C2—C31.375 (3)C16—C171.368 (4)
C2—H20.9300C16—H160.9300
C3—C41.380 (4)C17—C181.352 (4)
C3—H30.9300C17—H170.9300
C4—C51.377 (5)C18—C191.371 (4)
C4—C141.507 (4)C18—C281.515 (4)
C5—C61.345 (4)C19—C201.387 (4)
C5—H50.9300C19—H190.9300
C6—H60.9300C20—H200.9300
C7—C81.481 (3)C21—C221.481 (3)
C8—C131.382 (3)C22—C271.386 (3)
C8—C91.391 (3)C22—C231.390 (3)
C9—C101.365 (3)C23—C241.372 (3)
C9—H90.9300C23—H230.9300
C10—C111.361 (3)C24—C251.374 (3)
C10—H100.9300C24—H240.9300
C11—C121.375 (3)C25—C261.374 (3)
C12—C131.371 (3)C26—C271.372 (3)
C12—H120.9300C26—H260.9300
C13—H130.9300C27—H270.9300
C14—H14A0.9600C28—H28A0.9600
C14—H14B0.9600C28—H28B0.9600
C14—H14C0.9600C28—H28C0.9600
O1—S1—O2119.07 (13)O5—S2—O4118.25 (12)
O1—S1—N1103.93 (10)O5—S2—N2110.16 (11)
O2—S1—N1108.60 (10)O4—S2—N2103.53 (10)
O1—S1—C1109.47 (12)O5—S2—C15109.49 (12)
O2—S1—C1108.00 (11)O4—S2—C15109.86 (12)
N1—S1—C1107.18 (10)N2—S2—C15104.58 (10)
C7—N1—S1124.74 (15)C21—N2—S2125.70 (17)
C7—N1—H1N125.6 (16)C21—N2—H2N125.2 (16)
S1—N1—H1N109.4 (16)S2—N2—H2N108.9 (16)
C2—C1—C6120.0 (2)C16—C15—C20119.8 (3)
C2—C1—S1120.74 (19)C16—C15—S2118.36 (18)
C6—C1—S1119.16 (19)C20—C15—S2121.8 (2)
C3—C2—C1118.9 (3)C17—C16—C15120.0 (3)
C3—C2—H2120.5C17—C16—H16120.0
C1—C2—H2120.5C15—C16—H16120.0
C2—C3—C4121.4 (3)C18—C17—C16121.5 (3)
C2—C3—H3119.3C18—C17—H17119.2
C4—C3—H3119.3C16—C17—H17119.2
C5—C4—C3117.9 (3)C17—C18—C19118.6 (3)
C5—C4—C14122.4 (4)C17—C18—C28121.8 (4)
C3—C4—C14119.7 (4)C19—C18—C28119.6 (3)
C6—C5—C4122.0 (3)C18—C19—C20121.4 (3)
C6—C5—H5119.0C18—C19—H19119.3
C4—C5—H5119.0C20—C19—H19119.3
C5—C6—C1119.8 (3)C15—C20—C19118.6 (3)
C5—C6—H6120.1C15—C20—H20120.7
C1—C6—H6120.1C19—C20—H20120.7
O3—C7—N1120.2 (2)O6—C21—N2121.2 (2)
O3—C7—C8124.0 (2)O6—C21—C22123.0 (2)
N1—C7—C8115.83 (18)N2—C21—C22115.7 (2)
C13—C8—C9118.7 (2)C27—C22—C23118.5 (2)
C13—C8—C7122.7 (2)C27—C22—C21123.2 (2)
C9—C8—C7118.6 (2)C23—C22—C21118.1 (2)
C10—C9—C8121.0 (2)C24—C23—C22120.6 (2)
C10—C9—H9119.5C24—C23—H23119.7
C8—C9—H9119.5C22—C23—H23119.7
C11—C10—C9119.2 (2)C23—C24—C25119.4 (2)
C11—C10—H10120.4C23—C24—H24120.3
C9—C10—H10120.4C25—C24—H24120.3
C10—C11—C12121.3 (2)C26—C25—C24121.3 (2)
C10—C11—Cl1119.64 (19)C26—C25—Cl2120.2 (2)
C12—C11—Cl1119.06 (19)C24—C25—Cl2118.56 (19)
C13—C12—C11119.5 (2)C27—C26—C25118.9 (2)
C13—C12—H12120.2C27—C26—H26120.5
C11—C12—H12120.2C25—C26—H26120.5
C12—C13—C8120.2 (2)C26—C27—C22121.2 (2)
C12—C13—H13119.9C26—C27—H27119.4
C8—C13—H13119.9C22—C27—H27119.4
C4—C14—H14A109.5C18—C28—H28A109.5
C4—C14—H14B109.5C18—C28—H28B109.5
H14A—C14—H14B109.5H28A—C28—H28B109.5
C4—C14—H14C109.5C18—C28—H28C109.5
H14A—C14—H14C109.5H28A—C28—H28C109.5
H14B—C14—H14C109.5H28B—C28—H28C109.5
O1—S1—N1—C7177.1 (2)O5—S2—N2—C2149.9 (2)
O2—S1—N1—C749.4 (2)O4—S2—N2—C21177.2 (2)
C1—S1—N1—C767.1 (2)C15—S2—N2—C2167.7 (2)
O1—S1—C1—C2132.2 (2)O5—S2—C15—C16164.32 (18)
O2—S1—C1—C21.2 (2)O4—S2—C15—C1632.9 (2)
N1—S1—C1—C2115.67 (19)N2—S2—C15—C1677.7 (2)
O1—S1—C1—C645.1 (2)O5—S2—C15—C2015.6 (2)
O2—S1—C1—C6176.12 (19)O4—S2—C15—C20147.08 (19)
N1—S1—C1—C667.0 (2)N2—S2—C15—C20102.4 (2)
C6—C1—C2—C30.6 (4)C20—C15—C16—C171.0 (4)
S1—C1—C2—C3176.69 (19)S2—C15—C16—C17179.0 (2)
C1—C2—C3—C40.7 (4)C15—C16—C17—C180.3 (4)
C2—C3—C4—C50.5 (4)C16—C17—C18—C190.1 (4)
C2—C3—C4—C14179.7 (2)C16—C17—C18—C28179.1 (3)
C3—C4—C5—C60.2 (4)C17—C18—C19—C200.2 (5)
C14—C4—C5—C6180.0 (3)C28—C18—C19—C20179.4 (3)
C4—C5—C6—C10.1 (4)C16—C15—C20—C191.2 (4)
C2—C1—C6—C50.3 (4)S2—C15—C20—C19178.8 (2)
S1—C1—C6—C5177.0 (2)C18—C19—C20—C150.8 (4)
S1—N1—C7—O38.7 (3)S2—N2—C21—O68.0 (3)
S1—N1—C7—C8171.77 (16)S2—N2—C21—C22172.02 (15)
O3—C7—C8—C13151.8 (3)O6—C21—C22—C27147.2 (2)
N1—C7—C8—C1328.6 (3)N2—C21—C22—C2732.8 (3)
O3—C7—C8—C928.3 (4)O6—C21—C22—C2327.5 (3)
N1—C7—C8—C9151.2 (2)N2—C21—C22—C23152.5 (2)
C13—C8—C9—C100.9 (3)C27—C22—C23—C241.8 (3)
C7—C8—C9—C10179.0 (2)C21—C22—C23—C24176.8 (2)
C8—C9—C10—C110.2 (4)C22—C23—C24—C251.5 (4)
C9—C10—C11—C121.9 (4)C23—C24—C25—C260.5 (4)
C9—C10—C11—Cl1179.30 (18)C23—C24—C25—Cl2178.81 (18)
C10—C11—C12—C132.4 (4)C24—C25—C26—C270.2 (4)
Cl1—C11—C12—C13178.81 (18)Cl2—C25—C26—C27179.45 (17)
C11—C12—C13—C81.2 (4)C25—C26—C27—C220.2 (4)
C9—C8—C13—C120.4 (3)C23—C22—C27—C261.2 (3)
C7—C8—C13—C12179.4 (2)C21—C22—C27—C26175.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.84 (1)2.35 (1)3.133 (3)156 (2)
N2—H2N···O2ii0.87 (1)2.03 (1)2.890 (3)170 (2)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC14H12ClNO3S
Mr309.76
Crystal system, space groupMonoclinic, C2/c
Temperature (K)299
a, b, c (Å)25.675 (3), 12.0508 (8), 22.191 (3)
β (°) 122.16 (1)
V3)5812.5 (11)
Z16
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.50 × 0.48 × 0.44
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.821, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
12864, 5931, 3733
Rint0.018
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 1.07
No. of reflections5931
No. of parameters367
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.35

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.838 (9)2.349 (13)3.133 (3)156 (2)
N2—H2N···O2ii0.867 (9)2.032 (11)2.890 (3)170 (2)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z1/2.
 

Acknowledgements

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

References

First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009a). Acta Cryst. E65, o2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009b). Acta Cryst. E65, o2750.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3156.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds