metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[aqua­sodium(I)]-μ-[2,2′-(disulfanedi­yl)bis­­(pyridine N-oxide)]-μ-(pyridine-2-thiol­ato 1-oxide)]

aDepartment of Chemistry, Popes College, Sawyerpuram 628 251, Tamilnadu, India, bDepartment of Physics, Sethupathy Government Arts College, Ramanathapuram 623 502, Tamilnadu, India, cDepartment of Physics, Popes College, Sawyerpuram 628 251, Tamilnadu, India, dDepartment of Chemistry, T.D.M.N.S. College, T. Kallikulam, Tamilnadu, India, and eInstitut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: b_ravidurai@yahoo.com

(Received 26 December 2009; accepted 1 January 2010; online 13 January 2010)

There are two monomeric units in the asymmetric unit of the polymeric title compound, [Na(C5H4NOS)(C10H8N2O2S2)(H2O)]n. The NaI ions are six coordinated by four O atoms, one S atom and one water mol­ecule, forming a slightly distorted octa­hedral geometry. An intra­molecular O—H⋯O hydrogen bond stabilizes the conformation of the mol­ecule. The crystal packing is consolidated by inter­molecular O—H⋯O, O—H⋯N and O—H⋯S hydrogen bonds, ππ inter­actions [with centroid–centroid distances of 3.587 (2) Å] together with weak C—H⋯π inter­actions. The mol­ecules are linked into polymeric chains along the b-axis direction.

Related literature

For the biological activity of N-oxides and their derivatives, see: Lobana & Bhatia (1989[Lobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394-401.]); Symons et al. (1985[Symons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Dalton Trans. pp. 379-381.]). For their involvement in DNA strand scission under physiological conditions, see: Katsuyuki et al. (1991[Katsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5099-5100.]); Bovin et al. (1992[Bovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chim. Fr. 129, 145-150.]). Pyridine N-oxides bearing a sulfur group in position two display significant anti­microbial activity, see: Leonard et al. (1955[Leonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261-264.]). For related structures, see: Jebas et al. (2005[Jebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677-o2678.]); Ravindran et al. (2008[Ravindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, o409.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(C5H4NOS)(C10H8N2O2S2)(H2O)]

  • Mr = 838.92

  • Orthorhombic, P c a 21

  • a = 24.829 (2) Å

  • b = 7.3290 (7) Å

  • c = 19.1378 (17) Å

  • V = 3482.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 173 K

  • 0.54 × 0.19 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.782, Tmax = 0.936

  • 38861 measured reflections

  • 8403 independent reflections

  • 6205 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.074

  • S = 0.93

  • 8403 reflections

  • 469 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4068 Friedel pairs

  • Flack parameter: 0.47 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N34/C33–C35 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O49—H49A⋯O16i 0.90 1.91 2.784 (3) 165
O49—H49A⋯N11i 0.90 2.67 3.417 (3) 141
O49—H49B⋯S32ii 0.89 2.37 3.198 (2) 154
O50—H50A⋯O39iii 0.92 1.88 2.798 (3) 177
O50—H50A⋯N34iii 0.92 2.62 3.455 (3) 151
O50—H50B⋯S24 0.86 2.33 3.193 (2) 174
C29—H29⋯Cg1iv 0.95 2.89 3.618 (4) 134
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+1, z]; (ii) x, y-1, z; (iii) [x-{\script{1\over 2}}, -y+1, z]; (iv) [-x+{\script{3\over 2}}, y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-oxides and their derivatives show a broad spectrum of biological activity such as antifungal, antimicrobial and antibacterial activities (Lobana & Bhatia, 1989; Symons et al., 1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki et al., 1991; Bovin et al., 1992). Pyridine N-oxides bearing a sulfur group in position two display significant antimicrobial activity (Leonard et al., 1955). In view of the importance of N-oxides, we have previously reported the crystal structures of N-oxide derivatives (Jebas et al., 2005; Ravindran et al., 2008). As an extension of our work on N-oxide derivatives, we report here the crystal structure of the title compound (I).

In the asymmetric unit of (I)(Fig 1), the NaI ion is six coordinated by four oxygen atoms, two from 1-oxypyridine-2-thiolato and two from 2,2-thiobis(pyridine N-oxide) ligands, and one sulfur atom from 1-oxypyridine-2-thiolato ligand. The pyridyl rings are essentially planar with the maximum deviation from planarity of -0.034 (5) Å for atom C10. The N–O bond lengths are in good agreement with the mean value of 1.304 (15) Å reported in the literature for pyridine N-oxides.

Intramolecular O—H···O hydrogen bonding influence the conformation of the molecule. The crystal packing (Fig 2) is consolidated by intermolecular O—H···O, O—H···N and O—H···S hydrogen bonding together with intramolecular S···O= 2.587 (3) to 3.069 (3) Å; N···S=2.686 (4) to 2.700 (5) Å; S···Na=3.807 (2) Å, intermolecular S···Oi=3.065 (3) Å, O···Oi=2.784 (3), O···Oii=2.798 (3) Å, intramolecular S···O =2.587 (3)to 3.069 (3) Å; O···O = 2.784 (3) to 2.798 (3) Å; S···Na=3.807 (2) Å and N···S=2.686 (4) to 2.700 (5) Å short contacts [symmetry code: (i) 1/2+X,1-Y,Z (ii) -1/2+X, 1-Y, Z]. ππ interactions with cg1-cg4iii=3.587 (2)Å (Where Cg1 is N1/C2—C6; Cg2 is N25/C26—C30) [symmetry code: (iii) X, -1+Y, Z] together with weak C—H··· π interactions. The molecules are linked into polymeric chains along the b-direction.

Related literature top

For the biological activity of N-oxides and their derivatives, see: Lobana & Bhatia (1989); Symons et al. (1985). For their involvement in DNA strand scission under physiological conditions, see: Katsuyuki et al. (1991); Bovin et al. (1992). Pyridine N-oxides bearing a sulfur group in position two display significant antimicrobial activity, see: Leonard et al. (1955). For related structures: Jebas et al. (2005); Ravindran et al. (2008).

Experimental top

A mixture of Sodium salt of 1-hydroxypyidine-2-thione (0.298 2mmol), ethanol (10 ml)and sodium ethoxide (10ml) was heated at 333 K with stirring for 30 min. After two days again Sodium salt of 1-hydroxypyidine-2-thione(0.149,1mmol)was added. The solution was again heated at 333 K with stirring for 30 min. The mixture was then kept aside for slow evaporation. After a week colourless crystals were formed.

Refinement top

After checking their presence in the Fourier map, all the aromatic hydrogen atoms were fixed on the calculated positions and allowed to ride on their parent atoms with the C—H = 0.95 Å. The water hydrogen atoms were located from the Fourier map and allowed to refine freely with the distances O—H = 0.86 to 0.92Å (water) with Uiso(C) in the range of 1.2Uequ(C) and 1.5Uequ(O) water. The crystal was an inversion twin. The Flack parameter indicates the fractional contribution of the twin components.

Structure description top

N-oxides and their derivatives show a broad spectrum of biological activity such as antifungal, antimicrobial and antibacterial activities (Lobana & Bhatia, 1989; Symons et al., 1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki et al., 1991; Bovin et al., 1992). Pyridine N-oxides bearing a sulfur group in position two display significant antimicrobial activity (Leonard et al., 1955). In view of the importance of N-oxides, we have previously reported the crystal structures of N-oxide derivatives (Jebas et al., 2005; Ravindran et al., 2008). As an extension of our work on N-oxide derivatives, we report here the crystal structure of the title compound (I).

In the asymmetric unit of (I)(Fig 1), the NaI ion is six coordinated by four oxygen atoms, two from 1-oxypyridine-2-thiolato and two from 2,2-thiobis(pyridine N-oxide) ligands, and one sulfur atom from 1-oxypyridine-2-thiolato ligand. The pyridyl rings are essentially planar with the maximum deviation from planarity of -0.034 (5) Å for atom C10. The N–O bond lengths are in good agreement with the mean value of 1.304 (15) Å reported in the literature for pyridine N-oxides.

Intramolecular O—H···O hydrogen bonding influence the conformation of the molecule. The crystal packing (Fig 2) is consolidated by intermolecular O—H···O, O—H···N and O—H···S hydrogen bonding together with intramolecular S···O= 2.587 (3) to 3.069 (3) Å; N···S=2.686 (4) to 2.700 (5) Å; S···Na=3.807 (2) Å, intermolecular S···Oi=3.065 (3) Å, O···Oi=2.784 (3), O···Oii=2.798 (3) Å, intramolecular S···O =2.587 (3)to 3.069 (3) Å; O···O = 2.784 (3) to 2.798 (3) Å; S···Na=3.807 (2) Å and N···S=2.686 (4) to 2.700 (5) Å short contacts [symmetry code: (i) 1/2+X,1-Y,Z (ii) -1/2+X, 1-Y, Z]. ππ interactions with cg1-cg4iii=3.587 (2)Å (Where Cg1 is N1/C2—C6; Cg2 is N25/C26—C30) [symmetry code: (iii) X, -1+Y, Z] together with weak C—H··· π interactions. The molecules are linked into polymeric chains along the b-direction.

For the biological activity of N-oxides and their derivatives, see: Lobana & Bhatia (1989); Symons et al. (1985). For their involvement in DNA strand scission under physiological conditions, see: Katsuyuki et al. (1991); Bovin et al. (1992). Pyridine N-oxides bearing a sulfur group in position two display significant antimicrobial activity, see: Leonard et al. (1955). For related structures: Jebas et al. (2005); Ravindran et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing polymeric chains along the b-direction.
catena-Poly[[aquasodium]-µ-[2,2'-(disulfanediyl)bis(pyridine N-oxide)]-µ-(pyridine-2-thiolato 1-oxide)] top
Crystal data top
[Na(C5H4NOS)(C10H8N2O2S2)(H2O)]F(000) = 1728
Mr = 838.92Dx = 1.600 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2c -2acCell parameters from 6853 reflections
a = 24.829 (2) Åθ = 2.7–27.9°
b = 7.3290 (7) ŵ = 0.48 mm1
c = 19.1378 (17) ÅT = 173 K
V = 3482.5 (5) Å3Block, colorless
Z = 40.54 × 0.19 × 0.14 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
8403 independent reflections
Radiation source: sealed Tube6205 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
CCD scanθmax = 28.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 3230
Tmin = 0.782, Tmax = 0.936k = 99
38861 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: calc
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0277P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
8403 reflectionsΔρmax = 0.28 e Å3
469 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 4068 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.47 (6)
Crystal data top
[Na(C5H4NOS)(C10H8N2O2S2)(H2O)]V = 3482.5 (5) Å3
Mr = 838.92Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 24.829 (2) ŵ = 0.48 mm1
b = 7.3290 (7) ÅT = 173 K
c = 19.1378 (17) Å0.54 × 0.19 × 0.14 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
8403 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
6205 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.936Rint = 0.077
38861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.28 e Å3
S = 0.93Δρmin = 0.23 e Å3
8403 reflectionsAbsolute structure: Flack (1983), 4068 Friedel pairs
469 parametersAbsolute structure parameter: 0.47 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.62174 (8)0.7233 (3)0.43117 (11)0.0209 (4)
Na20.63035 (8)0.2253 (3)0.42791 (11)0.0205 (4)
N10.55812 (13)0.4551 (4)0.55069 (17)0.0169 (6)
C20.5074 (3)0.5199 (5)0.5651 (4)0.0192 (12)
C30.4871 (3)0.5177 (5)0.6318 (4)0.0254 (14)
H30.45180.56120.64130.031*
C40.51902 (17)0.4511 (5)0.6844 (2)0.0284 (8)
H40.50590.44820.73100.034*
C50.57028 (13)0.3880 (5)0.66984 (17)0.0261 (8)
H50.59230.34190.70640.031*
C60.58936 (13)0.3919 (4)0.60254 (17)0.0233 (7)
H60.62470.34980.59270.028*
O70.57443 (13)0.4583 (4)0.48528 (17)0.0221 (6)
S80.47870 (3)0.60118 (11)0.48539 (5)0.02044 (17)
S90.40763 (3)0.71334 (11)0.51954 (5)0.02278 (18)
C100.3632 (2)0.5278 (6)0.5114 (3)0.0194 (10)
N110.31067 (11)0.5830 (4)0.50875 (14)0.0217 (6)
C120.27083 (19)0.4613 (6)0.4983 (3)0.0257 (10)
H120.23480.50320.49310.031*
C130.28145 (15)0.2766 (6)0.49496 (19)0.0247 (9)
H130.25300.19220.48730.030*
C140.33365 (14)0.2158 (5)0.50285 (17)0.0245 (8)
H140.34140.08890.50260.029*
C150.37491 (14)0.3433 (5)0.51114 (17)0.0208 (7)
H150.41110.30340.51660.025*
O160.30158 (11)0.7595 (4)0.51612 (17)0.0334 (7)
N170.68938 (18)0.4697 (4)0.3143 (2)0.0169 (8)
C180.65984 (13)0.3867 (4)0.26226 (16)0.0202 (7)
C190.68407 (14)0.3771 (5)0.19601 (17)0.0263 (8)
H190.66450.32370.15850.032*
C200.73511 (18)0.4424 (6)0.1836 (2)0.0320 (9)
H200.75080.43170.13850.038*
C210.7630 (2)0.5230 (5)0.2370 (3)0.0292 (13)
H210.79810.57050.22880.035*
C220.7405 (2)0.5353 (5)0.3019 (3)0.0234 (10)
H220.76030.58950.33900.028*
O230.67089 (18)0.4834 (3)0.3798 (3)0.0219 (9)
S240.59697 (3)0.30128 (11)0.28014 (5)0.02486 (19)
N250.5601 (2)0.9741 (4)0.5395 (3)0.0210 (9)
C260.51021 (18)1.0416 (6)0.5488 (2)0.0223 (9)
H260.49231.09620.51030.027*
C270.4846 (2)1.0345 (6)0.6115 (3)0.0295 (11)
H270.44901.08070.61660.035*
C280.5116 (2)0.9575 (6)0.6683 (2)0.0347 (10)
H280.49480.95020.71280.042*
C290.56242 (15)0.8933 (5)0.65881 (19)0.0320 (8)
H290.58100.84480.69800.038*
C300.58885 (13)0.8950 (4)0.59367 (17)0.0230 (7)
O310.58128 (18)0.9846 (3)0.4763 (2)0.0212 (9)
S320.65125 (3)0.80270 (12)0.57957 (5)0.0296 (2)
C330.8877 (2)0.0209 (5)0.3402 (3)0.0169 (10)
N340.93985 (10)0.0766 (4)0.34558 (13)0.0190 (6)
C350.97985 (18)0.0463 (6)0.3550 (2)0.0258 (9)
H351.01590.00580.36120.031*
C360.96829 (16)0.2304 (6)0.3558 (2)0.0292 (10)
H360.99660.31610.36200.035*
C370.91595 (14)0.2915 (5)0.34758 (18)0.0269 (8)
H370.90800.41830.34690.032*
C380.87541 (14)0.1622 (5)0.34031 (18)0.0233 (7)
H380.83900.20040.33540.028*
O390.94960 (10)0.2526 (4)0.33994 (15)0.0264 (6)
S400.84312 (3)0.20813 (11)0.33478 (5)0.02221 (17)
S410.77227 (3)0.09806 (11)0.37045 (5)0.01945 (17)
C420.7423 (3)0.0149 (4)0.2941 (4)0.0157 (12)
N430.69222 (13)0.0467 (4)0.30792 (17)0.0180 (7)
C440.65899 (13)0.1106 (4)0.25716 (17)0.0219 (7)
H440.62360.14970.26840.026*
C450.67693 (13)0.1180 (5)0.18980 (18)0.0271 (8)
H450.65390.16130.15380.033*
C460.72926 (16)0.0620 (5)0.17386 (19)0.0265 (8)
H460.74230.07000.12730.032*
C470.7618 (3)0.0052 (4)0.2263 (4)0.0214 (14)
H470.79740.04450.21610.026*
O480.67633 (12)0.0393 (3)0.37434 (17)0.0203 (6)
O490.69056 (8)0.1936 (3)0.52554 (13)0.0271 (5)
H49A0.72620.19200.51740.041*
H49B0.68800.07280.53100.041*
O500.56110 (8)0.6934 (3)0.33598 (13)0.0257 (5)
H50A0.52440.71150.33560.039*
H50B0.57000.58390.32390.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0196 (7)0.0196 (11)0.0234 (7)0.0009 (7)0.0026 (5)0.0003 (7)
Na20.0203 (8)0.0189 (10)0.0223 (6)0.0018 (7)0.0016 (6)0.0016 (7)
N10.0154 (16)0.0172 (12)0.0182 (17)0.0009 (15)0.0026 (12)0.0005 (15)
C20.015 (3)0.0152 (18)0.027 (3)0.0043 (15)0.002 (2)0.0050 (16)
C30.022 (3)0.026 (2)0.028 (3)0.0014 (16)0.005 (3)0.0027 (16)
C40.034 (2)0.034 (2)0.0177 (19)0.003 (2)0.0063 (17)0.0016 (18)
C50.0275 (18)0.0252 (17)0.0256 (19)0.0014 (15)0.0027 (15)0.0018 (15)
C60.0184 (16)0.0214 (16)0.0300 (19)0.0002 (14)0.0039 (15)0.0012 (15)
O70.0259 (15)0.0232 (11)0.0173 (14)0.0010 (14)0.0057 (12)0.0016 (14)
S80.0167 (4)0.0223 (4)0.0223 (4)0.0001 (3)0.0008 (3)0.0001 (4)
S90.0176 (4)0.0174 (4)0.0334 (5)0.0008 (3)0.0010 (4)0.0023 (4)
C100.020 (2)0.0223 (17)0.015 (2)0.0022 (17)0.0002 (18)0.0049 (17)
N110.0185 (15)0.0199 (15)0.0268 (17)0.0000 (12)0.0002 (12)0.0030 (13)
C120.017 (2)0.0306 (18)0.030 (3)0.003 (2)0.0022 (17)0.005 (2)
C130.025 (2)0.029 (2)0.020 (2)0.0078 (17)0.0006 (15)0.0038 (17)
C140.0280 (19)0.0205 (17)0.025 (2)0.0015 (15)0.0032 (15)0.0023 (14)
C150.0201 (17)0.0221 (18)0.0203 (18)0.0025 (14)0.0007 (15)0.0015 (14)
O160.0310 (17)0.0227 (14)0.0466 (18)0.0028 (13)0.0001 (15)0.0032 (13)
N170.017 (2)0.0170 (13)0.0162 (19)0.0016 (14)0.0036 (15)0.0023 (15)
C180.0254 (17)0.0142 (15)0.0211 (18)0.0072 (14)0.0027 (14)0.0027 (13)
C190.036 (2)0.0246 (17)0.0183 (19)0.0091 (16)0.0015 (15)0.0015 (14)
C200.040 (3)0.034 (2)0.023 (2)0.012 (2)0.0086 (18)0.007 (2)
C210.025 (3)0.028 (2)0.035 (3)0.0056 (17)0.010 (2)0.0114 (19)
C220.024 (2)0.0194 (15)0.026 (2)0.0023 (19)0.0003 (17)0.0041 (18)
O230.023 (2)0.0225 (15)0.020 (2)0.0003 (10)0.0026 (16)0.0006 (11)
S240.0188 (4)0.0237 (4)0.0321 (5)0.0009 (3)0.0039 (4)0.0021 (4)
N250.022 (2)0.0149 (13)0.026 (2)0.0064 (14)0.0042 (16)0.0020 (15)
C260.014 (2)0.0229 (16)0.030 (2)0.0051 (19)0.0006 (16)0.0032 (19)
C270.023 (2)0.0294 (19)0.036 (3)0.001 (2)0.004 (2)0.005 (2)
C280.039 (3)0.039 (2)0.025 (2)0.012 (2)0.0154 (19)0.003 (2)
C290.044 (2)0.0296 (18)0.0219 (19)0.0083 (17)0.0064 (17)0.0028 (16)
C300.0276 (18)0.0170 (15)0.0245 (19)0.0078 (14)0.0031 (15)0.0011 (14)
O310.027 (2)0.0212 (15)0.0157 (19)0.0011 (10)0.0056 (16)0.0035 (10)
S320.0226 (5)0.0258 (4)0.0404 (5)0.0033 (4)0.0080 (4)0.0061 (4)
C330.013 (2)0.0204 (19)0.018 (2)0.0027 (14)0.0012 (18)0.0048 (16)
N340.0184 (15)0.0208 (15)0.0177 (15)0.0004 (11)0.0012 (12)0.0011 (12)
C350.016 (2)0.0321 (19)0.029 (3)0.006 (2)0.0015 (17)0.005 (2)
C360.028 (2)0.025 (2)0.034 (2)0.0109 (17)0.0112 (17)0.0102 (17)
C370.0299 (19)0.0197 (17)0.031 (2)0.0030 (16)0.0082 (16)0.0029 (15)
C380.0214 (18)0.0237 (18)0.0247 (19)0.0026 (14)0.0021 (16)0.0014 (15)
O390.0208 (14)0.0211 (14)0.0372 (16)0.0042 (11)0.0021 (13)0.0015 (11)
S400.0160 (4)0.0168 (4)0.0338 (5)0.0014 (3)0.0001 (4)0.0036 (4)
S410.0157 (4)0.0201 (4)0.0226 (4)0.0007 (3)0.0008 (3)0.0012 (4)
C420.017 (3)0.0138 (18)0.017 (3)0.0040 (13)0.002 (2)0.0006 (13)
N430.0181 (16)0.0150 (12)0.0211 (17)0.0051 (15)0.0019 (13)0.0011 (15)
C440.0158 (16)0.0209 (16)0.0291 (19)0.0009 (14)0.0009 (14)0.0031 (14)
C450.0243 (18)0.0305 (19)0.026 (2)0.0017 (15)0.0063 (15)0.0036 (16)
C460.034 (2)0.0272 (18)0.0185 (19)0.004 (2)0.0053 (16)0.0049 (17)
C470.019 (3)0.024 (3)0.021 (3)0.0018 (12)0.005 (2)0.0008 (13)
O480.0208 (14)0.0218 (10)0.0183 (15)0.0017 (13)0.0060 (11)0.0025 (14)
O490.0188 (11)0.0225 (12)0.0399 (14)0.0010 (10)0.0010 (10)0.0065 (11)
O500.0181 (11)0.0247 (12)0.0343 (13)0.0037 (10)0.0003 (10)0.0038 (11)
Geometric parameters (Å, º) top
Na1—O312.328 (4)C21—C221.366 (8)
Na1—O232.355 (4)C21—H210.9500
Na1—O502.373 (3)C22—H220.9500
Na1—O48i2.459 (3)N25—O311.321 (7)
Na1—O72.495 (3)N25—C261.345 (6)
Na1—S322.990 (3)N25—C301.387 (6)
Na1—H50B2.6283C26—C271.360 (7)
Na2—O232.332 (4)C26—H260.9500
Na2—O31ii2.335 (4)C27—C281.397 (7)
Na2—O492.404 (3)C27—H270.9500
Na2—O72.459 (3)C28—C291.358 (6)
Na2—O482.473 (3)C28—H280.9500
Na2—S242.999 (2)C29—C301.409 (5)
N1—O71.316 (4)C29—H290.9500
N1—C61.342 (4)C30—S321.712 (4)
N1—C21.374 (7)O31—Na2i2.335 (4)
C2—C31.372 (10)C33—N341.362 (6)
C2—S81.785 (7)C33—C381.377 (4)
C3—C41.371 (8)C33—S401.766 (5)
C3—H30.9500N34—O391.317 (4)
C4—C51.382 (5)N34—C351.353 (5)
C4—H40.9500C35—C361.380 (6)
C5—C61.373 (4)C35—H350.9500
C5—H50.9500C36—C371.384 (5)
C6—H60.9500C36—H360.9500
S8—S92.0536 (11)C37—C381.389 (5)
S9—C101.758 (5)C37—H370.9500
C10—N111.367 (6)C38—H380.9500
C10—C151.383 (5)S40—S412.0521 (11)
N11—O161.320 (4)S41—C421.750 (7)
N11—C121.347 (5)C42—N431.348 (7)
C12—C131.380 (6)C42—C471.386 (10)
C12—H120.9500N43—O481.332 (4)
C13—C141.379 (5)N43—C441.358 (4)
C13—H130.9500C44—C451.365 (4)
C14—C151.396 (5)C44—H440.9500
C14—H140.9500C45—C461.396 (5)
C15—H150.9500C45—H450.9500
N17—O231.339 (7)C46—C471.380 (8)
N17—C221.378 (6)C46—H460.9500
N17—C181.378 (5)C47—H470.9500
C18—C191.405 (4)O48—Na1ii2.459 (3)
C18—S241.716 (3)O49—H49A0.8987
C19—C201.375 (6)O49—H49B0.8936
C19—H190.9500O50—H50A0.9220
C20—C211.368 (7)O50—H50B0.8634
C20—H200.9500
O31—Na1—O23172.9 (2)C12—C13—H13120.3
O31—Na1—O5094.98 (15)C13—C14—C15119.1 (3)
O23—Na1—O5086.52 (14)C13—C14—H14120.5
O31—Na1—O48i79.63 (13)C15—C14—H14120.5
O23—Na1—O48i93.33 (13)C10—C15—C14120.0 (4)
O50—Na1—O48i94.33 (12)C10—C15—H15120.0
O31—Na1—O7106.45 (14)C14—C15—H15120.0
O23—Na1—O780.56 (13)O23—N17—C22116.8 (4)
O50—Na1—O787.02 (11)O23—N17—C18121.8 (4)
O48i—Na1—O7173.66 (15)C22—N17—C18121.4 (4)
O31—Na1—S3266.01 (13)N17—C18—C19116.5 (3)
O23—Na1—S32114.50 (14)N17—C18—S24120.1 (3)
O50—Na1—S32154.47 (11)C19—C18—S24123.4 (3)
O48i—Na1—S3298.48 (10)C20—C19—C18122.2 (3)
O7—Na1—S3282.68 (10)C20—C19—H19118.9
O31—Na1—Na2148.47 (11)C18—C19—H19118.9
O23—Na1—Na238.50 (10)C21—C20—C19119.2 (4)
O50—Na1—Na286.09 (7)C21—C20—H20120.4
O48i—Na1—Na2131.80 (9)C19—C20—H20120.4
O7—Na1—Na242.06 (9)C22—C21—C20120.0 (5)
S32—Na1—Na2101.31 (5)C22—C21—H21120.0
O31—Na1—Na2i37.85 (11)C20—C21—H21120.0
O23—Na1—Na2i135.08 (11)C21—C22—N17120.7 (5)
O50—Na1—Na2i96.66 (7)C21—C22—H22119.7
O48i—Na1—Na2i41.79 (8)N17—C22—H22119.7
O7—Na1—Na2i144.23 (9)N17—O23—Na2117.2 (2)
S32—Na1—Na2i78.91 (4)N17—O23—Na1128.6 (3)
Na2—Na1—Na2i173.05 (4)Na2—O23—Na1102.53 (19)
O31—Na1—H50B113.5C18—S24—Na290.25 (11)
O23—Na1—H50B68.7O31—N25—C26117.9 (4)
O50—Na1—H50B19.0O31—N25—C30120.2 (4)
O48i—Na1—H50B101.5C26—N25—C30121.9 (5)
O7—Na1—H50B77.9N25—C26—C27122.3 (5)
S32—Na1—H50B159.6N25—C26—H26118.9
Na2—Na1—H50B68.1C27—C26—H26118.9
Na2i—Na1—H50B113.8C26—C27—C28118.5 (5)
O23—Na2—O31ii173.9 (2)C26—C27—H27120.8
O23—Na2—O4996.71 (16)C28—C27—H27120.8
O31ii—Na2—O4986.74 (14)C29—C28—C27118.8 (4)
O23—Na2—O781.77 (13)C29—C28—H28120.6
O31ii—Na2—O793.04 (13)C27—C28—H28120.6
O49—Na2—O794.09 (12)C28—C29—C30123.2 (4)
O23—Na2—O48105.84 (14)C28—C29—H29118.4
O31ii—Na2—O4879.21 (13)C30—C29—H29118.4
O49—Na2—O4887.67 (11)N25—C30—C29115.2 (3)
O7—Na2—O48171.96 (15)N25—C30—S32120.9 (3)
O23—Na2—S2466.19 (13)C29—C30—S32123.9 (3)
O31ii—Na2—S24111.71 (14)N25—O31—Na1117.6 (2)
O49—Na2—S24157.31 (10)N25—O31—Na2i127.9 (2)
O7—Na2—S2497.82 (10)Na1—O31—Na2i104.43 (19)
O48—Na2—S2483.23 (10)C30—S32—Na190.28 (12)
O23—Na2—Na138.96 (11)N34—C33—C38120.2 (4)
O31ii—Na2—Na1135.80 (10)N34—C33—S40111.6 (3)
O49—Na2—Na196.87 (8)C38—C33—S40128.2 (4)
O7—Na2—Na142.81 (8)O39—N34—C35121.9 (3)
O48—Na2—Na1144.76 (9)O39—N34—C33117.5 (3)
S24—Na2—Na179.32 (4)C35—N34—C33120.6 (3)
O23—Na2—Na1ii147.27 (11)N34—C35—C36120.0 (4)
O31ii—Na2—Na1ii37.72 (10)N34—C35—H35120.0
O49—Na2—Na1ii85.78 (7)C36—C35—H35120.0
O7—Na2—Na1ii130.75 (9)C35—C36—C37120.7 (4)
O48—Na2—Na1ii41.50 (8)C35—C36—H36119.6
S24—Na2—Na1ii100.67 (5)C37—C36—H36119.6
Na1—Na2—Na1ii173.05 (4)C36—C37—C38118.1 (4)
O7—N1—C6122.1 (3)C36—C37—H37121.0
O7—N1—C2117.8 (4)C38—C37—H37121.0
C6—N1—C2120.1 (4)C33—C38—C37120.3 (4)
C3—C2—N1121.2 (5)C33—C38—H38119.8
C3—C2—S8130.7 (5)C37—C38—H38119.8
N1—C2—S8108.0 (4)C33—S40—S41102.27 (16)
C4—C3—C2118.4 (5)C42—S41—S40102.9 (2)
C4—C3—H3120.8N43—C42—C47119.3 (5)
C2—C3—H3120.8N43—C42—S41110.1 (4)
C3—C4—C5120.2 (4)C47—C42—S41130.5 (5)
C3—C4—H4119.9O48—N43—C42116.6 (4)
C5—C4—H4119.9O48—N43—C44121.1 (3)
C6—C5—C4120.0 (3)C42—N43—C44122.3 (4)
C6—C5—H5120.0N43—C44—C45119.4 (3)
C4—C5—H5120.0N43—C44—H44120.3
N1—C6—C5120.1 (3)C45—C44—H44120.3
N1—C6—H6119.9C44—C45—C46119.9 (3)
C5—C6—H6119.9C44—C45—H45120.1
N1—O7—Na2125.9 (2)C46—C45—H45120.1
N1—O7—Na1123.6 (2)C47—C46—C45119.4 (4)
Na2—O7—Na195.13 (14)C47—C46—H46120.3
C2—S8—S9101.8 (2)C45—C46—H46120.3
C10—S9—S8101.62 (18)C46—C47—C42119.6 (5)
N11—C10—C15119.3 (4)C46—C47—H47120.2
N11—C10—S9111.9 (3)C42—C47—H47120.2
C15—C10—S9128.7 (4)N43—O48—Na1ii123.8 (2)
O16—N11—C12122.6 (3)N43—O48—Na2124.4 (2)
O16—N11—C10116.7 (3)Na1ii—O48—Na296.72 (14)
C12—N11—C10120.7 (3)Na2—O49—H49A118.6
N11—C12—C13121.1 (4)Na2—O49—H49B98.2
N11—C12—H12119.5H49A—O49—H49B94.4
C13—C12—H12119.5Na1—O50—H50A128.3
C14—C13—C12119.4 (4)Na1—O50—H50B97.4
C14—C13—H13120.3H50A—O50—H50B112.6
O31—Na1—Na2—O23177.5 (4)S24—Na2—O23—N1743.5 (3)
O50—Na1—Na2—O2389.3 (2)Na1—Na2—O23—N17146.4 (5)
O48i—Na1—Na2—O233.0 (2)Na1ii—Na2—O23—N1728.3 (5)
O7—Na1—Na2—O23179.2 (3)O49—Na2—O23—Na192.64 (17)
S32—Na1—Na2—O23115.3 (2)O7—Na2—O23—Na10.54 (18)
O31—Na1—Na2—O31ii7.08 (14)O48—Na2—O23—Na1177.89 (15)
O23—Na1—Na2—O31ii175.4 (4)S24—Na2—O23—Na1102.91 (17)
O50—Na1—Na2—O31ii86.1 (2)Na1ii—Na2—O23—Na1174.73 (9)
O48i—Na1—Na2—O31ii178.4 (2)O50—Na1—O23—N1752.9 (4)
O7—Na1—Na2—O31ii3.8 (2)O48i—Na1—O23—N1741.2 (4)
S32—Na1—Na2—O31ii69.24 (19)O7—Na1—O23—N17140.5 (4)
O31—Na1—Na2—O4985.3 (3)S32—Na1—O23—N17142.1 (4)
O23—Na1—Na2—O4992.2 (2)Na2—Na1—O23—N17141.0 (5)
O50—Na1—Na2—O49178.48 (13)Na2i—Na1—O23—N1743.0 (5)
O48i—Na1—Na2—O4989.20 (15)O50—Na1—O23—Na288.09 (17)
O7—Na1—Na2—O4988.60 (15)O48i—Na1—O23—Na2177.77 (17)
S32—Na1—Na2—O4923.15 (7)O7—Na1—O23—Na20.54 (18)
O31—Na1—Na2—O73.3 (3)S32—Na1—O23—Na276.89 (19)
O23—Na1—Na2—O7179.2 (3)Na2i—Na1—O23—Na2175.96 (7)
O50—Na1—Na2—O789.89 (15)N17—C18—S24—Na230.1 (3)
O48i—Na1—Na2—O7177.8 (3)C19—C18—S24—Na2149.7 (3)
S32—Na1—Na2—O765.44 (13)O23—Na2—S24—C1833.22 (15)
O31—Na1—Na2—O48179.0 (3)O31ii—Na2—S24—C18152.94 (15)
O23—Na1—Na2—O483.5 (2)O49—Na2—S24—C1810.4 (3)
O50—Na1—Na2—O4885.81 (18)O7—Na2—S24—C18110.60 (14)
O48i—Na1—Na2—O486.51 (11)O48—Na2—S24—C1877.44 (13)
O7—Na1—Na2—O48175.7 (3)Na1—Na2—S24—C1871.81 (11)
S32—Na1—Na2—O48118.86 (18)Na1ii—Na2—S24—C18115.26 (11)
O31—Na1—Na2—S24117.3 (3)O31—N25—C26—C27178.8 (4)
O23—Na1—Na2—S2465.2 (2)C30—N25—C26—C270.9 (6)
O50—Na1—Na2—S2424.16 (7)N25—C26—C27—C281.4 (7)
O48i—Na1—Na2—S2468.16 (13)C26—C27—C28—C290.1 (7)
O7—Na1—Na2—S24114.04 (15)C27—C28—C29—C302.1 (6)
S32—Na1—Na2—S24179.49 (8)O31—N25—C30—C29179.3 (3)
O7—N1—C2—C3178.7 (4)C26—N25—C30—C290.9 (5)
C6—N1—C2—C31.6 (6)O31—N25—C30—S322.2 (5)
O7—N1—C2—S82.2 (4)C26—N25—C30—S32177.6 (3)
C6—N1—C2—S8177.5 (3)C28—C29—C30—N252.4 (5)
N1—C2—C3—C40.8 (6)C28—C29—C30—S32176.0 (3)
S8—C2—C3—C4178.0 (3)C26—N25—O31—Na1132.8 (3)
C2—C3—C4—C50.1 (6)C30—N25—O31—Na147.0 (5)
C3—C4—C5—C60.0 (6)C26—N25—O31—Na2i87.3 (5)
O7—N1—C6—C5178.8 (3)C30—N25—O31—Na2i92.9 (4)
C2—N1—C6—C51.5 (5)O50—Na1—O31—N25117.2 (4)
C4—C5—C6—N10.7 (5)O48i—Na1—O31—N25149.3 (4)
C6—N1—O7—Na237.1 (5)O7—Na1—O31—N2528.9 (4)
C2—N1—O7—Na2143.2 (3)S32—Na1—O31—N2545.1 (3)
C6—N1—O7—Na190.7 (4)Na2—Na1—O31—N2526.6 (5)
C2—N1—O7—Na189.0 (4)Na2i—Na1—O31—N25148.3 (5)
O23—Na2—O7—N1139.2 (3)O50—Na1—O31—Na2i94.44 (18)
O31ii—Na2—O7—N144.0 (3)O48i—Na1—O31—Na2i0.94 (18)
O49—Na2—O7—N143.0 (3)O7—Na1—O31—Na2i177.20 (15)
S24—Na2—O7—N1156.4 (3)S32—Na1—O31—Na2i103.27 (18)
Na1—Na2—O7—N1138.7 (3)Na2—Na1—O31—Na2i174.91 (10)
Na1ii—Na2—O7—N145.0 (3)N25—C30—S32—Na128.0 (3)
O23—Na2—O7—Na10.50 (16)C29—C30—S32—Na1150.4 (3)
O31ii—Na2—O7—Na1177.35 (15)O31—Na1—S32—C3032.34 (16)
O49—Na2—O7—Na195.70 (12)O23—Na1—S32—C30155.44 (16)
S24—Na2—O7—Na164.94 (12)O50—Na1—S32—C3012.3 (2)
Na1ii—Na2—O7—Na1176.35 (6)O48i—Na1—S32—C30106.95 (14)
O31—Na1—O7—N138.2 (3)O7—Na1—S32—C3079.35 (13)
O23—Na1—O7—N1140.5 (3)Na2—Na1—S32—C30117.25 (11)
O50—Na1—O7—N1132.5 (3)Na2i—Na1—S32—C3069.83 (11)
S32—Na1—O7—N124.1 (3)C38—C33—N34—O39175.1 (4)
Na2—Na1—O7—N1140.0 (3)S40—C33—N34—O395.8 (5)
Na2i—Na1—O7—N135.2 (4)C38—C33—N34—C353.7 (7)
O31—Na1—O7—Na2178.21 (15)S40—C33—N34—C35175.5 (3)
O23—Na1—O7—Na20.50 (16)O39—N34—C35—C36175.5 (4)
O50—Na1—O7—Na287.46 (13)C33—N34—C35—C363.2 (6)
S32—Na1—O7—Na2115.94 (10)N34—C35—C36—C370.6 (6)
Na2i—Na1—O7—Na2175.27 (8)C35—C36—C37—C381.6 (6)
C3—C2—S8—S94.4 (4)N34—C33—C38—C371.4 (7)
N1—C2—S8—S9174.6 (2)S40—C33—C38—C37177.6 (4)
C2—S8—S9—C1091.6 (2)C36—C37—C38—C331.1 (6)
S8—S9—C10—N11159.6 (3)N34—C33—S40—S41155.9 (3)
S8—S9—C10—C1524.0 (5)C38—C33—S40—S4123.2 (5)
C15—C10—N11—O16173.5 (4)C33—S40—S41—C4289.8 (2)
S9—C10—N11—O163.3 (5)S40—S41—C42—N43173.9 (2)
C15—C10—N11—C127.2 (7)S40—S41—C42—C475.9 (4)
S9—C10—N11—C12176.0 (3)C47—C42—N43—O48177.9 (3)
O16—N11—C12—C13176.1 (4)S41—C42—N43—O482.2 (4)
C10—N11—C12—C134.7 (7)C47—C42—N43—C443.2 (5)
N11—C12—C13—C140.4 (6)S41—C42—N43—C44176.7 (3)
C12—C13—C14—C152.7 (5)O48—N43—C44—C45179.3 (3)
N11—C10—C15—C144.9 (7)C42—N43—C44—C451.8 (5)
S9—C10—C15—C14178.9 (4)N43—C44—C45—C460.7 (5)
C13—C14—C15—C100.0 (5)C44—C45—C46—C471.8 (5)
O23—N17—C18—C19178.6 (3)C45—C46—C47—C420.4 (6)
C22—N17—C18—C191.6 (5)N43—C42—C47—C462.0 (5)
O23—N17—C18—S241.3 (5)S41—C42—C47—C46177.9 (3)
C22—N17—C18—S24178.3 (3)C42—N43—O48—Na1ii141.7 (3)
N17—C18—C19—C201.6 (5)C44—N43—O48—Na1ii39.4 (4)
S24—C18—C19—C20178.2 (3)C42—N43—O48—Na289.4 (4)
C18—C19—C20—C211.4 (6)C44—N43—O48—Na289.6 (4)
C19—C20—C21—C221.0 (6)O23—Na2—O48—N4338.0 (3)
C20—C21—C22—N171.0 (6)O31ii—Na2—O48—N43138.5 (3)
O23—N17—C22—C21178.5 (4)O49—Na2—O48—N43134.3 (3)
C18—N17—C22—C211.4 (6)S24—Na2—O48—N4324.8 (3)
C22—N17—O23—Na2133.1 (3)Na1—Na2—O48—N4335.7 (4)
C18—N17—O23—Na244.0 (5)Na1ii—Na2—O48—N43139.4 (3)
C22—N17—O23—Na190.6 (5)O23—Na2—O48—Na1ii177.42 (15)
C18—N17—O23—Na192.3 (4)O31ii—Na2—O48—Na1ii0.86 (16)
O49—Na2—O23—N17120.9 (3)O49—Na2—O48—Na1ii86.26 (13)
O7—Na2—O23—N17145.9 (4)S24—Na2—O48—Na1ii114.56 (11)
O48—Na2—O23—N1731.4 (4)Na1—Na2—O48—Na1ii175.12 (8)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the N34/C33–C35 ring.
D—H···AD—HH···AD···AD—H···A
O49—H49A···O16iii0.901.912.784 (3)165
O49—H49A···N11iii0.902.673.417 (3)141
O49—H49B···S32ii0.892.373.198 (2)154
O50—H50A···O39iv0.921.882.798 (3)177
O50—H50A···N34iv0.922.623.455 (3)151
O50—H50B···S240.862.333.193 (2)174
C29—H29···Cg1v0.952.893.618 (4)134
Symmetry codes: (ii) x, y1, z; (iii) x+1/2, y+1, z; (iv) x1/2, y+1, z; (v) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Na(C5H4NOS)(C10H8N2O2S2)(H2O)]
Mr838.92
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)173
a, b, c (Å)24.829 (2), 7.3290 (7), 19.1378 (17)
V3)3482.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.54 × 0.19 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.782, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
38861, 8403, 6205
Rint0.077
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.074, 0.93
No. of reflections8403
No. of parameters469
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.23
Absolute structureFlack (1983), 4068 Friedel pairs
Absolute structure parameter0.47 (6)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the N34/C33–C35 ring.
D—H···AD—HH···AD···AD—H···A
O49—H49A···O16i0.901.912.784 (3)165
O49—H49A···N11i0.902.673.417 (3)141
O49—H49B···S32ii0.892.373.198 (2)154
O50—H50A···O39iii0.921.882.798 (3)177
O50—H50A···N34iii0.922.623.455 (3)151
O50—H50B···S240.862.333.193 (2)174
C29—H29···Cg1iv0.952.893.618 (4)134
Symmetry codes: (i) x+1/2, y+1, z; (ii) x, y1, z; (iii) x1/2, y+1, z; (iv) x+3/2, y+1, z+1/2.
 

References

First citationBovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chim. Fr. 129, 145–150.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677–o2678.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5099–5100.  Google Scholar
First citationLeonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261–264.  Google Scholar
First citationLobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394–401.  CAS Google Scholar
First citationRavindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, o409.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSymons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Dalton Trans. pp. 379–381.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds