organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[3-(4-Chloro­phen­yl)isoquinolin-1-yl]-3,5-di­ethyl-1H-pyrazole

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, bChemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, cSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 28 December 2009; accepted 30 December 2009; online 16 January 2010)

The title compound, C22H20ClN3, is composed of a dialkyl-substituted pyrazole ring connected to an aryl-substituted isoquinoline ring system with a dihedral angle of 55.8 (1)° between the pyrazole ring and and the isoquinoline ring system. The dihedral angle between the chloro­phenyl ring and the isoquinoline ring system is 28.3 (1)°.

Related literature

For medicinal applications of hydrazine derivatives, see: Broadhurst et al. (2001[Broadhurst, M. J., Johnson, W. H. & Walter, D. S. (2001). US Patent No. 6235787.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20ClN3

  • Mr = 361.86

  • Monoclinic, P 21 /n

  • a = 8.4484 (6) Å

  • b = 15.0386 (12) Å

  • c = 15.4894 (11) Å

  • β = 96.763 (1)°

  • V = 1954.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 290 K

  • 0.25 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.951, Tmax = 0.970

  • 14613 measured reflections

  • 3703 independent reflections

  • 2235 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.177

  • S = 1.03

  • 3703 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Related literature top

For medicinal applications of hydrazine derivatives, see: Broadhurst et al. (2001).

Experimental top

1-(3-(4-Chlorophenyl)isoquinolin-1-yl)hydrazine (2.69 g, 10mmol) and heptane-3,5-dione (1.28 g, 10 mmol) were dissolved in ethanol (30 ml). The solution was heated for 12 h under a nitrogen atmosphere. The reaction was quenched with water; the compound was extracted with ethyl acetate. The ethyl acetate phase was washed with water, dried, concentrated and purified by column chromatography to yield a white powder. Crystals were were obtained upon recrystallization from dichloromethane.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.93–0.97, O–H 0.82 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

Structure description top

For medicinal applications of hydrazine derivatives, see: Broadhurst et al. (2001).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C22H20ClN3 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
1-[3-(4-Chlorophenyl)isoquinolin-1-yl]-3,5-diethyl-1H-pyrazole top
Crystal data top
C22H20ClN3F(000) = 760
Mr = 361.86Dx = 1.230 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2329 reflections
a = 8.4484 (6) Åθ = 2.6–20.1°
b = 15.0386 (12) ŵ = 0.21 mm1
c = 15.4894 (11) ÅT = 290 K
β = 96.763 (1)°Block, colorless
V = 1954.3 (3) Å30.25 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker SMART area-detector
diffractometer
3703 independent reflections
Radiation source: fine-focus sealed tube2235 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 25.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 109
Tmin = 0.951, Tmax = 0.970k = 1818
14613 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.081P)2 + 0.4577P]
where P = (Fo2 + 2Fc2)/3
3703 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C22H20ClN3V = 1954.3 (3) Å3
Mr = 361.86Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4484 (6) ŵ = 0.21 mm1
b = 15.0386 (12) ÅT = 290 K
c = 15.4894 (11) Å0.25 × 0.18 × 0.15 mm
β = 96.763 (1)°
Data collection top
Bruker SMART area-detector
diffractometer
3703 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2235 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.970Rint = 0.040
14613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.03Δρmax = 0.46 e Å3
3703 reflectionsΔρmin = 0.19 e Å3
235 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.04502 (15)0.45817 (9)0.90130 (7)0.1233 (5)
N10.3419 (2)0.36347 (13)0.53000 (14)0.0507 (5)
N20.3322 (3)0.30349 (14)0.39224 (14)0.0567 (6)
N30.3354 (3)0.34178 (16)0.31188 (16)0.0691 (7)
C10.4218 (3)0.34365 (16)0.46595 (17)0.0508 (6)
C20.5882 (3)0.35802 (16)0.46517 (18)0.0539 (7)
C30.6777 (4)0.3266 (2)0.4002 (2)0.0708 (8)
H30.62720.29580.35260.085*
C40.8377 (4)0.3411 (2)0.4069 (3)0.0842 (10)
H40.89640.31910.36450.101*
C50.9138 (4)0.3887 (2)0.4766 (3)0.0838 (10)
H51.02280.39920.47970.101*
C60.8312 (3)0.4201 (2)0.5405 (2)0.0740 (9)
H60.88410.45190.58670.089*
C70.6650 (3)0.40456 (16)0.53719 (19)0.0561 (7)
C80.5763 (3)0.42863 (17)0.60411 (18)0.0572 (7)
H80.62460.46080.65130.069*
C90.4196 (3)0.40544 (16)0.60104 (16)0.0497 (6)
C100.3237 (3)0.42168 (17)0.67334 (17)0.0527 (7)
C110.3598 (4)0.48974 (19)0.73263 (18)0.0660 (8)
H110.44390.52800.72570.079*
C120.2736 (4)0.5017 (2)0.8014 (2)0.0806 (9)
H120.29910.54770.84080.097*
C130.1495 (4)0.4454 (2)0.8118 (2)0.0756 (9)
C140.1079 (4)0.3787 (2)0.7535 (2)0.0753 (9)
H140.02240.34150.76030.090*
C150.1948 (3)0.3675 (2)0.68431 (19)0.0654 (8)
H150.16640.32260.64420.078*
C160.3239 (8)0.3364 (4)0.1205 (3)0.170 (2)
H16A0.28650.34960.06090.254*
H16B0.39500.28650.12290.254*
H16C0.37920.38710.14680.254*
C170.1949 (6)0.3162 (3)0.1649 (2)0.1121 (14)
H17A0.13850.26630.13610.135*
H17B0.12270.36660.15990.135*
C180.2325 (4)0.2938 (2)0.25986 (19)0.0704 (8)
C190.1668 (4)0.2265 (2)0.30509 (19)0.0678 (8)
H190.09360.18410.28200.081*
C200.2294 (3)0.23392 (18)0.38943 (19)0.0580 (7)
C210.2030 (4)0.1809 (2)0.4678 (2)0.0755 (9)
H21A0.30540.16260.49730.091*
H21B0.15180.21830.50740.091*
C230.1027 (5)0.1005 (3)0.4464 (3)0.1153 (15)
H23A0.08960.06890.49890.173*
H23B0.15380.06260.40820.173*
H23C0.00020.11830.41830.173*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1396 (10)0.1493 (10)0.0907 (8)0.0002 (8)0.0536 (7)0.0141 (7)
N10.0447 (12)0.0527 (12)0.0538 (13)0.0062 (10)0.0020 (10)0.0004 (10)
N20.0556 (14)0.0604 (14)0.0539 (14)0.0113 (11)0.0048 (11)0.0057 (11)
N30.0807 (18)0.0707 (16)0.0554 (15)0.0148 (13)0.0055 (13)0.0011 (12)
C10.0492 (16)0.0455 (14)0.0565 (17)0.0060 (11)0.0009 (13)0.0010 (12)
C20.0451 (15)0.0481 (14)0.0683 (18)0.0035 (12)0.0062 (13)0.0085 (13)
C30.063 (2)0.0708 (19)0.081 (2)0.0019 (15)0.0174 (17)0.0037 (16)
C40.061 (2)0.087 (2)0.109 (3)0.0079 (17)0.027 (2)0.010 (2)
C50.0443 (18)0.088 (2)0.120 (3)0.0014 (17)0.012 (2)0.027 (2)
C60.0460 (17)0.077 (2)0.095 (2)0.0096 (15)0.0072 (17)0.0142 (18)
C70.0455 (15)0.0492 (15)0.0711 (18)0.0055 (12)0.0042 (14)0.0141 (13)
C80.0540 (17)0.0527 (15)0.0609 (17)0.0079 (13)0.0097 (14)0.0028 (13)
C90.0480 (16)0.0459 (14)0.0523 (16)0.0046 (12)0.0064 (12)0.0045 (12)
C100.0516 (16)0.0515 (15)0.0523 (15)0.0029 (12)0.0049 (12)0.0064 (12)
C110.074 (2)0.0614 (17)0.0616 (18)0.0055 (15)0.0018 (16)0.0036 (15)
C120.098 (3)0.080 (2)0.062 (2)0.0021 (19)0.0049 (18)0.0152 (17)
C130.084 (2)0.087 (2)0.0566 (19)0.0108 (19)0.0129 (16)0.0040 (17)
C140.070 (2)0.084 (2)0.073 (2)0.0059 (17)0.0134 (17)0.0072 (18)
C150.0614 (18)0.0712 (19)0.0627 (18)0.0079 (15)0.0035 (15)0.0034 (14)
C160.183 (6)0.225 (7)0.097 (4)0.021 (5)0.000 (4)0.037 (4)
C170.162 (4)0.105 (3)0.071 (3)0.028 (3)0.020 (3)0.007 (2)
C180.078 (2)0.078 (2)0.0541 (18)0.0048 (17)0.0019 (16)0.0130 (16)
C190.0670 (19)0.0709 (19)0.065 (2)0.0160 (15)0.0042 (15)0.0193 (16)
C200.0536 (16)0.0571 (16)0.0639 (18)0.0119 (13)0.0100 (13)0.0113 (14)
C210.083 (2)0.0689 (19)0.076 (2)0.0276 (16)0.0127 (17)0.0040 (16)
C230.142 (4)0.096 (3)0.109 (3)0.060 (3)0.015 (3)0.001 (2)
Geometric parameters (Å, º) top
Cl1—C131.739 (3)C11—H110.9300
N1—C11.299 (3)C12—C131.372 (5)
N1—C91.368 (3)C12—H120.9300
N2—C201.357 (3)C13—C141.368 (4)
N2—N31.375 (3)C14—C151.378 (4)
N2—C11.428 (3)C14—H140.9300
N3—C181.327 (4)C15—H150.9300
C1—C21.424 (4)C16—C171.390 (6)
C2—C71.409 (4)C16—H16A0.9600
C2—C31.410 (4)C16—H16B0.9600
C3—C41.361 (4)C16—H16C0.9600
C3—H30.9300C17—C181.505 (5)
C4—C51.389 (5)C17—H17A0.9700
C4—H40.9300C17—H17B0.9700
C5—C61.361 (4)C18—C191.384 (4)
C5—H50.9300C19—C201.355 (4)
C6—C71.418 (4)C19—H190.9300
C6—H60.9300C20—C211.491 (4)
C7—C81.396 (4)C21—C231.491 (4)
C8—C91.364 (4)C21—H21A0.9700
C8—H80.9300C21—H21B0.9700
C9—C101.478 (4)C23—H23A0.9600
C10—C151.387 (4)C23—H23B0.9600
C10—C111.385 (4)C23—H23C0.9600
C11—C121.372 (4)
C1—N1—C9118.5 (2)C14—C13—Cl1119.6 (3)
C20—N2—N3112.0 (2)C12—C13—Cl1119.5 (3)
C20—N2—C1129.0 (2)C13—C14—C15119.0 (3)
N3—N2—C1118.8 (2)C13—C14—H14120.5
C18—N3—N2103.9 (2)C15—C14—H14120.5
N1—C1—C2125.1 (2)C14—C15—C10121.4 (3)
N1—C1—N2115.7 (2)C14—C15—H15119.3
C2—C1—N2119.3 (2)C10—C15—H15119.3
C7—C2—C3119.8 (3)C17—C16—H16A109.5
C7—C2—C1115.6 (3)C17—C16—H16B109.5
C3—C2—C1124.6 (3)H16A—C16—H16B109.5
C4—C3—C2120.2 (3)C17—C16—H16C109.5
C4—C3—H3119.9H16A—C16—H16C109.5
C2—C3—H3119.9H16B—C16—H16C109.5
C3—C4—C5120.4 (3)C16—C17—C18116.5 (4)
C3—C4—H4119.8C16—C17—H17A108.2
C5—C4—H4119.8C18—C17—H17A108.2
C6—C5—C4121.0 (3)C16—C17—H17B108.2
C6—C5—H5119.5C18—C17—H17B108.2
C4—C5—H5119.5H17A—C17—H17B107.3
C5—C6—C7120.4 (3)N3—C18—C19111.3 (3)
C5—C6—H6119.8N3—C18—C17121.3 (3)
C7—C6—H6119.8C19—C18—C17127.4 (3)
C8—C7—C2118.6 (2)C20—C19—C18107.1 (3)
C8—C7—C6123.1 (3)C20—C19—H19126.5
C2—C7—C6118.2 (3)C18—C19—H19126.5
C9—C8—C7120.7 (3)C19—C20—N2105.7 (3)
C9—C8—H8119.6C19—C20—C21131.5 (3)
C7—C8—H8119.6N2—C20—C21122.9 (2)
C8—C9—N1121.2 (3)C23—C21—C20112.8 (3)
C8—C9—C10123.2 (2)C23—C21—H21A109.0
N1—C9—C10115.6 (2)C20—C21—H21A109.0
C15—C10—C11117.9 (3)C23—C21—H21B109.0
C15—C10—C9120.3 (2)C20—C21—H21B109.0
C11—C10—C9121.8 (3)H21A—C21—H21B107.8
C12—C11—C10121.1 (3)C21—C23—H23A109.5
C12—C11—H11119.5C21—C23—H23B109.5
C10—C11—H11119.5H23A—C23—H23B109.5
C11—C12—C13119.6 (3)C21—C23—H23C109.5
C11—C12—H12120.2H23A—C23—H23C109.5
C13—C12—H12120.2H23B—C23—H23C109.5
C14—C13—C12121.0 (3)
C20—N2—N3—C180.2 (3)C8—C9—C10—C15152.8 (3)
C1—N2—N3—C18175.2 (2)N1—C9—C10—C1526.0 (3)
C9—N1—C1—C23.5 (4)C8—C9—C10—C1126.3 (4)
C9—N1—C1—N2177.3 (2)N1—C9—C10—C11154.9 (2)
C20—N2—C1—N149.0 (4)C15—C10—C11—C121.8 (4)
N3—N2—C1—N1125.1 (3)C9—C10—C11—C12177.3 (3)
C20—N2—C1—C2130.3 (3)C10—C11—C12—C130.0 (5)
N3—N2—C1—C255.7 (3)C11—C12—C13—C141.5 (5)
N1—C1—C2—C75.9 (4)C11—C12—C13—Cl1177.7 (2)
N2—C1—C2—C7174.9 (2)C12—C13—C14—C151.3 (5)
N1—C1—C2—C3171.8 (3)Cl1—C13—C14—C15178.0 (2)
N2—C1—C2—C37.3 (4)C13—C14—C15—C100.6 (5)
C7—C2—C3—C40.0 (4)C11—C10—C15—C142.1 (4)
C1—C2—C3—C4177.7 (3)C9—C10—C15—C14177.0 (3)
C2—C3—C4—C51.4 (5)N2—N3—C18—C190.6 (3)
C3—C4—C5—C61.4 (5)N2—N3—C18—C17177.6 (3)
C4—C5—C6—C70.2 (5)C16—C17—C18—N344.6 (6)
C3—C2—C7—C8174.8 (2)C16—C17—C18—C19137.5 (5)
C1—C2—C7—C83.0 (3)N3—C18—C19—C201.2 (4)
C3—C2—C7—C61.5 (4)C17—C18—C19—C20176.8 (3)
C1—C2—C7—C6179.3 (2)C18—C19—C20—N21.2 (3)
C5—C6—C7—C8174.6 (3)C18—C19—C20—C21179.6 (3)
C5—C6—C7—C21.6 (4)N3—N2—C20—C190.9 (3)
C2—C7—C8—C91.8 (4)C1—N2—C20—C19175.3 (3)
C6—C7—C8—C9174.3 (2)N3—N2—C20—C21179.8 (3)
C7—C8—C9—N14.5 (4)C1—N2—C20—C215.4 (4)
C7—C8—C9—C10174.2 (2)C19—C20—C21—C237.2 (5)
C1—N1—C9—C81.9 (3)N2—C20—C21—C23171.8 (3)
C1—N1—C9—C10176.9 (2)

Experimental details

Crystal data
Chemical formulaC22H20ClN3
Mr361.86
Crystal system, space groupMonoclinic, P21/n
Temperature (K)290
a, b, c (Å)8.4484 (6), 15.0386 (12), 15.4894 (11)
β (°) 96.763 (1)
V3)1954.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.25 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.951, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
14613, 3703, 2235
Rint0.040
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.177, 1.03
No. of reflections3703
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.19

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the diffraction facility at IISc under the IRHPA–DST program. FNK thanks the DST for Fast Track Proposal funding. We thank VIT University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBroadhurst, M. J., Johnson, W. H. & Walter, D. S. (2001). US Patent No. 6235787.  Google Scholar
First citationBruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds