organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-3-(4-vinyl­benz­yl)imidazolium hexa­fluoro­phosphate

aState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China, bDepartment of Materials and Chemical Engineering, Taishan University, Taian 271021, People's Republic of China, and cResearch Centre of Laser Fusion, CAEP, Mianyang 621900, People's Republic of China
*Correspondence e-mail: xtchen@netra.nju.edu.cn

(Received 1 January 2010; accepted 5 January 2010; online 16 January 2010)

In the title compound, C13H15N2+·PF6, the dihedral angle between the two aromatic rings is 85.48 (7)°. In the crystal, C—H⋯F hydrogen bonds connect the imidazolium and hexa­fluoro­phosphate ions.

Related literature

For N-heterocyclic carbenes, see: Herrmann (2002[Herrmann, W. A. (2002). Angew. Chem. Int. Ed. Engl. 41, 1290-1309.]). For the synthesis of the title compound, see: Kim et al. (2005[Kim, J.-H., Kim, J.-W., Shokouhimehr, M. & Lee, Y.-S. (2005). J. Org. Chem. 70, 6714-6720.]). For a silver compound with 1-methyl-3-(4-vinyl­benz­yl)imidazol-2-yl­idene, see: Lu et al. (2009[Lu, X.-Y., CHen, F., Xu, W.-F. & Chen, X.-T. (2009). Inorg. Chim. Acta, 362, 5113-5116.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15N2+·PF6

  • Mr = 344.24

  • Orthorhombic, P 21 21 21

  • a = 10.482 (2) Å

  • b = 11.272 (3) Å

  • c = 12.556 (3) Å

  • V = 1483.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 K

  • 0.32 × 0.29 × 0.26 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT, SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.925, Tmax = 0.939

  • 9185 measured reflections

  • 3542 independent reflections

  • 3407 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.127

  • S = 1.03

  • 3542 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.89 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1484 Friedel pairs

  • Flack parameter: 0.05 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯F1i 0.93 2.36 3.266 (3) 164
C3—H3⋯F6ii 0.93 2.25 3.044 (3) 143
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT, SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT, SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N-heterocyclic carbenes have attracted great attention as they can act as efficient supporting ligands in organometallic chemistry and homogeneous catalysis (Herrmann, 2002). Imidazolium salts are the useful precusors of the N-heterocyclic carbenes. The silver compound with 1-methyl-3-(4-vinylbenzyl)imidazol-2-ylidene has been synthesized (Lu et al., 2009).

The structure of the title compound is shown in Fig. 1. The two aromatic rings enclose a dihedral angle of 85.48 (7)°. The hexafluorophosphate anions are linked to 1-methyl-3-(4-vinylbenzyl)imidazolium cations via C—H···F hydrogen bonds (Table 1 and Fig. 2). These interacions stabilize the crystal structure.

Related literature top

For N-heterocyclic carbenes, see: Herrmann (2002). For the synthesis of the title compound, see: Kim et al. (2005). For a silver compound with 1-methyl-3-(4-vinylbenzyl)imidazol-2-ylidene, see: Lu et al. (2009).

Experimental top

1-Methyl-3-(4-vinylbenzyl)imidazolium chloride was synthesized according to the literature method (Kim et al., 2005). The resulting white solid (0.70 g, 3.00 mmol) was dissolved in acetone (30 ml) and then potassium hexafluorophosphate (1.38 g, 7.50 mmol) was added. The mixture was stirred at room temperature for 26 h and the solvent was removed under reduced pressure. The residue was then dissolved in distilled water and extracted with CH2Cl2. The white solid was abtained after the removal of solvent. Yield: 0.78 g (76%). Anal. Calcd for C13H15F6N2P: C,45.36; H, 4.39; N, 8.14. Found: C, 45.13; H, 4.03; N, 8.35. The elemental analyses were performed with Vario MICRO elemental analyzer.

Refinement top

The H-atoms were included in the riding-model approximation with C—H = 0.93 Å and C—H = 0.96 Å, and with Uiso(H) = 1.2Ueq(C-aromatic) and Uiso(H) = 1.5Ueq(C-methyl).

Structure description top

N-heterocyclic carbenes have attracted great attention as they can act as efficient supporting ligands in organometallic chemistry and homogeneous catalysis (Herrmann, 2002). Imidazolium salts are the useful precusors of the N-heterocyclic carbenes. The silver compound with 1-methyl-3-(4-vinylbenzyl)imidazol-2-ylidene has been synthesized (Lu et al., 2009).

The structure of the title compound is shown in Fig. 1. The two aromatic rings enclose a dihedral angle of 85.48 (7)°. The hexafluorophosphate anions are linked to 1-methyl-3-(4-vinylbenzyl)imidazolium cations via C—H···F hydrogen bonds (Table 1 and Fig. 2). These interacions stabilize the crystal structure.

For N-heterocyclic carbenes, see: Herrmann (2002). For the synthesis of the title compound, see: Kim et al. (2005). For a silver compound with 1-methyl-3-(4-vinylbenzyl)imidazol-2-ylidene, see: Lu et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
1-Methyl-3-(4-vinylbenzyl)imidazolium hexafluorophosphate top
Crystal data top
C13H15N2+·PF6F(000) = 704
Mr = 344.24Dx = 1.541 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6513 reflections
a = 10.482 (2) Åθ = 2.4–28.3°
b = 11.272 (3) ŵ = 0.25 mm1
c = 12.556 (3) ÅT = 298 K
V = 1483.4 (6) Å3Block, colorless
Z = 40.32 × 0.29 × 0.26 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3542 independent reflections
Radiation source: fine-focus sealed tube3407 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
phi and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1311
Tmin = 0.925, Tmax = 0.939k = 1414
9185 measured reflectionsl = 1614
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0549P)2 + 1.5672P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3542 reflectionsΔρmax = 0.65 e Å3
200 parametersΔρmin = 0.89 e Å3
0 restraintsAbsolute structure: Flack (1983), 1484 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (13)
Crystal data top
C13H15N2+·PF6V = 1483.4 (6) Å3
Mr = 344.24Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.482 (2) ŵ = 0.25 mm1
b = 11.272 (3) ÅT = 298 K
c = 12.556 (3) Å0.32 × 0.29 × 0.26 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3542 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3407 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.939Rint = 0.085
9185 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.127Δρmax = 0.65 e Å3
S = 1.03Δρmin = 0.89 e Å3
3542 reflectionsAbsolute structure: Flack (1983), 1484 Friedel pairs
200 parametersAbsolute structure parameter: 0.05 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8710 (3)0.2998 (3)0.0944 (2)0.0351 (7)
H1A0.92480.25270.13960.053*
H1B0.90170.38000.09310.053*
H1C0.87220.26790.02350.053*
C20.6394 (3)0.3609 (2)0.0958 (2)0.0283 (6)
H20.64150.41280.03820.034*
C30.5369 (3)0.3342 (2)0.1548 (2)0.0249 (5)
H30.45490.36410.14600.030*
C40.6999 (3)0.2335 (2)0.21741 (19)0.0204 (5)
H40.74970.18260.25830.025*
C50.4948 (3)0.2031 (3)0.3150 (2)0.0228 (5)
H5A0.46780.26570.36300.027*
H5B0.54400.14610.35580.027*
C60.3787 (2)0.1426 (2)0.26935 (19)0.0192 (5)
C70.2587 (3)0.1657 (2)0.3101 (2)0.0236 (5)
H70.24890.22250.36320.028*
C80.1529 (3)0.1050 (3)0.2724 (2)0.0234 (5)
H80.07290.12160.30080.028*
C90.1643 (2)0.0194 (2)0.19242 (19)0.0191 (5)
C100.2861 (2)0.0017 (2)0.14997 (18)0.0190 (5)
H100.29600.05690.09560.023*
C110.3914 (2)0.0584 (2)0.1878 (2)0.0199 (5)
H110.47140.04290.15900.024*
C120.0501 (3)0.0449 (2)0.1563 (2)0.0230 (5)
H120.02820.01770.18120.028*
C130.0480 (3)0.1377 (3)0.0917 (2)0.0260 (5)
H13A0.12390.16810.06470.031*
H13B0.02940.17250.07330.031*
F10.67298 (19)0.98396 (17)0.85265 (12)0.0364 (4)
F20.75104 (15)0.85036 (13)0.96990 (13)0.0245 (3)
F30.54994 (15)0.92291 (15)0.99001 (14)0.0297 (4)
F40.70480 (17)0.97546 (17)1.10592 (12)0.0305 (4)
F50.62797 (17)1.11050 (14)0.98847 (14)0.0309 (4)
F60.82848 (16)1.03763 (16)0.96874 (17)0.0359 (4)
N10.7402 (2)0.2980 (2)0.13540 (17)0.0247 (5)
N20.5760 (2)0.25420 (19)0.23092 (17)0.0191 (4)
P10.68904 (6)0.98115 (6)0.97936 (5)0.01785 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0343 (15)0.0449 (17)0.0259 (13)0.0109 (14)0.0098 (12)0.0043 (13)
C20.0468 (16)0.0210 (12)0.0170 (11)0.0073 (12)0.0057 (12)0.0022 (10)
C30.0371 (14)0.0197 (12)0.0179 (11)0.0005 (11)0.0092 (11)0.0012 (9)
C40.0257 (12)0.0206 (12)0.0149 (10)0.0049 (10)0.0021 (9)0.0001 (8)
C50.0254 (12)0.0298 (13)0.0130 (10)0.0031 (11)0.0006 (10)0.0008 (10)
C60.0227 (11)0.0222 (12)0.0128 (10)0.0002 (10)0.0020 (9)0.0007 (9)
C70.0295 (13)0.0235 (12)0.0180 (10)0.0022 (11)0.0003 (10)0.0052 (10)
C80.0218 (12)0.0274 (13)0.0212 (11)0.0045 (10)0.0049 (10)0.0042 (10)
C90.0244 (12)0.0188 (11)0.0142 (9)0.0014 (9)0.0009 (9)0.0024 (9)
C100.0266 (12)0.0191 (12)0.0114 (9)0.0024 (9)0.0013 (9)0.0005 (8)
C110.0197 (11)0.0246 (12)0.0154 (10)0.0046 (10)0.0016 (9)0.0024 (9)
C120.0210 (11)0.0288 (13)0.0192 (11)0.0004 (10)0.0015 (10)0.0016 (10)
C130.0262 (12)0.0297 (14)0.0223 (12)0.0030 (11)0.0030 (10)0.0017 (11)
F10.0519 (11)0.0436 (10)0.0136 (7)0.0145 (9)0.0002 (7)0.0030 (7)
F20.0282 (8)0.0221 (7)0.0234 (7)0.0037 (6)0.0019 (7)0.0001 (6)
F30.0214 (7)0.0343 (9)0.0336 (9)0.0042 (6)0.0004 (7)0.0058 (7)
F40.0384 (9)0.0382 (9)0.0149 (7)0.0029 (8)0.0031 (6)0.0037 (6)
F50.0343 (8)0.0240 (8)0.0343 (9)0.0064 (7)0.0045 (8)0.0040 (7)
F60.0238 (8)0.0317 (9)0.0521 (11)0.0055 (7)0.0052 (8)0.0098 (8)
N10.0333 (12)0.0256 (11)0.0153 (9)0.0103 (10)0.0007 (9)0.0018 (9)
N20.0234 (10)0.0191 (10)0.0147 (9)0.0025 (8)0.0026 (8)0.0011 (8)
P10.0191 (3)0.0204 (3)0.0141 (3)0.0009 (2)0.0008 (2)0.0002 (2)
Geometric parameters (Å, º) top
C1—N11.464 (4)C7—H70.9300
C1—H1A0.9600C8—C91.398 (4)
C1—H1B0.9600C8—H80.9300
C1—H1C0.9600C9—C101.404 (3)
C2—C31.339 (4)C9—C121.471 (4)
C2—N11.367 (4)C10—C111.379 (4)
C2—H20.9300C10—H100.9300
C3—N21.377 (3)C11—H110.9300
C3—H30.9300C12—C131.324 (4)
C4—N11.330 (3)C12—H120.9300
C4—N21.330 (3)C13—H13A0.9300
C4—H40.9300C13—H13B0.9300
C5—N21.473 (3)F1—P11.6001 (17)
C5—C61.508 (4)F2—P11.6156 (16)
C5—H5A0.9700F3—P11.6046 (17)
C5—H5B0.9700F4—P11.5988 (16)
C6—C71.383 (4)F5—P11.5964 (17)
C6—C111.403 (4)F6—P11.5998 (18)
C7—C81.387 (4)
N1—C1—H1A109.5C11—C10—C9120.9 (2)
N1—C1—H1B109.5C11—C10—H10119.5
H1A—C1—H1B109.5C9—C10—H10119.5
N1—C1—H1C109.5C10—C11—C6120.5 (2)
H1A—C1—H1C109.5C10—C11—H11119.7
H1B—C1—H1C109.5C6—C11—H11119.7
C3—C2—N1107.6 (2)C13—C12—C9126.3 (3)
C3—C2—H2126.2C13—C12—H12116.9
N1—C2—H2126.2C9—C12—H12116.9
C2—C3—N2107.0 (3)C12—C13—H13A120.0
C2—C3—H3126.5C12—C13—H13B120.0
N2—C3—H3126.5H13A—C13—H13B120.0
N1—C4—N2108.3 (2)C4—N1—C2108.6 (2)
N1—C4—H4125.9C4—N1—C1125.3 (3)
N2—C4—H4125.9C2—N1—C1126.0 (3)
N2—C5—C6111.8 (2)C4—N2—C3108.5 (2)
N2—C5—H5A109.3C4—N2—C5125.9 (2)
C6—C5—H5A109.3C3—N2—C5125.6 (2)
N2—C5—H5B109.3F5—P1—F490.40 (10)
C6—C5—H5B109.3F5—P1—F690.51 (10)
H5A—C5—H5B107.9F4—P1—F690.25 (10)
C7—C6—C11118.9 (2)F5—P1—F190.63 (10)
C7—C6—C5120.6 (2)F4—P1—F1178.83 (11)
C11—C6—C5120.5 (2)F6—P1—F190.30 (11)
C6—C7—C8120.6 (2)F5—P1—F390.19 (10)
C6—C7—H7119.7F4—P1—F389.69 (10)
C8—C7—H7119.7F6—P1—F3179.30 (10)
C7—C8—C9121.2 (2)F1—P1—F389.74 (10)
C7—C8—H8119.4F5—P1—F2179.86 (11)
C9—C8—H8119.4F4—P1—F289.71 (9)
C8—C9—C10117.8 (2)F6—P1—F289.39 (9)
C8—C9—C12119.5 (2)F1—P1—F289.27 (9)
C10—C9—C12122.7 (2)F3—P1—F289.91 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···F1i0.932.363.266 (3)164
C3—H3···F6ii0.932.253.044 (3)143
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H15N2+·PF6
Mr344.24
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)10.482 (2), 11.272 (3), 12.556 (3)
V3)1483.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.32 × 0.29 × 0.26
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.925, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
9185, 3542, 3407
Rint0.085
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.127, 1.03
No. of reflections3542
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.89
Absolute structureFlack (1983), 1484 Friedel pairs
Absolute structure parameter0.05 (13)

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···F1i0.932.363.266 (3)163.6
C3—H3···F6ii0.932.253.044 (3)143.0
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x1/2, y+3/2, z+1.
 

Acknowledgements

This work was supported by National Natural Science Foundation of China-NSAF (No. 10676012)

References

First citationBruker (2005). SMART, SAINT, SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHerrmann, W. A. (2002). Angew. Chem. Int. Ed. Engl. 41, 1290–1309.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, J.-H., Kim, J.-W., Shokouhimehr, M. & Lee, Y.-S. (2005). J. Org. Chem. 70, 6714–6720.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLu, X.-Y., CHen, F., Xu, W.-F. & Chen, X.-T. (2009). Inorg. Chim. Acta, 362, 5113–5116.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds