organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-5-(3,5-Di­methyl­phen­yl)-N-[4-(methyl­sulfan­yl)benzyl­­idene]-1,3,4-thia­diazol-2-amine

aDepartment of Safety Engineering, College of Urban Construction and Safety Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China, bResearch & Development Center, Sinochem Jiangsu Corporation, Longpan Road, Nanjing, Nanjing 210002, People's Republic of China, cDepartment of Environmental Engineering, College of the Environment, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and dDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: yhxu2008@163.com

(Received 6 January 2010; accepted 13 January 2010; online 20 January 2010)

The title compound, C18H17N3S2, was synthesized by the reaction of 5-(3,5-dimethyl­phen­yl)-1,3,4-thia­diazol-2-amine and 4-(methyl­sulfan­yl)benzaldehyde. An intra­molecular C—H⋯S hydrogen bond results in the formation of a planar (r.m.s. deviation = 0.003 Å) five-membered ring. In the crystal structure, inter­molecular C—H⋯N hydrogen bonds link the mol­ecules to form layers parallel to (011).

Related literature

For the broad spectrum biological activity of 1,3,4-thia­diazole derivatives, see: Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.]); Wang et al. (1999[Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17N3S2

  • Mr = 339.47

  • Triclinic, [P \overline 1]

  • a = 8.5640 (17) Å

  • b = 9.3370 (19) Å

  • c = 11.570 (2) Å

  • α = 90.98 (3)°

  • β = 110.03 (3)°

  • γ = 99.66 (3)°

  • V = 854.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.912, Tmax = 0.969

  • 3324 measured reflections

  • 3098 independent reflections

  • 2286 reflections with I > 2σ(I)

  • Rint = 0.031

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.208

  • S = 1.00

  • 3098 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯N2i 0.93 2.58 3.223 (6) 126
C8—H8A⋯S2 0.93 2.59 3.041 (5) 110
Symmetry code: (i) x+1, y, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing a broad spectrum biological activities (Nakagawa et al., 1996; Wang et al., 1999). These compounds are known to exhibit diverse biological effects, such as insecticidal, fungicidal activities (Wang et al., 1999). The molecule (Fig. 1) is almost planar (r.m.s. deviation for all non-H atoms 0.149Å). An intramolecular C—H···N hydrogen bond (Table 1) results in the formation of a planar five-membered ring. In the crystal structure, intermolecular C—H···N hydrogen bonds (Table 1) link the molecules to form layers parallel to the (0 1 1) plane (Fig. 2).

Related literature top

For the broad spectrum biological activity of 1,3,4-thiadiazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999).

Experimental top

5-(3,5-dimethylphenyl)-1,3,4-thiadiazol-2-amine(5 mmol) and 4-methylthio benzaldehyde(5 mmol) were added in toluene (50 ml). The water was removed by distillation for 5 h. The reaction mixture was left to cool to room temperature, filtered, and the filter cake was crystallized from acetone to give pure compound (I) (m.p. 408 K).Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms were placed geometrically at the distances of 0.93–0.97 Å and included in the refinement in riding model approximation with Uiso(H) = 1.2eq of the carrier atom (1.5 for methyl groups).

Structure description top

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing a broad spectrum biological activities (Nakagawa et al., 1996; Wang et al., 1999). These compounds are known to exhibit diverse biological effects, such as insecticidal, fungicidal activities (Wang et al., 1999). The molecule (Fig. 1) is almost planar (r.m.s. deviation for all non-H atoms 0.149Å). An intramolecular C—H···N hydrogen bond (Table 1) results in the formation of a planar five-membered ring. In the crystal structure, intermolecular C—H···N hydrogen bonds (Table 1) link the molecules to form layers parallel to the (0 1 1) plane (Fig. 2).

For the broad spectrum biological activity of 1,3,4-thiadiazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
(E)-5-(3,5-Dimethylphenyl)-N-[4-(methylsulfanyl)benzylidene]- 1,3,4-thiadiazol-2-amine top
Crystal data top
C18H17N3S2Z = 2
Mr = 339.47F(000) = 356
Triclinic, P1Dx = 1.320 Mg m3
Hall symbol: -P 1Melting point: 408 K
a = 8.5640 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3370 (19) ÅCell parameters from 25 reflections
c = 11.570 (2) Åθ = 10–13°
α = 90.98 (3)°µ = 0.31 mm1
β = 110.03 (3)°T = 298 K
γ = 99.66 (3)°Block, colorless
V = 854.1 (3) Å30.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2286 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.3°, θmin = 1.9°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.912, Tmax = 0.969l = 1313
3324 measured reflections3 standard reflections every 200 reflections
3098 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.208 w = 1/[σ2(Fo2) + (0.1P)2 + 1.550P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3098 reflectionsΔρmax = 0.38 e Å3
209 parametersΔρmin = 0.46 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (4)
Crystal data top
C18H17N3S2γ = 99.66 (3)°
Mr = 339.47V = 854.1 (3) Å3
Triclinic, P1Z = 2
a = 8.5640 (17) ÅMo Kα radiation
b = 9.3370 (19) ŵ = 0.31 mm1
c = 11.570 (2) ÅT = 298 K
α = 90.98 (3)°0.30 × 0.20 × 0.10 mm
β = 110.03 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2286 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.031
Tmin = 0.912, Tmax = 0.9693 standard reflections every 200 reflections
3324 measured reflections intensity decay: 1%
3098 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.208H-atom parameters constrained
S = 1.00Δρmax = 0.38 e Å3
3098 reflectionsΔρmin = 0.46 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.62029 (16)1.18993 (14)0.40284 (12)0.0614 (4)
S20.10286 (13)0.70508 (13)0.07048 (10)0.0522 (4)
N10.0950 (5)0.8908 (4)0.1158 (3)0.0502 (9)
N20.1485 (5)0.8040 (5)0.0728 (4)0.0692 (12)
N30.2085 (5)0.7183 (5)0.0023 (4)0.0685 (12)
C10.7907 (6)1.0978 (6)0.3883 (5)0.0723 (15)
H1B0.85531.14240.43590.108*
H1C0.74700.99740.41810.108*
H1D0.86201.10390.30310.108*
C20.5192 (5)1.0955 (4)0.3116 (4)0.0445 (9)
C30.3640 (6)1.1315 (5)0.3168 (4)0.0533 (11)
H3B0.32061.20230.36740.064*
C40.2770 (5)1.0636 (5)0.2484 (4)0.0524 (11)
H4A0.17541.08970.25190.063*
C50.3370 (5)0.9560 (4)0.1734 (4)0.0442 (9)
C60.4919 (5)0.9225 (5)0.1672 (4)0.0487 (10)
H6A0.53570.85270.11550.058*
C70.5814 (5)0.9899 (4)0.2356 (4)0.0473 (10)
H7A0.68380.96460.23090.057*
C80.2444 (5)0.8767 (5)0.1040 (4)0.0480 (10)
H8A0.29600.81300.04880.058*
C90.0130 (5)0.8098 (4)0.0484 (4)0.0447 (9)
C100.0942 (5)0.6600 (4)0.0806 (4)0.0453 (10)
C110.1302 (5)0.5649 (4)0.1713 (4)0.0443 (9)
C120.2857 (5)0.5491 (5)0.1857 (4)0.0491 (10)
H12A0.36760.59750.13610.059*
C130.3218 (6)0.4629 (5)0.2724 (4)0.0543 (11)
C140.2009 (6)0.3892 (5)0.3429 (4)0.0580 (12)
H14A0.22540.32930.40030.070*
C150.0418 (6)0.4016 (5)0.3309 (4)0.0521 (11)
C160.0071 (5)0.4910 (5)0.2446 (4)0.0484 (10)
H16A0.09790.50180.23560.058*
C170.4903 (7)0.4480 (6)0.2888 (6)0.0737 (15)
H17A0.49310.38420.35250.111*
H17B0.57850.40830.21280.111*
H17C0.50700.54210.31160.111*
C180.0868 (7)0.3170 (6)0.4057 (5)0.0736 (15)
H18A0.18730.33960.38530.110*
H18B0.04160.21460.38770.110*
H18C0.11370.34260.49190.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0633 (8)0.0675 (8)0.0680 (8)0.0195 (6)0.0371 (6)0.0291 (6)
S20.0423 (6)0.0626 (7)0.0570 (7)0.0146 (5)0.0209 (5)0.0229 (5)
N10.059 (2)0.049 (2)0.052 (2)0.0151 (17)0.0275 (17)0.0160 (16)
N20.056 (2)0.087 (3)0.079 (3)0.031 (2)0.032 (2)0.048 (2)
N30.050 (2)0.088 (3)0.080 (3)0.030 (2)0.029 (2)0.045 (2)
C10.064 (3)0.099 (4)0.074 (3)0.026 (3)0.043 (3)0.021 (3)
C20.044 (2)0.044 (2)0.049 (2)0.0095 (17)0.0200 (18)0.0111 (18)
C30.056 (3)0.056 (3)0.059 (3)0.026 (2)0.026 (2)0.028 (2)
C40.045 (2)0.053 (3)0.067 (3)0.020 (2)0.024 (2)0.017 (2)
C50.043 (2)0.042 (2)0.051 (2)0.0098 (17)0.0194 (18)0.0093 (18)
C60.049 (2)0.047 (2)0.054 (2)0.0168 (19)0.0191 (19)0.0185 (19)
C70.041 (2)0.048 (2)0.059 (3)0.0137 (18)0.0221 (19)0.017 (2)
C80.049 (2)0.050 (2)0.048 (2)0.0151 (19)0.0191 (19)0.0134 (19)
C90.040 (2)0.047 (2)0.052 (2)0.0128 (17)0.0206 (18)0.0145 (19)
C100.047 (2)0.045 (2)0.049 (2)0.0142 (18)0.0204 (19)0.0084 (18)
C110.045 (2)0.041 (2)0.051 (2)0.0073 (17)0.0222 (19)0.0070 (18)
C120.046 (2)0.047 (2)0.061 (3)0.0122 (18)0.025 (2)0.012 (2)
C130.055 (3)0.049 (2)0.066 (3)0.006 (2)0.032 (2)0.007 (2)
C140.066 (3)0.051 (3)0.062 (3)0.010 (2)0.029 (2)0.018 (2)
C150.056 (3)0.049 (2)0.052 (2)0.010 (2)0.020 (2)0.012 (2)
C160.044 (2)0.049 (2)0.054 (2)0.0114 (18)0.0170 (19)0.0092 (19)
C170.070 (3)0.073 (3)0.096 (4)0.009 (3)0.053 (3)0.015 (3)
C180.084 (4)0.075 (3)0.067 (3)0.033 (3)0.023 (3)0.031 (3)
Geometric parameters (Å, º) top
S1—C21.745 (4)C6—H6A0.9300
S1—C11.777 (5)C7—H7A0.9300
S2—C101.714 (4)C8—H8A0.9300
S2—C91.736 (4)C10—C111.465 (6)
N1—C81.269 (5)C11—C121.382 (6)
N1—C91.376 (5)C11—C161.399 (6)
N2—C91.305 (5)C12—C131.380 (6)
N2—N31.360 (5)C12—H12A0.9300
N3—C101.290 (5)C13—C141.375 (6)
C1—H1B0.9600C13—C171.503 (6)
C1—H1C0.9600C14—C151.403 (6)
C1—H1D0.9600C14—H14A0.9300
C2—C71.384 (6)C15—C161.389 (6)
C2—C31.407 (6)C15—C181.500 (6)
C3—C41.358 (6)C16—H16A0.9300
C3—H3B0.9300C17—H17A0.9600
C4—C51.387 (6)C17—H17B0.9600
C4—H4A0.9300C17—H17C0.9600
C5—C61.392 (5)C18—H18A0.9600
C5—C81.442 (5)C18—H18B0.9600
C6—C71.371 (6)C18—H18C0.9600
C2—S1—C1103.0 (2)N1—C9—S2126.2 (3)
C10—S2—C986.66 (19)N3—C10—C11122.6 (4)
C8—N1—C9119.2 (4)N3—C10—S2114.3 (3)
C9—N2—N3112.4 (4)C11—C10—S2123.1 (3)
C10—N3—N2113.2 (4)C12—C11—C16119.6 (4)
S1—C1—H1B109.5C12—C11—C10120.0 (4)
S1—C1—H1C109.5C16—C11—C10120.3 (4)
H1B—C1—H1C109.5C13—C12—C11121.3 (4)
S1—C1—H1D109.5C13—C12—H12A119.4
H1B—C1—H1D109.5C11—C12—H12A119.4
H1C—C1—H1D109.5C14—C13—C12118.7 (4)
C7—C2—C3118.8 (4)C14—C13—C17120.4 (4)
C7—C2—S1124.6 (3)C12—C13—C17120.9 (4)
C3—C2—S1116.6 (3)C13—C14—C15121.9 (4)
C4—C3—C2120.5 (4)C13—C14—H14A119.1
C4—C3—H3B119.8C15—C14—H14A119.1
C2—C3—H3B119.8C16—C15—C14118.5 (4)
C3—C4—C5121.1 (4)C16—C15—C18120.2 (4)
C3—C4—H4A119.4C14—C15—C18121.3 (4)
C5—C4—H4A119.4C15—C16—C11120.0 (4)
C4—C5—C6118.1 (4)C15—C16—H16A120.0
C4—C5—C8122.7 (4)C11—C16—H16A120.0
C6—C5—C8119.2 (4)C13—C17—H17A109.5
C7—C6—C5121.5 (4)C13—C17—H17B109.5
C7—C6—H6A119.2H17A—C17—H17B109.5
C5—C6—H6A119.2C13—C17—H17C109.5
C6—C7—C2120.0 (4)H17A—C17—H17C109.5
C6—C7—H7A120.0H17B—C17—H17C109.5
C2—C7—H7A120.0C15—C18—H18A109.5
N1—C8—C5122.3 (4)C15—C18—H18B109.5
N1—C8—H8A118.9H18A—C18—H18B109.5
C5—C8—H8A118.9C15—C18—H18C109.5
N2—C9—N1120.4 (4)H18A—C18—H18C109.5
N2—C9—S2113.3 (3)H18B—C18—H18C109.5
C9—N2—N3—C100.7 (7)C10—S2—C9—N1179.3 (4)
C1—S1—C2—C78.1 (5)N2—N3—C10—C11179.3 (4)
C1—S1—C2—C3172.1 (4)N2—N3—C10—S20.1 (6)
C7—C2—C3—C40.0 (7)C9—S2—C10—N30.3 (4)
S1—C2—C3—C4179.8 (4)C9—S2—C10—C11178.9 (4)
C2—C3—C4—C51.0 (7)N3—C10—C11—C128.1 (7)
C3—C4—C5—C61.9 (7)S2—C10—C11—C12171.1 (3)
C3—C4—C5—C8177.0 (4)N3—C10—C11—C16172.7 (4)
C4—C5—C6—C71.9 (7)S2—C10—C11—C168.2 (6)
C8—C5—C6—C7177.0 (4)C16—C11—C12—C130.8 (7)
C5—C6—C7—C21.0 (7)C10—C11—C12—C13178.5 (4)
C3—C2—C7—C60.0 (7)C11—C12—C13—C141.6 (7)
S1—C2—C7—C6179.8 (3)C11—C12—C13—C17179.1 (4)
C9—N1—C8—C5178.8 (4)C12—C13—C14—C151.3 (7)
C4—C5—C8—N16.6 (7)C17—C13—C14—C15179.4 (4)
C6—C5—C8—N1172.3 (4)C13—C14—C15—C160.2 (7)
N3—N2—C9—N1179.6 (4)C13—C14—C15—C18178.1 (5)
N3—N2—C9—S20.9 (6)C14—C15—C16—C110.7 (7)
C8—N1—C9—N2168.9 (4)C18—C15—C16—C11177.2 (4)
C8—N1—C9—S29.7 (6)C12—C11—C16—C150.4 (6)
C10—S2—C9—N20.7 (4)C10—C11—C16—C15179.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···N2i0.932.583.223 (6)126
C8—H8A···S20.932.593.041 (5)110
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H17N3S2
Mr339.47
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.5640 (17), 9.3370 (19), 11.570 (2)
α, β, γ (°)90.98 (3), 110.03 (3), 99.66 (3)
V3)854.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.912, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
3324, 3098, 2286
Rint0.031
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.208, 1.00
No. of reflections3098
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.46

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···N2i0.932.583.223 (6)126.00
C8—H8A···S20.932.593.041 (5)110.00
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the diffractometer for this research project. This work was supported by the National High Technology Research and Development (863 Program) of China (No. 2007AA06A402) and the Key Projects in the National Water Pollution Control and Management Pillar Program (No. 2008ZX07101-003).

References

First citationEnraf–Nonius (1994). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds