metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-hydr­­oxy-N-[2-(2-pyrid­yl)eth­yl]benzamide}copper(I) tetra­fluoridoborate

aDepartment of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019-3051, USA
*Correspondence e-mail: houser@ou.edu

(Received 6 January 2010; accepted 11 January 2010; online 16 January 2010)

The title complex, [Cu(C14H14N2O2)2]BF4, is a monomeric copper(I) species with linear two-coordinate geometry around the CuI atom. The asymmetric unit contains two half-cations that sit on crystallographic twofold rotation axes. The selected crystal was non-merohedrally twinned by a twofold rotation about an axis normal to the (100) family of planes. The ratio of the twin components refined to 0.4123 (6). Two 2-hydr­oxy-N-[2-(2-pyrid­yl)eth­yl]benzamide ligands coordinate to each CuI atom via the pyridyl N atom. Intra­molecular hydrogen bonding between the phenol OH groups and the amide O atoms imparts rigidity and planarity to the non-coordinating end of the ligand. The cationic complex is linked to the BF4 anions via hydrogen bonding between the amide NH groups in the cations and BF4 anions.

Related literature

For the synthesis and coordination chemistry of 2-hydr­oxy-N-(2-(2-pyrid­yl)eth­yl)benzamide, see: Wang et al. (2009[Wang, Z. D., Powell, D. R. & Houser, R. P. (2009). Inorg. Chem. Commun. 12, 511-514.]). For the copper(I) coordination chemistry of pyridylamides, see Yang et al. (2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]) and references therein.

[Scheme 1]

Experimental

Crystal data
  • [Cu(C14H14N2O2)2]BF4

  • Mr = 634.89

  • Monoclinic, C 2/c

  • a = 21.943 (5) Å

  • b = 17.586 (4) Å

  • c = 14.607 (2) Å

  • β = 107.988 (8)°

  • V = 5361.2 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.12 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Bruker, 2001[Bruker (2001). TWINABS.. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.714, Tmax = 0.905

  • 10344 measured reflections

  • 10344 independent reflections

  • 8548 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.096

  • S = 1.00

  • 10344 reflections

  • 393 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1A—N1A 1.8872 (16)
Cu1B—N1B 1.8874 (17)
N1A—Cu1A—N1Ai 178.45 (9)
N1B—Cu1B—N1Bii 177.71 (9)
Symmetry codes: (i) [-x, y, -z+{\script{3\over 2}}]; (ii) [-x+1, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9A—H9A⋯F1iii 0.72 (2) 2.23 (2) 2.923 (2) 161 (2)
O18A—H18A⋯O11A 0.83 (1) 1.79 (2) 2.554 (2) 152 (3)
N9B—H9B⋯F2iv 0.82 (1) 2.16 (1) 2.937 (2) 159 (2)
O18B—H18B⋯O11B 0.81 (1) 1.81 (2) 2.549 (2) 153 (2)
Symmetry codes: (iii) [x, -y, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Our laboratory has synthesized copper(I) and copper(II) complexes of pyridylmethylamide ligands that display different coordination modes depending on whether or not the amide group is protonated (Wang, et al. 2009, and references therein). The synthesis of copper(I) complexes with these ligands is limited to the neutral form of the ligand, where the amide group is not deprotonated (Yang, et al. 2007, and references therein). Attempts to synthesize copper(I) species in the presence of base results in disproportionation of the copper(I) to copper(0) and copper(II). The title complex was synthesized with the phenol-substituted ligand 2-hydroxy-N-(2-(2-pyridyl)ethyl)benzamide. Copper(II) complexes with 2-hydroxy-N-(2-(2-pyridyl)ethyl)benzamide are either mononuclear, when synthesized in the absence of base ([Cu(C14H14N2O2)2Cl2]), or a tetracopper cluster, in the presence of base ([Cu4(C14H12N2O2)4]) (Wang, et al. 2009). The ligand in the tetracopper cluster is a dianion with the amide NH and the phenol OH both deprotonated. The title complex differs from both copper(II) complexes in that the ligand only coordinates via the pyridyl N atom.

Related literature top

For the synthesis and coordination chemistry of 2-hydroxy-N-(2-(2-pyridyl)ethyl)benzamide, see: Wang et al. (2009). For the copper(I) coordination chemistry of pyridylamides, see Yang et al. (2007) and references therein.

Experimental top

2-hydroxy-N-(2-(2-pyridyl)ethyl)benzamide was synthesized using a previously reported procedure (Wang, et al. 2009). The title complex, [Cu(C14H14N2O2)2]BF4, was synthesized using the following procedure: A solution of [Cu(CH3CN)4]BF4 (0.0778 g, 0.250 mmol) in CH3CN was added to a solution of 2-hydroxy-N-(2-(2-pyridyl)ethyl)benzamide (0.121 g, 0.500 mmol) in CH3CN. The resulting light yellow solution was filtered, and vapor diffusion of diethyl ether produced light yellow crystals of the title complex (0.114 g, 72% yield).

Refinement top

Hydrogen atoms bonded to C were geometrically positioned and refined by a riding model. Hydrogen atom displacement parameters were set to 1.2 (1.5 for methyl) times the displacement parameters of the bonded atoms. The coordinates of the H atoms bonded to N and O were refined with U(H)=1.2Ueq(N,O). The twin law was (1 0 0.928/ 0 -1 0/ 0 0 -1). The contribution of the minor twin domain refined to 0.437 (4).

Structure description top

Our laboratory has synthesized copper(I) and copper(II) complexes of pyridylmethylamide ligands that display different coordination modes depending on whether or not the amide group is protonated (Wang, et al. 2009, and references therein). The synthesis of copper(I) complexes with these ligands is limited to the neutral form of the ligand, where the amide group is not deprotonated (Yang, et al. 2007, and references therein). Attempts to synthesize copper(I) species in the presence of base results in disproportionation of the copper(I) to copper(0) and copper(II). The title complex was synthesized with the phenol-substituted ligand 2-hydroxy-N-(2-(2-pyridyl)ethyl)benzamide. Copper(II) complexes with 2-hydroxy-N-(2-(2-pyridyl)ethyl)benzamide are either mononuclear, when synthesized in the absence of base ([Cu(C14H14N2O2)2Cl2]), or a tetracopper cluster, in the presence of base ([Cu4(C14H12N2O2)4]) (Wang, et al. 2009). The ligand in the tetracopper cluster is a dianion with the amide NH and the phenol OH both deprotonated. The title complex differs from both copper(II) complexes in that the ligand only coordinates via the pyridyl N atom.

For the synthesis and coordination chemistry of 2-hydroxy-N-(2-(2-pyridyl)ethyl)benzamide, see: Wang et al. (2009). For the copper(I) coordination chemistry of pyridylamides, see Yang et al. (2007) and references therein.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The molecular structure of the cation (molecule A) in [Cu(C14H14N2O2)2]BF4, showing the atom-numbering scheme.
[Figure 2] Fig. 2. The packing of [Cu(C14H14N2O2)2]BF4, viewed down the c axis, highlighting the hydrogen bonding between complex cations and BF4- anions (dashed lines). H atoms have been omitted for clarity.
Bis{2-hydroxy-N-[2-(2-pyridyl)ethyl]benzamide}copper(I) tetrafluoridoborate top
Crystal data top
[Cu(C14H14N2O2)2]BF4F(000) = 2608
Mr = 634.89Dx = 1.573 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.943 (5) ÅCell parameters from 6701 reflections
b = 17.586 (4) Åθ = 2.3–28.3°
c = 14.607 (2) ŵ = 0.89 mm1
β = 107.988 (8)°T = 100 K
V = 5361.2 (19) Å3Block, colorless
Z = 80.40 × 0.30 × 0.12 mm
Data collection top
Bruker APEX CCD
diffractometer
10344 independent reflections
Radiation source: fine-focus sealed tube8548 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(TWINABS; Bruker, 2001)
h = 2725
Tmin = 0.714, Tmax = 0.905k = 021
10344 measured reflectionsl = 018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.058P)2]
where P = (Fo2 + 2Fc2)/3
10344 reflections(Δ/σ)max < 0.001
393 parametersΔρmax = 0.54 e Å3
4 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cu(C14H14N2O2)2]BF4V = 5361.2 (19) Å3
Mr = 634.89Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.943 (5) ŵ = 0.89 mm1
b = 17.586 (4) ÅT = 100 K
c = 14.607 (2) Å0.40 × 0.30 × 0.12 mm
β = 107.988 (8)°
Data collection top
Bruker APEX CCD
diffractometer
10344 independent reflections
Absorption correction: multi-scan
(TWINABS; Bruker, 2001)
8548 reflections with I > 2σ(I)
Tmin = 0.714, Tmax = 0.905Rint = 0.000
10344 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0344 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.54 e Å3
10344 reflectionsΔρmin = 0.39 e Å3
393 parameters
Special details top

Experimental. The selected crystal was twinned by a 2-fold rotation about an axis perpendicular to c. The ratio of the twin components was refined to 0.4123 (6).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Restraints on the N—H and O—H distances were required.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu1A0.00000.030574 (19)0.75000.01887 (10)
N1A0.09032 (7)0.02912 (8)0.79796 (11)0.0148 (3)
C2A0.12104 (9)0.08497 (11)0.85712 (14)0.0184 (4)
H2A0.09740.12870.86370.022*
C3A0.18505 (9)0.08182 (12)0.90856 (14)0.0214 (5)
H3A0.20510.12240.94980.026*
C4A0.21963 (10)0.01848 (12)0.89906 (14)0.0220 (5)
H4A0.26380.01430.93440.026*
C5A0.18878 (9)0.03911 (11)0.83694 (14)0.0188 (4)
H5A0.21200.08280.82870.023*
C6A0.12434 (9)0.03273 (11)0.78714 (13)0.0155 (4)
C7A0.08947 (9)0.09154 (11)0.71586 (13)0.0181 (4)
H7A10.04760.10250.72530.022*
H7A20.11470.13920.72650.022*
C8A0.07893 (10)0.06360 (12)0.61306 (14)0.0223 (5)
H8A10.05940.01230.60600.027*
H8A20.12100.05910.60170.027*
N9A0.03805 (8)0.11339 (10)0.54052 (13)0.0205 (4)
H9A0.0537 (11)0.1414 (13)0.5197 (16)0.025*
C10A0.02547 (10)0.11003 (11)0.51659 (14)0.0185 (4)
O11A0.05148 (7)0.06621 (8)0.56110 (10)0.0255 (3)
C12A0.06483 (9)0.15652 (11)0.43500 (14)0.0176 (4)
C13A0.03803 (10)0.20269 (11)0.37943 (14)0.0201 (4)
H13A0.00720.20500.39440.024*
C14A0.07586 (10)0.24480 (12)0.30352 (14)0.0217 (5)
H14A0.05670.27530.26620.026*
C15A0.14213 (10)0.24242 (12)0.28176 (15)0.0255 (5)
H15A0.16830.27180.22990.031*
C16A0.16987 (10)0.19767 (12)0.33520 (15)0.0257 (5)
H16A0.21520.19610.31980.031*
C17A0.13206 (10)0.15475 (11)0.41143 (14)0.0217 (5)
O18A0.16259 (7)0.11138 (9)0.46038 (11)0.0311 (4)
H18A0.1339 (9)0.0881 (13)0.5010 (15)0.047*
Cu1B0.50000.010247 (19)0.75000.02082 (11)
N1B0.40965 (8)0.00810 (9)0.71312 (11)0.0159 (3)
C2B0.37826 (10)0.06141 (12)0.74773 (14)0.0216 (5)
H2B0.40200.10320.78230.026*
C3B0.31395 (10)0.05821 (12)0.73547 (15)0.0259 (5)
H3B0.29370.09670.76140.031*
C4B0.27912 (10)0.00173 (13)0.68487 (15)0.0270 (5)
H4B0.23430.00500.67440.032*
C5B0.31055 (9)0.05727 (12)0.64944 (14)0.0223 (5)
H5B0.28730.09940.61510.027*
C6B0.37568 (9)0.05145 (11)0.66406 (13)0.0167 (4)
C7B0.41130 (9)0.10775 (11)0.62256 (14)0.0184 (4)
H7B10.38770.15660.61030.022*
H7B20.45420.11720.66910.022*
C8B0.41838 (10)0.07684 (11)0.52831 (14)0.0206 (5)
H8B10.37570.07580.47900.025*
H8B20.43430.02390.53870.025*
N9B0.46169 (8)0.12145 (9)0.49240 (12)0.0193 (4)
H9B0.4468 (10)0.1543 (10)0.4524 (12)0.023*
C10B0.52477 (9)0.11100 (10)0.52525 (14)0.0175 (4)
O11B0.54836 (7)0.06623 (8)0.59362 (10)0.0230 (3)
C12B0.56650 (9)0.15131 (10)0.47788 (14)0.0174 (4)
C13B0.54194 (10)0.19890 (11)0.39787 (14)0.0198 (4)
H13B0.49700.20650.37300.024*
C14B0.58145 (11)0.23465 (11)0.35483 (15)0.0233 (5)
H14B0.56390.26660.30070.028*
C15B0.64757 (11)0.22376 (12)0.39108 (16)0.0259 (5)
H15B0.67510.24880.36170.031*
C16B0.67318 (10)0.17715 (12)0.46890 (15)0.0253 (5)
H16B0.71820.16950.49260.030*
C17B0.63318 (10)0.14095 (11)0.51318 (14)0.0206 (4)
O18B0.66125 (7)0.09581 (9)0.58966 (11)0.0270 (3)
H18B0.6323 (8)0.0777 (13)0.6054 (16)0.032*
B10.16533 (11)0.24811 (14)0.09405 (19)0.0238 (5)
F10.12698 (6)0.22361 (6)0.00247 (9)0.0272 (3)
F20.12345 (6)0.27278 (6)0.14410 (8)0.0265 (3)
F30.20174 (6)0.18853 (8)0.14239 (10)0.0391 (3)
F40.20245 (6)0.30833 (8)0.08330 (10)0.0416 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu1A0.01145 (18)0.01777 (19)0.0243 (2)0.0000.00099 (14)0.000
N1A0.0137 (8)0.0140 (8)0.0160 (9)0.0013 (6)0.0036 (7)0.0018 (7)
C2A0.0203 (10)0.0181 (10)0.0186 (11)0.0015 (8)0.0087 (8)0.0006 (8)
C3A0.0189 (11)0.0256 (11)0.0194 (11)0.0056 (9)0.0056 (9)0.0044 (9)
C4A0.0132 (11)0.0309 (12)0.0207 (11)0.0022 (9)0.0036 (8)0.0005 (9)
C5A0.0171 (10)0.0219 (10)0.0188 (11)0.0023 (8)0.0077 (9)0.0012 (8)
C6A0.0184 (10)0.0159 (10)0.0133 (10)0.0004 (8)0.0067 (8)0.0031 (8)
C7A0.0189 (10)0.0163 (10)0.0191 (11)0.0016 (8)0.0058 (8)0.0007 (8)
C8A0.0278 (12)0.0209 (11)0.0172 (11)0.0062 (9)0.0054 (9)0.0016 (8)
N9A0.0240 (10)0.0188 (9)0.0187 (9)0.0008 (7)0.0066 (8)0.0055 (7)
C10A0.0257 (11)0.0134 (10)0.0157 (10)0.0025 (8)0.0054 (8)0.0041 (8)
O11A0.0313 (9)0.0235 (8)0.0213 (8)0.0071 (7)0.0073 (7)0.0050 (6)
C12A0.0225 (11)0.0154 (10)0.0149 (10)0.0015 (8)0.0059 (8)0.0015 (8)
C13A0.0203 (11)0.0201 (10)0.0201 (11)0.0011 (8)0.0065 (9)0.0000 (9)
C14A0.0260 (12)0.0208 (11)0.0182 (11)0.0001 (9)0.0068 (9)0.0043 (9)
C15A0.0274 (13)0.0240 (11)0.0215 (12)0.0047 (9)0.0022 (9)0.0015 (9)
C16A0.0181 (11)0.0301 (12)0.0265 (12)0.0009 (9)0.0034 (9)0.0032 (10)
C17A0.0248 (11)0.0219 (11)0.0192 (11)0.0052 (9)0.0079 (9)0.0039 (9)
O18A0.0249 (9)0.0375 (10)0.0304 (9)0.0099 (7)0.0080 (7)0.0067 (7)
Cu1B0.01183 (19)0.02000 (19)0.0276 (2)0.0000.00163 (15)0.000
N1B0.0136 (9)0.0171 (8)0.0158 (8)0.0025 (6)0.0027 (7)0.0025 (7)
C2B0.0251 (12)0.0208 (11)0.0165 (11)0.0045 (9)0.0030 (9)0.0015 (9)
C3B0.0268 (12)0.0306 (12)0.0226 (12)0.0121 (10)0.0109 (10)0.0049 (10)
C4B0.0156 (12)0.0419 (14)0.0249 (12)0.0038 (9)0.0086 (9)0.0100 (11)
C5B0.0182 (11)0.0272 (11)0.0194 (11)0.0043 (9)0.0027 (9)0.0051 (9)
C6B0.0188 (10)0.0182 (10)0.0125 (10)0.0000 (8)0.0038 (8)0.0050 (8)
C7B0.0201 (11)0.0167 (10)0.0185 (11)0.0011 (8)0.0058 (8)0.0015 (8)
C8B0.0244 (11)0.0194 (10)0.0199 (11)0.0057 (9)0.0097 (9)0.0024 (8)
N9B0.0221 (9)0.0173 (9)0.0190 (9)0.0003 (7)0.0073 (7)0.0035 (7)
C10B0.0238 (11)0.0129 (9)0.0163 (10)0.0031 (8)0.0069 (8)0.0035 (8)
O11B0.0286 (8)0.0196 (7)0.0223 (8)0.0059 (6)0.0101 (6)0.0058 (6)
C12B0.0207 (11)0.0150 (10)0.0176 (10)0.0002 (8)0.0078 (8)0.0027 (8)
C13B0.0185 (10)0.0199 (11)0.0203 (11)0.0004 (8)0.0049 (9)0.0009 (9)
C14B0.0279 (12)0.0228 (11)0.0192 (11)0.0012 (9)0.0072 (9)0.0025 (9)
C15B0.0276 (12)0.0292 (12)0.0249 (12)0.0076 (9)0.0141 (10)0.0046 (9)
C16B0.0188 (11)0.0303 (12)0.0266 (12)0.0000 (9)0.0066 (9)0.0061 (10)
C17B0.0246 (11)0.0199 (10)0.0167 (10)0.0035 (9)0.0055 (9)0.0026 (8)
O18B0.0227 (8)0.0306 (9)0.0264 (8)0.0066 (7)0.0059 (7)0.0073 (7)
B10.0174 (12)0.0237 (12)0.0298 (14)0.0005 (10)0.0064 (10)0.0023 (11)
F10.0297 (7)0.0263 (7)0.0266 (7)0.0038 (5)0.0101 (6)0.0054 (5)
F20.0290 (7)0.0260 (7)0.0259 (7)0.0064 (5)0.0106 (6)0.0002 (5)
F30.0264 (7)0.0396 (8)0.0484 (9)0.0149 (6)0.0074 (6)0.0076 (7)
F40.0320 (8)0.0387 (8)0.0550 (9)0.0173 (6)0.0147 (7)0.0033 (7)
Geometric parameters (Å, º) top
Cu1A—N1A1.8872 (16)N1B—C2B1.350 (2)
Cu1A—N1Ai1.8872 (16)N1B—C6B1.355 (2)
N1A—C2A1.344 (2)C2B—C3B1.368 (3)
N1A—C6A1.356 (2)C2B—H2B0.9500
C2A—C3A1.374 (3)C3B—C4B1.376 (3)
C2A—H2A0.9500C3B—H3B0.9500
C3A—C4A1.379 (3)C4B—C5B1.385 (3)
C3A—H3A0.9500C4B—H4B0.9500
C4A—C5A1.389 (3)C5B—C6B1.382 (3)
C4A—H4A0.9500C5B—H5B0.9500
C5A—C6A1.381 (3)C6B—C7B1.500 (3)
C5A—H5A0.9500C7B—C8B1.532 (3)
C6A—C7A1.499 (3)C7B—H7B10.9900
C7A—C8A1.528 (3)C7B—H7B20.9900
C7A—H7A10.9900C8B—N9B1.450 (2)
C7A—H7A20.9900C8B—H8B10.9900
C8A—N9A1.452 (2)C8B—H8B20.9900
C8A—H8A10.9900N9B—C10B1.330 (3)
C8A—H8A20.9900N9B—H9B0.815 (11)
N9A—C10A1.330 (3)C10B—O11B1.251 (2)
N9A—H9A0.72 (2)C10B—C12B1.487 (3)
C10A—O11A1.254 (2)C12B—C13B1.403 (3)
C10A—C12A1.483 (3)C12B—C17B1.405 (3)
C12A—C13A1.399 (3)C13B—C14B1.371 (3)
C12A—C17A1.408 (3)C13B—H13B0.9500
C13A—C14A1.378 (3)C14B—C15B1.396 (3)
C13A—H13A0.9500C14B—H14B0.9500
C14A—C15A1.390 (3)C15B—C16B1.373 (3)
C14A—H14A0.9500C15B—H15B0.9500
C15A—C16A1.376 (3)C16B—C17B1.395 (3)
C15A—H15A0.9500C16B—H16B0.9500
C16A—C17A1.388 (3)C17B—O18B1.354 (2)
C16A—H16A0.9500O18B—H18B0.805 (11)
C17A—O18A1.356 (2)B1—F31.373 (3)
O18A—H18A0.829 (12)B1—F41.374 (3)
Cu1B—N1B1.8874 (17)B1—F21.408 (3)
Cu1B—N1Bii1.8874 (17)B1—F11.410 (3)
N1A—Cu1A—N1Ai178.45 (9)C6B—N1B—Cu1B121.61 (13)
C2A—N1A—C6A118.45 (17)N1B—C2B—C3B123.2 (2)
C2A—N1A—Cu1A119.31 (13)N1B—C2B—H2B118.4
C6A—N1A—Cu1A121.37 (13)C3B—C2B—H2B118.4
N1A—C2A—C3A123.17 (18)C2B—C3B—C4B118.8 (2)
N1A—C2A—H2A118.4C2B—C3B—H3B120.6
C3A—C2A—H2A118.4C4B—C3B—H3B120.6
C2A—C3A—C4A118.61 (19)C3B—C4B—C5B118.9 (2)
C2A—C3A—H3A120.7C3B—C4B—H4B120.6
C4A—C3A—H3A120.7C5B—C4B—H4B120.6
C3A—C4A—C5A118.86 (19)C6B—C5B—C4B120.0 (2)
C3A—C4A—H4A120.6C6B—C5B—H5B120.0
C5A—C4A—H4A120.6C4B—C5B—H5B120.0
C6A—C5A—C4A119.89 (19)N1B—C6B—C5B120.84 (18)
C6A—C5A—H5A120.1N1B—C6B—C7B116.97 (17)
C4A—C5A—H5A120.1C5B—C6B—C7B122.11 (18)
N1A—C6A—C5A121.00 (18)C6B—C7B—C8B109.81 (16)
N1A—C6A—C7A116.95 (17)C6B—C7B—H7B1109.7
C5A—C6A—C7A122.00 (17)C8B—C7B—H7B1109.7
C6A—C7A—C8A110.51 (16)C6B—C7B—H7B2109.7
C6A—C7A—H7A1109.5C8B—C7B—H7B2109.7
C8A—C7A—H7A1109.5H7B1—C7B—H7B2108.2
C6A—C7A—H7A2109.5N9B—C8B—C7B113.13 (16)
C8A—C7A—H7A2109.5N9B—C8B—H8B1109.0
H7A1—C7A—H7A2108.1C7B—C8B—H8B1109.0
N9A—C8A—C7A113.27 (17)N9B—C8B—H8B2109.0
N9A—C8A—H8A1108.9C7B—C8B—H8B2109.0
C7A—C8A—H8A1108.9H8B1—C8B—H8B2107.8
N9A—C8A—H8A2108.9C10B—N9B—C8B121.34 (17)
C7A—C8A—H8A2108.9C10B—N9B—H9B119.9 (15)
H8A1—C8A—H8A2107.7C8B—N9B—H9B118.7 (15)
C10A—N9A—C8A121.77 (18)O11B—C10B—N9B120.18 (19)
C10A—N9A—H9A121.2 (19)O11B—C10B—C12B120.59 (18)
C8A—N9A—H9A117.0 (19)N9B—C10B—C12B119.21 (17)
O11A—C10A—N9A119.95 (18)C13B—C12B—C17B118.15 (18)
O11A—C10A—C12A120.69 (18)C13B—C12B—C10B122.59 (18)
N9A—C10A—C12A119.33 (18)C17B—C12B—C10B119.25 (18)
C13A—C12A—C17A117.85 (18)C14B—C13B—C12B121.41 (19)
C13A—C12A—C10A122.77 (18)C14B—C13B—H13B119.3
C17A—C12A—C10A119.37 (17)C12B—C13B—H13B119.3
C14A—C13A—C12A121.46 (19)C13B—C14B—C15B119.59 (19)
C14A—C13A—H13A119.3C13B—C14B—H14B120.2
C12A—C13A—H13A119.3C15B—C14B—H14B120.2
C13A—C14A—C15A119.71 (19)C16B—C15B—C14B120.5 (2)
C13A—C14A—H14A120.1C16B—C15B—H15B119.7
C15A—C14A—H14A120.1C14B—C15B—H15B119.7
C16A—C15A—C14A120.2 (2)C15B—C16B—C17B120.1 (2)
C16A—C15A—H15A119.9C15B—C16B—H16B120.0
C14A—C15A—H15A119.9C17B—C16B—H16B120.0
C15A—C16A—C17A120.4 (2)O18B—C17B—C16B117.34 (18)
C15A—C16A—H16A119.8O18B—C17B—C12B122.40 (18)
C17A—C16A—H16A119.8C16B—C17B—C12B120.26 (19)
O18A—C17A—C16A117.29 (19)C17B—O18B—H18B105.6 (17)
O18A—C17A—C12A122.33 (18)F3—B1—F4112.05 (19)
C16A—C17A—C12A120.38 (19)F3—B1—F2109.72 (19)
C17A—O18A—H18A105.4 (18)F4—B1—F2109.07 (18)
N1B—Cu1B—N1Bii177.71 (9)F3—B1—F1109.67 (19)
C2B—N1B—C6B118.27 (17)F4—B1—F1109.17 (19)
C2B—N1B—Cu1B119.44 (14)F2—B1—F1107.02 (17)
C6A—N1A—C2A—C3A1.2 (3)C6B—N1B—C2B—C3B0.1 (3)
Cu1A—N1A—C2A—C3A168.21 (15)Cu1B—N1B—C2B—C3B170.83 (15)
N1A—C2A—C3A—C4A0.1 (3)N1B—C2B—C3B—C4B0.5 (3)
C2A—C3A—C4A—C5A0.9 (3)C2B—C3B—C4B—C5B1.0 (3)
C3A—C4A—C5A—C6A1.0 (3)C3B—C4B—C5B—C6B0.8 (3)
C2A—N1A—C6A—C5A1.2 (3)C2B—N1B—C6B—C5B0.3 (3)
Cu1A—N1A—C6A—C5A168.01 (14)Cu1B—N1B—C6B—C5B170.80 (14)
C2A—N1A—C6A—C7A176.21 (17)C2B—N1B—C6B—C7B177.21 (16)
Cu1A—N1A—C6A—C7A14.6 (2)Cu1B—N1B—C6B—C7B12.3 (2)
C4A—C5A—C6A—N1A0.1 (3)C4B—C5B—C6B—N1B0.2 (3)
C4A—C5A—C6A—C7A177.15 (18)C4B—C5B—C6B—C7B176.57 (18)
N1A—C6A—C7A—C8A74.4 (2)N1B—C6B—C7B—C8B80.1 (2)
C5A—C6A—C7A—C8A102.9 (2)C5B—C6B—C7B—C8B96.8 (2)
C6A—C7A—C8A—N9A172.26 (17)C6B—C7B—C8B—N9B169.84 (16)
C7A—C8A—N9A—C10A82.1 (2)C7B—C8B—N9B—C10B82.9 (2)
C8A—N9A—C10A—O11A4.3 (3)C8B—N9B—C10B—O11B5.6 (3)
C8A—N9A—C10A—C12A173.60 (17)C8B—N9B—C10B—C12B172.57 (16)
O11A—C10A—C12A—C13A175.99 (18)O11B—C10B—C12B—C13B176.59 (18)
N9A—C10A—C12A—C13A1.9 (3)N9B—C10B—C12B—C13B1.6 (3)
O11A—C10A—C12A—C17A4.0 (3)O11B—C10B—C12B—C17B2.5 (3)
N9A—C10A—C12A—C17A178.11 (18)N9B—C10B—C12B—C17B179.32 (18)
C17A—C12A—C13A—C14A0.5 (3)C17B—C12B—C13B—C14B0.1 (3)
C10A—C12A—C13A—C14A179.47 (19)C10B—C12B—C13B—C14B179.18 (18)
C12A—C13A—C14A—C15A0.7 (3)C12B—C13B—C14B—C15B0.0 (3)
C13A—C14A—C15A—C16A0.6 (3)C13B—C14B—C15B—C16B0.5 (3)
C14A—C15A—C16A—C17A0.2 (3)C14B—C15B—C16B—C17B0.8 (3)
C15A—C16A—C17A—O18A179.36 (19)C15B—C16B—C17B—O18B179.90 (18)
C15A—C16A—C17A—C12A0.0 (3)C15B—C16B—C17B—C12B0.7 (3)
C13A—C12A—C17A—O18A179.44 (18)C13B—C12B—C17B—O18B179.63 (18)
C10A—C12A—C17A—O18A0.5 (3)C10B—C12B—C17B—O18B0.5 (3)
C13A—C12A—C17A—C16A0.1 (3)C13B—C12B—C17B—C16B0.2 (3)
C10A—C12A—C17A—C16A179.85 (18)C10B—C12B—C17B—C16B178.91 (18)
Symmetry codes: (i) x, y, z+3/2; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9A—H9A···F1iii0.72 (2)2.23 (2)2.923 (2)161 (2)
O18A—H18A···O11A0.83 (1)1.79 (2)2.554 (2)152 (3)
N9B—H9B···F2iv0.82 (1)2.16 (1)2.937 (2)159 (2)
O18B—H18B···O11B0.81 (1)1.81 (2)2.549 (2)153 (2)
Symmetry codes: (iii) x, y, z+1/2; (iv) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C14H14N2O2)2]BF4
Mr634.89
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)21.943 (5), 17.586 (4), 14.607 (2)
β (°) 107.988 (8)
V3)5361.2 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.40 × 0.30 × 0.12
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(TWINABS; Bruker, 2001)
Tmin, Tmax0.714, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
10344, 10344, 8548
Rint0.000
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.096, 1.00
No. of reflections10344
No. of parameters393
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.39

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008.

Selected geometric parameters (Å, º) top
Cu1A—N1A1.8872 (16)Cu1B—N1B1.8874 (17)
N1A—Cu1A—N1Ai178.45 (9)N1B—Cu1B—N1Bii177.71 (9)
Symmetry codes: (i) x, y, z+3/2; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9A—H9A···F1iii0.72 (2)2.23 (2)2.923 (2)161 (2)
O18A—H18A···O11A0.829 (12)1.791 (16)2.554 (2)152 (3)
N9B—H9B···F2iv0.815 (11)2.160 (13)2.937 (2)159 (2)
O18B—H18B···O11B0.805 (11)1.807 (15)2.549 (2)153 (2)
Symmetry codes: (iii) x, y, z+1/2; (iv) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The National Science Foundation (CHE-0094079) supported this work. We also thank the NSF (CHE-0130835) and the University of Oklahoma for the purchase of a CCD equipped X-ray diffractometer.

References

First citationBruker (2001). TWINABS.. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z. D., Powell, D. R. & Houser, R. P. (2009). Inorg. Chem. Commun. 12, 511–514.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds