organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Methyl­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 17 January 2010; accepted 18 January 2010; online 23 January 2010)

The asymmetric unit of the title compound, C13H13NO2S, contains two independent mol­ecules. The dihedral angles between the two aromatic rings are 67.9 (1) and 68.6 (1)° in the two mol­ecules. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains.

Related literature

For the preparation of the title compound, see: Gowda et al. (2005[Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106-112.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]; Gowda et al. (2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1825.]); Nirmala et al. (2009[Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3208.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO2S

  • Mr = 247.30

  • Orthorhombic, P 21 21 21

  • a = 8.787 (1) Å

  • b = 8.884 (1) Å

  • c = 32.406 (3) Å

  • V = 2529.7 (5) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.19 mm−1

  • T = 299 K

  • 0.60 × 0.60 × 0.35 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.353, Tmax = 0.514

  • 3284 measured reflections

  • 3109 independent reflections

  • 3002 reflections with I > 2σ(I)

  • Rint = 0.039

  • 3 standard reflections every 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.096

  • S = 1.01

  • 3109 reflections

  • 316 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 507 Friedel pairs

  • Flack parameter: −0.010 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.87 (3) 2.08 (3) 2.919 (3) 162 (3)
N2—H2N⋯O3ii 0.82 (3) 2.17 (3) 2.981 (3) 178 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as a part of studying the effect of substituents on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008; Nirmala et al., 2009), the structure of N-(3-methylphenyl)benzenesulfonamide (I) has been determined. The asymmetric unit of (I) contains two independent molecules (Fig. 1). The conformations of the N—H bonds are syn to the meta- methyl groups in the aniline benzene rings, in contrast to the anti conformation observed with respect to the ortho-methyl group in N-(2-methylphenyl)benzenesulfonamide (II), to the meta-chloro group in N-(3-chlorophenyl)benzenesulfonamide(III)(Gowda et al., 2008) and to the meta-methyl group in 4-methyl-N-(3-methylphenyl)benzenesulfonamide (IV) (Nirmala et al., 2009).

The two benzene rings in (I) are tilted relative to each other by 67.9 (1)° in molecule 1 and 68.6 (1)° in molecule 2, compared to the values of 61.5 (1)° in (II), 65.4 (1)° in (III) and 83.9 (1)° in (IV),

The other bond parameters are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing stabilized by intermolecular N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Gowda et al. (2005). For related structures, see: Gelbrich et al. (2007; Gowda et al. (2008); Nirmala et al. (2009); Perlovich et al. (2006).

Experimental top

The solution of benzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with m-toluidine in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid N-(3-methylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Gowda et al., 2005).

The single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement top

The H atoms of the NH groups were located in a difference map and their positional parameters were refined. The H-atoms bonded to C were positioned with idealized geometry using a riding model [C—H = 0.93–0.96 Å]. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Structure description top

In the present work, as a part of studying the effect of substituents on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008; Nirmala et al., 2009), the structure of N-(3-methylphenyl)benzenesulfonamide (I) has been determined. The asymmetric unit of (I) contains two independent molecules (Fig. 1). The conformations of the N—H bonds are syn to the meta- methyl groups in the aniline benzene rings, in contrast to the anti conformation observed with respect to the ortho-methyl group in N-(2-methylphenyl)benzenesulfonamide (II), to the meta-chloro group in N-(3-chlorophenyl)benzenesulfonamide(III)(Gowda et al., 2008) and to the meta-methyl group in 4-methyl-N-(3-methylphenyl)benzenesulfonamide (IV) (Nirmala et al., 2009).

The two benzene rings in (I) are tilted relative to each other by 67.9 (1)° in molecule 1 and 68.6 (1)° in molecule 2, compared to the values of 61.5 (1)° in (II), 65.4 (1)° in (III) and 83.9 (1)° in (IV),

The other bond parameters are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing stabilized by intermolecular N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

For the preparation of the title compound, see: Gowda et al. (2005). For related structures, see: Gelbrich et al. (2007; Gowda et al. (2008); Nirmala et al. (2009); Perlovich et al. (2006).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(3-Methylphenyl)benzenesulfonamide top
Crystal data top
C13H13NO2SF(000) = 1040
Mr = 247.30Dx = 1.299 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 8.787 (1) Åθ = 6.5–20.2°
b = 8.884 (1) ŵ = 2.19 mm1
c = 32.406 (3) ÅT = 299 K
V = 2529.7 (5) Å3Prism, colourless
Z = 80.60 × 0.60 × 0.35 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
3002 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 66.9°, θmin = 2.7°
ω/2θ scansh = 100
Absorption correction: ψ scan
(North et al., 1968)
k = 101
Tmin = 0.353, Tmax = 0.514l = 384
3284 measured reflections3 standard reflections every 120 min
3109 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0669P)2 + 0.4153P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.18 e Å3
3109 reflectionsΔρmin = 0.36 e Å3
316 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0203 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 507 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.010 (17)
Crystal data top
C13H13NO2SV = 2529.7 (5) Å3
Mr = 247.30Z = 8
Orthorhombic, P212121Cu Kα radiation
a = 8.787 (1) ŵ = 2.19 mm1
b = 8.884 (1) ÅT = 299 K
c = 32.406 (3) Å0.60 × 0.60 × 0.35 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
3002 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.039
Tmin = 0.353, Tmax = 0.5143 standard reflections every 120 min
3284 measured reflections intensity decay: 1.0%
3109 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096Δρmax = 0.18 e Å3
S = 1.01Δρmin = 0.36 e Å3
3109 reflectionsAbsolute structure: Flack (1983), 507 Friedel pairs
316 parametersAbsolute structure parameter: 0.010 (17)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24673 (6)0.87533 (7)0.002545 (17)0.05084 (19)
O10.08754 (19)0.8919 (2)0.01175 (6)0.0660 (5)
O20.2926 (2)0.8620 (3)0.03936 (5)0.0675 (5)
N10.3085 (2)0.7245 (3)0.02524 (6)0.0534 (5)
H1N0.394 (4)0.710 (4)0.0126 (9)0.064*
C10.3398 (3)1.0308 (3)0.02455 (8)0.0548 (6)
C20.4797 (4)1.0708 (4)0.00878 (10)0.0740 (8)
H20.52411.01470.01230.089*
C30.5529 (6)1.1951 (5)0.02461 (13)0.1007 (13)
H30.64751.22320.01440.121*
C40.4868 (7)1.2767 (5)0.05524 (16)0.1167 (17)
H40.53631.36150.06530.140*
C50.3486 (6)1.2364 (5)0.07158 (15)0.1124 (15)
H50.30541.29240.09280.135*
C60.2731 (4)1.1093 (4)0.05579 (10)0.0816 (9)
H60.17951.07940.06650.098*
C70.3008 (3)0.7054 (3)0.06911 (7)0.0502 (5)
C80.4334 (3)0.6721 (3)0.09016 (8)0.0563 (6)
H80.52540.66880.07600.068*
C90.4301 (4)0.6434 (4)0.13244 (8)0.0675 (7)
C100.2930 (4)0.6565 (4)0.15269 (9)0.0758 (9)
H100.28910.64030.18100.091*
C110.1614 (4)0.6932 (4)0.13180 (10)0.0793 (9)
H110.07060.70340.14620.095*
C120.1636 (3)0.7147 (4)0.08980 (9)0.0671 (7)
H120.07410.73520.07550.081*
C130.5728 (5)0.6023 (6)0.15481 (11)0.0973 (12)
H13A0.59270.49680.15130.117*
H13B0.56120.62420.18360.117*
H13C0.65640.65940.14390.117*
S20.11402 (7)0.27358 (7)0.246445 (17)0.05112 (19)
O30.1367 (2)0.4283 (2)0.23607 (6)0.0637 (5)
O40.0977 (2)0.2326 (2)0.28860 (5)0.0676 (5)
N20.0417 (2)0.2159 (3)0.22416 (6)0.0527 (5)
H2N0.065 (4)0.136 (4)0.2348 (8)0.063*
C140.2668 (3)0.1716 (3)0.22523 (7)0.0532 (6)
C150.2926 (3)0.0270 (4)0.23940 (9)0.0674 (7)
H150.22990.01570.25930.081*
C160.4143 (5)0.0526 (4)0.22311 (12)0.0902 (10)
H160.43440.14970.23230.108*
C170.5046 (4)0.0106 (5)0.19371 (14)0.0998 (13)
H170.58630.04380.18320.120*
C180.4775 (5)0.1509 (6)0.17945 (14)0.1068 (14)
H180.53960.19130.15900.128*
C190.3571 (4)0.2356 (4)0.19508 (10)0.0821 (9)
H190.33810.33240.18550.099*
C200.0626 (3)0.2246 (3)0.18014 (7)0.0504 (5)
C210.1049 (3)0.0949 (3)0.15949 (8)0.0539 (6)
H210.11180.00460.17390.065*
C220.1374 (3)0.0981 (4)0.11760 (8)0.0609 (6)
C230.1195 (4)0.2328 (4)0.09707 (9)0.0729 (8)
H230.13690.23690.06880.087*
C240.0769 (5)0.3601 (4)0.11743 (10)0.0847 (10)
H240.06610.44960.10280.102*
C250.0492 (4)0.3584 (4)0.15961 (9)0.0705 (8)
H250.02230.44600.17350.085*
C260.1914 (5)0.0405 (4)0.09576 (11)0.0861 (10)
H26A0.15870.12800.11070.103*
H26B0.14960.04290.06840.103*
H26C0.30050.03940.09420.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0439 (3)0.0637 (3)0.0449 (3)0.0013 (3)0.0050 (2)0.0031 (3)
O10.0395 (8)0.0884 (13)0.0702 (11)0.0026 (9)0.0048 (8)0.0042 (11)
O20.0692 (12)0.0883 (13)0.0450 (8)0.0003 (11)0.0035 (8)0.0041 (10)
N10.0497 (10)0.0613 (12)0.0492 (10)0.0043 (10)0.0060 (9)0.0033 (10)
C10.0554 (14)0.0568 (13)0.0523 (13)0.0011 (12)0.0138 (11)0.0063 (12)
C20.0700 (17)0.0829 (19)0.0690 (18)0.0202 (17)0.0053 (14)0.0104 (16)
C30.107 (3)0.095 (3)0.101 (3)0.044 (2)0.021 (2)0.017 (2)
C40.139 (4)0.073 (2)0.138 (4)0.029 (3)0.054 (3)0.003 (3)
C50.130 (4)0.090 (3)0.117 (3)0.014 (3)0.031 (3)0.038 (3)
C60.083 (2)0.082 (2)0.0793 (18)0.0032 (19)0.0102 (17)0.0229 (18)
C70.0525 (12)0.0477 (12)0.0503 (11)0.0035 (11)0.0060 (10)0.0011 (11)
C80.0538 (14)0.0587 (14)0.0564 (13)0.0038 (12)0.0040 (11)0.0002 (12)
C90.0789 (18)0.0656 (17)0.0580 (14)0.0086 (16)0.0088 (14)0.0048 (14)
C100.097 (2)0.0811 (19)0.0496 (13)0.0142 (19)0.0120 (15)0.0081 (15)
C110.078 (2)0.091 (2)0.0682 (17)0.0070 (19)0.0266 (16)0.0095 (17)
C120.0560 (14)0.0802 (18)0.0651 (15)0.0021 (15)0.0115 (13)0.0086 (15)
C130.093 (3)0.120 (3)0.079 (2)0.001 (3)0.0190 (19)0.022 (2)
S20.0540 (3)0.0561 (3)0.0432 (3)0.0010 (3)0.0032 (2)0.0055 (2)
O30.0722 (12)0.0541 (9)0.0649 (11)0.0015 (9)0.0044 (9)0.0077 (8)
O40.0777 (12)0.0808 (12)0.0444 (8)0.0005 (12)0.0036 (8)0.0037 (9)
N20.0503 (10)0.0584 (11)0.0493 (10)0.0057 (10)0.0036 (9)0.0040 (10)
C140.0456 (12)0.0639 (14)0.0500 (12)0.0015 (11)0.0032 (11)0.0098 (11)
C150.0641 (17)0.0689 (16)0.0693 (16)0.0066 (14)0.0029 (13)0.0031 (15)
C160.086 (2)0.077 (2)0.107 (3)0.025 (2)0.005 (2)0.007 (2)
C170.068 (2)0.106 (3)0.125 (3)0.024 (2)0.017 (2)0.020 (3)
C180.082 (2)0.119 (3)0.119 (3)0.020 (3)0.045 (2)0.011 (3)
C190.0743 (19)0.085 (2)0.087 (2)0.0097 (19)0.0281 (17)0.0082 (19)
C200.0423 (11)0.0606 (14)0.0483 (11)0.0029 (11)0.0021 (9)0.0032 (12)
C210.0503 (12)0.0555 (13)0.0561 (12)0.0054 (12)0.0044 (11)0.0010 (11)
C220.0504 (13)0.0743 (16)0.0579 (13)0.0047 (13)0.0017 (11)0.0086 (13)
C230.0739 (18)0.093 (2)0.0519 (13)0.009 (2)0.0078 (13)0.0054 (15)
C240.100 (3)0.087 (2)0.0675 (17)0.018 (2)0.0173 (18)0.0265 (17)
C250.085 (2)0.0646 (16)0.0625 (15)0.0112 (16)0.0115 (15)0.0075 (14)
C260.097 (2)0.082 (2)0.0790 (19)0.002 (2)0.0076 (19)0.0239 (18)
Geometric parameters (Å, º) top
S1—O21.4214 (18)S2—O41.4212 (18)
S1—O11.4378 (18)S2—O31.429 (2)
S1—N11.622 (2)S2—N21.630 (2)
S1—C11.756 (3)S2—C141.760 (3)
N1—C71.433 (3)N2—C201.440 (3)
N1—H1N0.87 (3)N2—H2N0.82 (3)
C1—C61.362 (4)C14—C191.381 (4)
C1—C21.379 (4)C14—C151.383 (4)
C2—C31.377 (5)C15—C161.386 (5)
C2—H20.9300C15—H150.9300
C3—C41.359 (6)C16—C171.361 (6)
C3—H30.9300C16—H160.9300
C4—C51.373 (7)C17—C181.350 (6)
C4—H40.9300C17—H170.9300
C5—C61.406 (6)C18—C191.393 (5)
C5—H50.9300C18—H180.9300
C6—H60.9300C19—H190.9300
C7—C121.382 (4)C20—C251.367 (4)
C7—C81.382 (4)C20—C211.383 (4)
C8—C91.394 (3)C21—C221.387 (3)
C8—H80.9300C21—H210.9300
C9—C101.377 (5)C22—C231.378 (4)
C9—C131.494 (5)C22—C261.497 (4)
C10—C111.379 (5)C23—C241.362 (5)
C10—H100.9300C23—H230.9300
C11—C121.375 (4)C24—C251.388 (4)
C11—H110.9300C24—H240.9300
C12—H120.9300C25—H250.9300
C13—H13A0.9600C26—H26A0.9600
C13—H13B0.9600C26—H26B0.9600
C13—H13C0.9600C26—H26C0.9600
O2—S1—O1118.86 (11)O4—S2—O3119.12 (12)
O2—S1—N1105.62 (12)O4—S2—N2105.12 (12)
O1—S1—N1108.43 (12)O3—S2—N2108.38 (12)
O2—S1—C1108.75 (13)O4—S2—C14108.70 (12)
O1—S1—C1106.75 (13)O3—S2—C14107.27 (12)
N1—S1—C1108.04 (11)N2—S2—C14107.80 (12)
C7—N1—S1122.14 (18)C20—N2—S2121.91 (17)
C7—N1—H1N119.3 (19)C20—N2—H2N116 (2)
S1—N1—H1N102 (2)S2—N2—H2N107 (2)
C6—C1—C2121.8 (3)C19—C14—C15121.6 (3)
C6—C1—S1120.3 (2)C19—C14—S2120.2 (2)
C2—C1—S1117.9 (2)C15—C14—S2118.3 (2)
C3—C2—C1119.0 (4)C14—C15—C16118.3 (3)
C3—C2—H2120.5C14—C15—H15120.9
C1—C2—H2120.5C16—C15—H15120.9
C4—C3—C2120.0 (4)C17—C16—C15120.4 (4)
C4—C3—H3120.0C17—C16—H16119.8
C2—C3—H3120.0C15—C16—H16119.8
C3—C4—C5121.4 (4)C18—C17—C16121.1 (4)
C3—C4—H4119.3C18—C17—H17119.4
C5—C4—H4119.3C16—C17—H17119.4
C4—C5—C6119.1 (4)C17—C18—C19120.5 (4)
C4—C5—H5120.4C17—C18—H18119.7
C6—C5—H5120.4C19—C18—H18119.7
C1—C6—C5118.6 (4)C14—C19—C18118.1 (4)
C1—C6—H6120.7C14—C19—H19121.0
C5—C6—H6120.7C18—C19—H19121.0
C12—C7—C8120.6 (2)C25—C20—C21120.8 (2)
C12—C7—N1121.0 (2)C25—C20—N2121.2 (3)
C8—C7—N1118.4 (2)C21—C20—N2117.9 (2)
C7—C8—C9120.5 (3)C20—C21—C22120.8 (2)
C7—C8—H8119.8C20—C21—H21119.6
C9—C8—H8119.8C22—C21—H21119.6
C10—C9—C8118.1 (3)C23—C22—C21117.8 (3)
C10—C9—C13121.6 (3)C23—C22—C26121.5 (3)
C8—C9—C13120.3 (3)C21—C22—C26120.7 (3)
C9—C10—C11121.3 (2)C24—C23—C22121.2 (3)
C9—C10—H10119.4C24—C23—H23119.4
C11—C10—H10119.4C22—C23—H23119.4
C12—C11—C10120.5 (3)C23—C24—C25121.1 (3)
C12—C11—H11119.7C23—C24—H24119.5
C10—C11—H11119.7C25—C24—H24119.5
C11—C12—C7118.9 (3)C20—C25—C24118.3 (3)
C11—C12—H12120.5C20—C25—H25120.9
C7—C12—H12120.5C24—C25—H25120.9
C9—C13—H13A109.5C22—C26—H26A109.5
C9—C13—H13B109.5C22—C26—H26B109.5
H13A—C13—H13B109.5H26A—C26—H26B109.5
C9—C13—H13C109.5C22—C26—H26C109.5
H13A—C13—H13C109.5H26A—C26—H26C109.5
H13B—C13—H13C109.5H26B—C26—H26C109.5
O2—S1—N1—C7172.1 (2)O4—S2—N2—C20174.2 (2)
O1—S1—N1—C759.5 (2)O3—S2—N2—C2057.4 (2)
C1—S1—N1—C755.8 (2)C14—S2—N2—C2058.4 (3)
O2—S1—C1—C6150.7 (2)O4—S2—C14—C19146.4 (3)
O1—S1—C1—C621.3 (3)O3—S2—C14—C1916.4 (3)
N1—S1—C1—C695.2 (3)N2—S2—C14—C19100.1 (3)
O2—S1—C1—C228.4 (3)O4—S2—C14—C1533.9 (2)
O1—S1—C1—C2157.8 (2)O3—S2—C14—C15163.9 (2)
N1—S1—C1—C285.8 (2)N2—S2—C14—C1579.6 (2)
C6—C1—C2—C31.1 (5)C19—C14—C15—C161.2 (4)
S1—C1—C2—C3178.0 (3)S2—C14—C15—C16179.1 (3)
C1—C2—C3—C40.3 (5)C14—C15—C16—C170.5 (5)
C2—C3—C4—C51.3 (7)C15—C16—C17—C180.6 (7)
C3—C4—C5—C61.0 (7)C16—C17—C18—C191.0 (8)
C2—C1—C6—C51.4 (5)C15—C14—C19—C180.8 (5)
S1—C1—C6—C5177.7 (3)S2—C14—C19—C18179.5 (3)
C4—C5—C6—C10.3 (6)C17—C18—C19—C140.3 (7)
S1—N1—C7—C1257.0 (3)S2—N2—C20—C2556.3 (3)
S1—N1—C7—C8125.3 (2)S2—N2—C20—C21127.3 (2)
C12—C7—C8—C91.7 (4)C25—C20—C21—C221.1 (4)
N1—C7—C8—C9176.1 (3)N2—C20—C21—C22175.4 (2)
C7—C8—C9—C103.1 (5)C20—C21—C22—C232.8 (4)
C7—C8—C9—C13177.9 (3)C20—C21—C22—C26176.7 (3)
C8—C9—C10—C111.6 (5)C21—C22—C23—C242.4 (5)
C13—C9—C10—C11179.4 (4)C26—C22—C23—C24177.1 (3)
C9—C10—C11—C121.3 (6)C22—C23—C24—C250.3 (6)
C10—C11—C12—C72.8 (5)C21—C20—C25—C241.0 (5)
C8—C7—C12—C111.2 (5)N2—C20—C25—C24177.4 (3)
N1—C7—C12—C11178.9 (3)C23—C24—C25—C201.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.87 (3)2.08 (3)2.919 (3)162 (3)
N2—H2N···O3ii0.82 (3)2.17 (3)2.981 (3)178 (3)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H13NO2S
Mr247.30
Crystal system, space groupOrthorhombic, P212121
Temperature (K)299
a, b, c (Å)8.787 (1), 8.884 (1), 32.406 (3)
V3)2529.7 (5)
Z8
Radiation typeCu Kα
µ (mm1)2.19
Crystal size (mm)0.60 × 0.60 × 0.35
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.353, 0.514
No. of measured, independent and
observed [I > 2σ(I)] reflections
3284, 3109, 3002
Rint0.039
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.01
No. of reflections3109
No. of parameters316
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.36
Absolute structureFlack (1983), 507 Friedel pairs
Absolute structure parameter0.010 (17)

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.87 (3)2.08 (3)2.919 (3)162 (3)
N2—H2N···O3ii0.82 (3)2.17 (3)2.981 (3)178 (3)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y1/2, z+1/2.
 

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.  CAS Google Scholar
First citationNirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3208.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds