organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Methyl­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 17 January 2010; accepted 18 January 2010; online 23 January 2010)

The asymmetric unit of the title compound, C13H13NO2S, contains two independent mol­ecules. The dihedral angles between the aromatic rings in the two mol­ecules are 78.0 (1) and 74.0 (1)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds pack the mol­ecules into a three-dimensional structure.

Related literature

For the preparation of the title compound, see: Gowda et al. (2005[Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106-112.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Gowda et al. (2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1692.], 2010[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o434.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO2S

  • Mr = 247.30

  • Monoclinic, P 21 /c

  • a = 10.8963 (7) Å

  • b = 9.6981 (7) Å

  • c = 24.089 (2) Å

  • β = 101.335 (6)°

  • V = 2495.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 299 K

  • 0.48 × 0.36 × 0.36 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.890, Tmax = 0.916

  • 11057 measured reflections

  • 5102 independent reflections

  • 3835 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.115

  • S = 1.07

  • 5102 reflections

  • 317 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 (1) 2.09 (1) 2.924 (2) 166 (2)
N2—H2N⋯O1 0.85 (1) 2.17 (1) 3.0056 (19) 168 (2)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of studying the effect of substituents on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2008; 2010), the crystal structure of N-(4-methylphenyl)benzenesulfonamide has been determined. The asymmetric unit contains two independent molecules (Fig. 1).

The conformations of the N—C bonds in the C—SO2—NH—C segments of both molecules have gauche torsions with respect to the SO bonds. The molecules are bent at the S atoms with the C1—SO2—NH—C7 and C14—SO2—NH—C20 torsion angles of 59.5 (2)° and -55.2 (2)°, respectively, in the 2 molecules.

The two aromatic rings are tilted relative to each other by 78.0 (1)° in molecule 1 and 74.0 (1)° in molecule 2, compared to the values of 61.5 (1)° in N-(2-methylphenyl)benzenesulfonamide (II) (Gowda et al., 2008) and 67.9 (1)° (molecule 1) and 68.6 (1)° (molecule 2) in N-(3-methylphenyl)benzenesulfonamide (III) (Gowda et al., 2010)

The other bond parameters are similar to those observed in (II), (III) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing stabilized by intermolecular N—H···O hydrogen bonds (Table 1) is shown in Fig.2.

Related literature top

For the preparation of the title compound, see: Gowda et al. (2005). For related structures, see: Gelbrich et al. (2007); Gowda et al. (2008, 2010); Perlovich et al. (2006).

Experimental top

The solution of benzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with p-toluidine in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid N-(4-methylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Gowda et al., 2005).

The single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement top

The H atoms of the NH groups were located in a difference map and refined with the N—H distance restrained to 0.86 (1) Å. H atoms bonded to C were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å and with their isotropic displacement parameters set to 1.2 times of the Ueq of the parent C atom.

Structure description top

As a part of studying the effect of substituents on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2008; 2010), the crystal structure of N-(4-methylphenyl)benzenesulfonamide has been determined. The asymmetric unit contains two independent molecules (Fig. 1).

The conformations of the N—C bonds in the C—SO2—NH—C segments of both molecules have gauche torsions with respect to the SO bonds. The molecules are bent at the S atoms with the C1—SO2—NH—C7 and C14—SO2—NH—C20 torsion angles of 59.5 (2)° and -55.2 (2)°, respectively, in the 2 molecules.

The two aromatic rings are tilted relative to each other by 78.0 (1)° in molecule 1 and 74.0 (1)° in molecule 2, compared to the values of 61.5 (1)° in N-(2-methylphenyl)benzenesulfonamide (II) (Gowda et al., 2008) and 67.9 (1)° (molecule 1) and 68.6 (1)° (molecule 2) in N-(3-methylphenyl)benzenesulfonamide (III) (Gowda et al., 2010)

The other bond parameters are similar to those observed in (II), (III) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing stabilized by intermolecular N—H···O hydrogen bonds (Table 1) is shown in Fig.2.

For the preparation of the title compound, see: Gowda et al. (2005). For related structures, see: Gelbrich et al. (2007); Gowda et al. (2008, 2010); Perlovich et al. (2006).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(4-Methylphenyl)benzenesulfonamide top
Crystal data top
C13H13NO2SF(000) = 1040
Mr = 247.30Dx = 1.316 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3814 reflections
a = 10.8963 (7) Åθ = 2.6–27.8°
b = 9.6981 (7) ŵ = 0.25 mm1
c = 24.089 (2) ÅT = 299 K
β = 101.335 (6)°Prism, colourless
V = 2495.9 (3) Å30.48 × 0.36 × 0.36 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
5102 independent reflections
Radiation source: fine-focus sealed tube3835 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Rotation method data acquisition using ω and φ scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 136
Tmin = 0.890, Tmax = 0.916k = 812
11057 measured reflectionsl = 3029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.1533P]
where P = (Fo2 + 2Fc2)/3
5102 reflections(Δ/σ)max = 0.022
317 parametersΔρmax = 0.25 e Å3
2 restraintsΔρmin = 0.44 e Å3
Crystal data top
C13H13NO2SV = 2495.9 (3) Å3
Mr = 247.30Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.8963 (7) ŵ = 0.25 mm1
b = 9.6981 (7) ÅT = 299 K
c = 24.089 (2) Å0.48 × 0.36 × 0.36 mm
β = 101.335 (6)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
5102 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
3835 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.916Rint = 0.016
11057 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0402 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.25 e Å3
5102 reflectionsΔρmin = 0.44 e Å3
317 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.49646 (15)0.23424 (19)0.34166 (7)0.0352 (4)
C20.54145 (19)0.1458 (2)0.38595 (8)0.0540 (5)
H20.57060.05850.37920.065*
C30.5422 (2)0.1902 (3)0.44079 (9)0.0743 (7)
H30.57140.13170.47110.089*
C40.5009 (2)0.3177 (3)0.45059 (10)0.0729 (7)
H40.50170.34550.48760.087*
C50.4576 (2)0.4073 (3)0.40631 (10)0.0637 (6)
H50.43040.49520.41350.076*
C60.45504 (17)0.3650 (2)0.35136 (8)0.0473 (5)
H60.42570.42390.32120.057*
C70.72265 (15)0.26027 (18)0.26558 (7)0.0345 (4)
C80.78605 (17)0.38435 (19)0.27057 (8)0.0437 (4)
H80.74240.46640.26180.052*
C90.91509 (18)0.3864 (2)0.28866 (9)0.0519 (5)
H90.95690.47050.29160.062*
C100.98274 (17)0.2673 (2)0.30237 (8)0.0483 (5)
C110.91807 (17)0.1439 (2)0.29706 (8)0.0492 (5)
H110.96210.06210.30610.059*
C120.78924 (17)0.1386 (2)0.27865 (8)0.0445 (4)
H120.74780.05430.27510.053*
C131.1240 (2)0.2704 (3)0.32199 (12)0.0782 (8)
H13A1.15430.36200.31780.094*
H13B1.16190.20760.29950.094*
H13C1.14520.24350.36110.094*
N10.59074 (13)0.26099 (17)0.24393 (6)0.0380 (4)
H1N0.5641 (19)0.3419 (13)0.2338 (9)0.061 (7)*
O10.36880 (11)0.21729 (15)0.23898 (5)0.0483 (3)
O20.52235 (12)0.03473 (13)0.27441 (6)0.0484 (3)
S10.48854 (4)0.17773 (5)0.271806 (17)0.03439 (13)
C140.24474 (16)0.1155 (2)0.04914 (8)0.0433 (4)
C150.23588 (19)0.0133 (2)0.08819 (10)0.0539 (5)
H150.26610.02920.12650.065*
C160.1824 (2)0.1121 (3)0.07043 (13)0.0746 (7)
H160.17600.18120.09650.089*
C170.1387 (3)0.1331 (3)0.01356 (16)0.0934 (10)
H170.10260.21750.00130.112*
C180.1469 (3)0.0333 (4)0.02519 (13)0.0927 (10)
H180.11690.05040.06340.111*
C190.1998 (2)0.0942 (3)0.00817 (9)0.0691 (7)
H190.20500.16310.03450.083*
C200.12459 (15)0.34730 (18)0.11770 (7)0.0355 (4)
C210.05945 (18)0.2725 (2)0.15145 (8)0.0440 (4)
H210.10150.20870.17720.053*
C220.06751 (19)0.2922 (2)0.14710 (9)0.0521 (5)
H220.10960.24210.17040.063*
C230.13356 (18)0.3848 (3)0.10883 (8)0.0544 (6)
C240.06742 (18)0.4595 (2)0.07557 (8)0.0558 (6)
H240.10990.52260.04970.067*
C250.06092 (18)0.4430 (2)0.07982 (7)0.0469 (5)
H250.10370.49550.05750.056*
C260.2728 (2)0.4058 (4)0.10399 (11)0.0918 (10)
H26A0.28920.43680.13970.110*
H26B0.31570.32030.09380.110*
H26C0.30190.47380.07550.110*
N20.25663 (14)0.32896 (17)0.12379 (6)0.0404 (4)
H2N0.2978 (16)0.2947 (19)0.1543 (6)0.047 (6)*
O30.44699 (12)0.24737 (16)0.09618 (7)0.0607 (4)
O40.28964 (14)0.36865 (16)0.02590 (6)0.0614 (4)
S20.31882 (4)0.27343 (5)0.07160 (2)0.04299 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0322 (9)0.0384 (10)0.0348 (9)0.0071 (7)0.0058 (7)0.0000 (7)
C20.0650 (13)0.0520 (13)0.0431 (11)0.0009 (10)0.0057 (9)0.0080 (9)
C30.0945 (19)0.087 (2)0.0382 (12)0.0135 (15)0.0046 (12)0.0091 (12)
C40.0800 (17)0.099 (2)0.0450 (12)0.0294 (15)0.0256 (12)0.0179 (14)
C50.0673 (14)0.0626 (15)0.0674 (15)0.0120 (11)0.0287 (12)0.0233 (13)
C60.0494 (11)0.0438 (12)0.0506 (11)0.0020 (9)0.0143 (9)0.0026 (9)
C70.0341 (9)0.0401 (10)0.0308 (8)0.0032 (7)0.0098 (7)0.0025 (7)
C80.0412 (10)0.0343 (10)0.0576 (11)0.0038 (8)0.0142 (8)0.0011 (9)
C90.0435 (11)0.0485 (13)0.0661 (13)0.0092 (9)0.0169 (9)0.0090 (10)
C100.0345 (10)0.0672 (14)0.0444 (11)0.0020 (9)0.0107 (8)0.0004 (10)
C110.0393 (10)0.0540 (13)0.0551 (12)0.0137 (9)0.0116 (9)0.0133 (10)
C120.0402 (10)0.0388 (10)0.0551 (11)0.0037 (8)0.0110 (8)0.0081 (9)
C130.0382 (12)0.110 (2)0.0846 (18)0.0009 (13)0.0089 (11)0.0004 (16)
N10.0324 (8)0.0403 (9)0.0407 (8)0.0033 (7)0.0060 (6)0.0086 (7)
O10.0315 (7)0.0660 (9)0.0430 (7)0.0024 (6)0.0033 (5)0.0012 (6)
O20.0528 (8)0.0319 (7)0.0592 (8)0.0058 (6)0.0080 (6)0.0083 (6)
S10.0319 (2)0.0350 (3)0.0343 (2)0.00365 (18)0.00181 (16)0.00231 (18)
C140.0343 (9)0.0523 (12)0.0441 (10)0.0007 (8)0.0102 (8)0.0094 (9)
C150.0524 (12)0.0514 (13)0.0601 (13)0.0001 (10)0.0164 (10)0.0089 (10)
C160.0732 (16)0.0505 (15)0.105 (2)0.0068 (12)0.0305 (15)0.0141 (14)
C170.084 (2)0.076 (2)0.126 (3)0.0238 (16)0.0340 (19)0.051 (2)
C180.090 (2)0.109 (3)0.0741 (18)0.0173 (18)0.0047 (15)0.0492 (18)
C190.0675 (15)0.0919 (19)0.0462 (12)0.0078 (13)0.0070 (11)0.0188 (12)
C200.0378 (9)0.0373 (10)0.0299 (8)0.0011 (7)0.0030 (7)0.0072 (7)
C210.0495 (11)0.0420 (11)0.0397 (10)0.0007 (9)0.0070 (8)0.0009 (8)
C220.0523 (12)0.0597 (14)0.0473 (11)0.0102 (10)0.0170 (9)0.0080 (10)
C230.0390 (10)0.0812 (16)0.0406 (10)0.0004 (10)0.0017 (8)0.0185 (10)
C240.0503 (12)0.0785 (16)0.0351 (10)0.0199 (11)0.0003 (9)0.0012 (10)
C250.0512 (11)0.0550 (13)0.0353 (9)0.0064 (9)0.0105 (8)0.0042 (9)
C260.0420 (13)0.156 (3)0.0749 (17)0.0045 (15)0.0056 (12)0.0146 (18)
N20.0392 (8)0.0470 (10)0.0324 (8)0.0027 (7)0.0007 (6)0.0040 (7)
O30.0317 (7)0.0740 (11)0.0751 (10)0.0028 (6)0.0074 (7)0.0085 (8)
O40.0740 (10)0.0628 (10)0.0528 (8)0.0055 (8)0.0254 (7)0.0143 (7)
S20.0366 (3)0.0491 (3)0.0442 (3)0.0012 (2)0.01009 (19)0.0016 (2)
Geometric parameters (Å, º) top
C1—C61.381 (3)C14—C151.383 (3)
C1—C21.382 (2)C14—C191.386 (3)
C1—S11.7556 (17)C14—S21.766 (2)
C2—C31.388 (3)C15—C161.380 (3)
C2—H20.9300C15—H150.9300
C3—C41.352 (4)C16—C171.375 (4)
C3—H30.9300C16—H160.9300
C4—C51.385 (3)C17—C181.360 (4)
C4—H40.9300C17—H170.9300
C5—C61.381 (3)C18—C191.391 (4)
C5—H50.9300C18—H180.9300
C6—H60.9300C19—H190.9300
C7—C81.381 (3)C20—C211.385 (3)
C7—C121.389 (2)C20—C251.388 (2)
C7—N11.429 (2)C20—N21.428 (2)
C8—C91.388 (2)C21—C221.380 (3)
C8—H80.9300C21—H210.9300
C9—C101.375 (3)C22—C231.383 (3)
C9—H90.9300C22—H220.9300
C10—C111.382 (3)C23—C241.383 (3)
C10—C131.519 (3)C23—C261.512 (3)
C11—C121.388 (2)C24—C251.391 (3)
C11—H110.9300C24—H240.9300
C12—H120.9300C25—H250.9300
C13—H13A0.9600C26—H26A0.9600
C13—H13B0.9600C26—H26B0.9600
C13—H13C0.9600C26—H26C0.9600
N1—S11.6239 (16)N2—S21.6325 (15)
N1—H1N0.855 (9)N2—H2N0.850 (9)
O1—S11.4384 (12)O3—S21.4282 (13)
O2—S11.4331 (13)O4—S21.4240 (14)
C6—C1—C2121.15 (18)C15—C14—C19120.8 (2)
C6—C1—S1119.52 (14)C15—C14—S2120.13 (15)
C2—C1—S1119.31 (15)C19—C14—S2119.01 (18)
C1—C2—C3118.5 (2)C16—C15—C14120.2 (2)
C1—C2—H2120.7C16—C15—H15119.9
C3—C2—H2120.7C14—C15—H15119.9
C4—C3—C2120.6 (2)C17—C16—C15118.8 (3)
C4—C3—H3119.7C17—C16—H16120.6
C2—C3—H3119.7C15—C16—H16120.6
C3—C4—C5121.0 (2)C18—C17—C16121.4 (3)
C3—C4—H4119.5C18—C17—H17119.3
C5—C4—H4119.5C16—C17—H17119.3
C6—C5—C4119.4 (2)C17—C18—C19120.6 (3)
C6—C5—H5120.3C17—C18—H18119.7
C4—C5—H5120.3C19—C18—H18119.7
C1—C6—C5119.3 (2)C14—C19—C18118.1 (3)
C1—C6—H6120.3C14—C19—H19121.0
C5—C6—H6120.3C18—C19—H19121.0
C8—C7—C12119.38 (16)C21—C20—C25119.24 (17)
C8—C7—N1118.52 (15)C21—C20—N2119.78 (16)
C12—C7—N1122.01 (16)C25—C20—N2120.94 (16)
C7—C8—C9119.90 (17)C22—C21—C20120.32 (18)
C7—C8—H8120.0C22—C21—H21119.8
C9—C8—H8120.0C20—C21—H21119.8
C10—C9—C8121.69 (19)C21—C22—C23121.54 (19)
C10—C9—H9119.2C21—C22—H22119.2
C8—C9—H9119.2C23—C22—H22119.2
C9—C10—C11117.77 (17)C22—C23—C24117.65 (18)
C9—C10—C13121.4 (2)C22—C23—C26121.4 (2)
C11—C10—C13120.8 (2)C24—C23—C26120.9 (2)
C10—C11—C12121.79 (18)C23—C24—C25121.82 (19)
C10—C11—H11119.1C23—C24—H24119.1
C12—C11—H11119.1C25—C24—H24119.1
C11—C12—C7119.47 (18)C20—C25—C24119.41 (18)
C11—C12—H12120.3C20—C25—H25120.3
C7—C12—H12120.3C24—C25—H25120.3
C10—C13—H13A109.5C23—C26—H26A109.5
C10—C13—H13B109.5C23—C26—H26B109.5
H13A—C13—H13B109.5H26A—C26—H26B109.5
C10—C13—H13C109.5C23—C26—H26C109.5
H13A—C13—H13C109.5H26A—C26—H26C109.5
H13B—C13—H13C109.5H26B—C26—H26C109.5
C7—N1—S1124.67 (12)C20—N2—S2121.62 (11)
C7—N1—H1N111.7 (15)C20—N2—H2N119.2 (13)
S1—N1—H1N110.6 (14)S2—N2—H2N107.9 (13)
O2—S1—O1118.67 (8)O4—S2—O3119.13 (9)
O2—S1—N1107.94 (8)O4—S2—N2108.54 (9)
O1—S1—N1105.17 (8)O3—S2—N2105.02 (8)
O2—S1—C1107.24 (8)O4—S2—C14107.85 (9)
O1—S1—C1108.18 (8)O3—S2—C14108.93 (9)
N1—S1—C1109.42 (8)N2—S2—C14106.74 (8)
C6—C1—C2—C31.1 (3)C19—C14—C15—C160.3 (3)
S1—C1—C2—C3177.38 (17)S2—C14—C15—C16177.47 (16)
C1—C2—C3—C40.6 (4)C14—C15—C16—C170.1 (3)
C2—C3—C4—C50.4 (4)C15—C16—C17—C180.1 (4)
C3—C4—C5—C60.9 (4)C16—C17—C18—C190.3 (5)
C2—C1—C6—C50.6 (3)C15—C14—C19—C180.6 (3)
S1—C1—C6—C5177.87 (14)S2—C14—C19—C18177.13 (18)
C4—C5—C6—C10.4 (3)C17—C18—C19—C140.6 (4)
C12—C7—C8—C90.2 (3)C25—C20—C21—C220.5 (3)
N1—C7—C8—C9176.66 (16)N2—C20—C21—C22178.13 (16)
C7—C8—C9—C100.5 (3)C20—C21—C22—C230.9 (3)
C8—C9—C10—C110.6 (3)C21—C22—C23—C241.3 (3)
C8—C9—C10—C13179.84 (19)C21—C22—C23—C26179.8 (2)
C9—C10—C11—C120.1 (3)C22—C23—C24—C250.3 (3)
C13—C10—C11—C12179.32 (19)C26—C23—C24—C25179.2 (2)
C10—C11—C12—C70.5 (3)C21—C20—C25—C241.5 (3)
C8—C7—C12—C110.7 (3)N2—C20—C25—C24179.07 (17)
N1—C7—C12—C11177.04 (16)C23—C24—C25—C201.1 (3)
C8—C7—N1—S1133.52 (16)C21—C20—N2—S2118.91 (17)
C12—C7—N1—S150.1 (2)C25—C20—N2—S263.5 (2)
C7—N1—S1—O256.90 (16)C20—N2—S2—O460.77 (16)
C7—N1—S1—O1175.49 (14)C20—N2—S2—O3170.79 (14)
C7—N1—S1—C159.49 (17)C20—N2—S2—C1455.23 (16)
C6—C1—S1—O2172.89 (14)C15—C14—S2—O4166.93 (15)
C2—C1—S1—O25.65 (17)C19—C14—S2—O415.29 (19)
C6—C1—S1—O143.79 (16)C15—C14—S2—O362.44 (18)
C2—C1—S1—O1134.75 (15)C19—C14—S2—O3115.33 (17)
C6—C1—S1—N170.28 (16)C15—C14—S2—N250.46 (17)
C2—C1—S1—N1111.19 (16)C19—C14—S2—N2131.76 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.86 (1)2.09 (1)2.924 (2)166 (2)
N2—H2N···O10.85 (1)2.17 (1)3.0056 (19)168 (2)
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H13NO2S
Mr247.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)10.8963 (7), 9.6981 (7), 24.089 (2)
β (°) 101.335 (6)
V3)2495.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.48 × 0.36 × 0.36
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.890, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
11057, 5102, 3835
Rint0.016
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.07
No. of reflections5102
No. of parameters317
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.44

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.855 (9)2.086 (11)2.924 (2)166 (2)
N2—H2N···O10.850 (9)2.169 (10)3.0056 (19)168.2 (18)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

References

First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o434.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds