organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,9-Bis(2-chloro­phen­yl)-2,4,8,10-tetra­oxa­spiro­[5.5]undeca­ne

aDepartment of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou Hunan 425100, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 January 2010; accepted 19 January 2010; online 23 January 2010)

The complete mol­ecule of the title compound, C19H18Cl2O4, is generated by a crystallographic twofold axis that passes through the spiro C atom. The 1,3-dioxane ring adopts a chair conformation and the phenyl substituent occupies an equatorial site.

Related literature

For the crystal structure of 3,9-diphenyl-2,4,8,10-tetra­oxaspiro­[5.5]undecane, see: Wang et al. (2006[Wang, J.-K., Yan, D.-Y., Liu, L.-J., Liu, S. & Wang, J.-T. (2006). Acta Cryst. E62, o3062-o3063.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18Cl2O4

  • Mr = 381.23

  • Monoclinic, C 2/c

  • a = 10.7116 (5) Å

  • b = 9.4693 (5) Å

  • c = 17.7080 (9) Å

  • β = 106.745 (1)°

  • V = 1719.98 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 173 K

  • 0.46 × 0.42 × 0.22 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.838, Tmax = 0.917

  • 6932 measured reflections

  • 1883 independent reflections

  • 1707 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.092

  • S = 1.00

  • 1883 reflections

  • 114 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structure of 3,9-diphenyl-2,4,8,10-tetraoxaspiro[5.5]undecane, see: Wang et al. (2006).

Experimental top

Pentaerythritol (2 g, 0.014 mol), 2-chlorobenzaldehyde(4.6 g, 0.033 mol), toluene (12 ml) and a catalytic amount (0.2 g) of p-toluenesulfonic acid were heated for 4 hours. The mixture was cooled and then filtered. The organic phase was washed with water and 5% sodium bicarbonate (20 ml). The solvent was evaporated and the product recrystallized from ethyl acetate to afford colourless crystals (yield 70%); m.p. 418.5–419 K.

Refinement top

H-atoms were placed in calculated positions (C—H 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

Structure description top

For the crystal structure of 3,9-diphenyl-2,4,8,10-tetraoxaspiro[5.5]undecane, see: Wang et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot of C19H18Cl2O4 at the 70% probability level; hydrogen atoms are shown as spheres of arbitrary radius.
3,9-Bis(2-chlorophenyl)-2,4,8,10-tetraoxaspiro[5.5]undecane top
Crystal data top
C19H18Cl2O4F(000) = 792
Mr = 381.23Dx = 1.472 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5105 reflections
a = 10.7116 (5) Åθ = 2.4–27.1°
b = 9.4693 (5) ŵ = 0.40 mm1
c = 17.7080 (9) ÅT = 173 K
β = 106.745 (1)°Block, yellow
V = 1719.98 (15) Å30.46 × 0.42 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1883 independent reflections
Radiation source: fine-focus sealed tube1707 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 27.1°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.838, Tmax = 0.917k = 1211
6932 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0542P)2 + 1.3419P]
where P = (Fo2 + 2Fc2)/3
1883 reflections(Δ/σ)max = 0.001
114 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C19H18Cl2O4V = 1719.98 (15) Å3
Mr = 381.23Z = 4
Monoclinic, C2/cMo Kα radiation
a = 10.7116 (5) ŵ = 0.40 mm1
b = 9.4693 (5) ÅT = 173 K
c = 17.7080 (9) Å0.46 × 0.42 × 0.22 mm
β = 106.745 (1)°
Data collection top
Bruker SMART APEX
diffractometer
1883 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1707 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.917Rint = 0.015
6932 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.00Δρmax = 0.30 e Å3
1883 reflectionsΔρmin = 0.25 e Å3
114 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05287 (3)0.53900 (4)0.14620 (2)0.04156 (14)
O10.30941 (9)0.51739 (10)0.13408 (5)0.0283 (2)
O20.31431 (8)0.34130 (10)0.22630 (5)0.0298 (2)
C10.00068 (12)0.40843 (14)0.09327 (7)0.0261 (3)
C20.09394 (12)0.34711 (16)0.03040 (8)0.0329 (3)
H20.18150.37990.01600.040*
C30.05826 (13)0.23835 (18)0.01081 (8)0.0381 (3)
H30.12140.19600.05390.046*
C40.07000 (15)0.19038 (18)0.01047 (9)0.0398 (3)
H40.09410.11340.01680.048*
C50.16221 (13)0.25578 (16)0.07170 (8)0.0342 (3)
H50.25010.22420.08520.041*
C60.12931 (12)0.36636 (14)0.11379 (7)0.0259 (3)
C70.23515 (12)0.44177 (14)0.17524 (8)0.0265 (3)
H70.19600.50840.20590.032*
C80.40974 (12)0.59806 (14)0.18815 (8)0.0303 (3)
H8A0.36920.66900.21480.036*
H8B0.46140.64910.15860.036*
C90.50000.50311 (19)0.25000.0240 (3)
C100.41483 (12)0.41154 (15)0.28641 (7)0.0291 (3)
H10A0.46990.34020.32160.035*
H10B0.37430.47150.31870.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0294 (2)0.0446 (2)0.0492 (2)0.01101 (14)0.00891 (16)0.00178 (15)
O10.0231 (4)0.0307 (5)0.0247 (4)0.0053 (4)0.0034 (4)0.0058 (4)
O20.0220 (4)0.0323 (5)0.0290 (5)0.0030 (4)0.0024 (4)0.0091 (4)
C10.0204 (6)0.0298 (6)0.0271 (6)0.0012 (5)0.0051 (5)0.0078 (5)
C20.0182 (6)0.0495 (8)0.0282 (6)0.0041 (5)0.0022 (5)0.0102 (6)
C30.0283 (7)0.0560 (9)0.0275 (6)0.0157 (6)0.0042 (5)0.0035 (6)
C40.0353 (7)0.0459 (9)0.0389 (8)0.0068 (6)0.0120 (6)0.0098 (6)
C50.0223 (6)0.0391 (7)0.0390 (7)0.0011 (5)0.0055 (5)0.0028 (6)
C60.0194 (6)0.0293 (6)0.0262 (6)0.0012 (5)0.0024 (5)0.0052 (5)
C70.0191 (6)0.0295 (6)0.0278 (6)0.0013 (5)0.0016 (5)0.0039 (5)
C80.0258 (6)0.0259 (6)0.0304 (6)0.0036 (5)0.0057 (5)0.0046 (5)
C90.0208 (8)0.0257 (8)0.0214 (8)0.0000.0004 (6)0.000
C100.0224 (6)0.0376 (7)0.0232 (6)0.0006 (5)0.0000 (5)0.0051 (5)
Geometric parameters (Å, º) top
Cl1—C11.7384 (14)C5—C61.388 (2)
O1—C71.4181 (15)C5—H50.9500
O1—C81.4361 (15)C6—C71.5062 (17)
O2—C71.4141 (15)C7—H71.0000
O2—C101.4402 (15)C8—C91.5272 (16)
C1—C21.3906 (18)C8—H8A0.9900
C1—C61.3921 (17)C8—H8B0.9900
C2—C31.378 (2)C9—C8i1.5272 (16)
C2—H20.9500C9—C101.5293 (16)
C3—C41.392 (2)C9—C10i1.5293 (16)
C3—H30.9500C10—H10A0.9900
C4—C51.385 (2)C10—H10B0.9900
C4—H40.9500
C7—O1—C8110.41 (9)O1—C7—C6106.55 (10)
C7—O2—C10110.16 (10)O2—C7—H7110.2
C2—C1—C6121.55 (13)O1—C7—H7110.2
C2—C1—Cl1117.40 (10)C6—C7—H7110.2
C6—C1—Cl1121.04 (10)O1—C8—C9111.25 (10)
C3—C2—C1119.41 (12)O1—C8—H8A109.4
C3—C2—H2120.3C9—C8—H8A109.4
C1—C2—H2120.3O1—C8—H8B109.4
C2—C3—C4120.21 (13)C9—C8—H8B109.4
C2—C3—H3119.9H8A—C8—H8B108.0
C4—C3—H3119.9C8i—C9—C8107.86 (14)
C5—C4—C3119.45 (14)C8i—C9—C10111.27 (7)
C5—C4—H4120.3C8—C9—C10107.75 (7)
C3—C4—H4120.3C8i—C9—C10i107.75 (7)
C6—C5—C4121.57 (12)C8—C9—C10i111.27 (7)
C6—C5—H5119.2C10—C9—C10i110.92 (16)
C4—C5—H5119.2O2—C10—C9111.10 (9)
C5—C6—C1117.72 (12)O2—C10—H10A109.4
C5—C6—C7119.39 (11)C9—C10—H10A109.4
C1—C6—C7122.75 (12)O2—C10—H10B109.4
O2—C7—O1110.28 (9)C9—C10—H10B109.4
O2—C7—C6109.32 (10)H10A—C10—H10B108.0
C6—C1—C2—C32.55 (19)C8—O1—C7—C6177.43 (10)
Cl1—C1—C2—C3176.83 (11)C5—C6—C7—O250.34 (15)
C1—C2—C3—C40.1 (2)C1—C6—C7—O2133.95 (12)
C2—C3—C4—C52.1 (2)C5—C6—C7—O168.83 (15)
C3—C4—C5—C61.5 (2)C1—C6—C7—O1106.88 (13)
C4—C5—C6—C11.0 (2)C7—O1—C8—C958.27 (13)
C4—C5—C6—C7174.90 (13)O1—C8—C9—C8i171.63 (13)
C2—C1—C6—C53.07 (19)O1—C8—C9—C1051.41 (14)
Cl1—C1—C6—C5176.29 (10)O1—C8—C9—C10i70.39 (14)
C2—C1—C6—C7172.71 (12)C7—O2—C10—C958.74 (14)
Cl1—C1—C6—C77.93 (17)C8i—C9—C10—O2169.66 (10)
C10—O2—C7—O164.19 (13)C8—C9—C10—O251.61 (14)
C10—O2—C7—C6178.97 (10)C10i—C9—C10—O270.41 (9)
C8—O1—C7—O264.03 (13)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H18Cl2O4
Mr381.23
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)10.7116 (5), 9.4693 (5), 17.7080 (9)
β (°) 106.745 (1)
V3)1719.98 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.46 × 0.42 × 0.22
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.838, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
6932, 1883, 1707
Rint0.015
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.092, 1.00
No. of reflections1883
No. of parameters114
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.25

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the Key Subject Construction Project of Hunan Province (No. 2006–180), the Key Scientific Research Project of Hunan Provincial Education Department (No. 08 A023, 05 C736), The NSF of Hunan Province (09 J J3028) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-K., Yan, D.-Y., Liu, L.-J., Liu, S. & Wang, J.-T. (2006). Acta Cryst. E62, o3062–o3063.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds