organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[2-(2,3-Dioxoindolin-1-yl)eth­yl]-1,3-oxazolidin-2-one

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, bInstitute of Nanomaterials and Nanotechnology, Avenue de l'Armée Royale, Madinat El Irfane, 10100 Rabat, Morocco, cCNRST Division of UATRS Angle Allal Fassi/FAR, BP 8027 Hay Riad, 10000 Rabat, Morocco, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 20 January 2010; accepted 20 January 2010; online 27 January 2010)

In the title compound, C13H12N2O4, the almost planar (r.m.s. deviation = 0.012 Å) dioxoindolinyl unit and the envelope-shaped oxazolidine ring (with the methyl­ene C atom bonded to the N atom as the flap) are linked by a —CH2—CH2— bridge, in which the N—C—C—N unit adopts a gauche conformation [torsion angle = 62.7 (2)°].

Related literature

For the synthesis of compounds with dioxoindolinyl and oxazolidinyl units, see: Alsubari et al. (2009[Alsubari, A., Bouhfid, R. & Essassi, E. M. (2009). ARKIVOC, xii, 337-346.]); Bouhfid et al. (2008[Bouhfid, R., Joly, N., Ohmani, F., Essassi, E. M., Lequart, V., Banoub, J., Kheddid, K., Charof, R., Massoui, M. & Martin, P. (2008). Lett. Org. Chem. pp. 3-7.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N2O4

  • Mr = 260.25

  • Triclinic, [P \overline 1]

  • a = 7.1198 (2) Å

  • b = 7.4694 (2) Å

  • c = 12.0319 (3) Å

  • α = 83.338 (2)°

  • β = 79.084 (2)°

  • γ = 81.372 (2)°

  • V = 618.64 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.3 × 0.3 × 0.3 mm

Data collection
  • Bruker APEXII diffractometer

  • 16105 measured reflections

  • 2856 independent reflections

  • 2105 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.129

  • S = 1.07

  • 2856 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Related literature top

For the synthesis of compounds with dioxoindolinyl and oxazolidinyl units, see: Alsubari et al. (2009); Bouhfid et al. (2008).

Experimental top

Indoline-2, 3-dione (1 g, 6.8 mmol), bis(chloroethyl)amine (0.96 g, 6.8 mmol) and potassium carbonate (1 g, 7.2 mmol) along with catalytic amount of tetra-n-butylammonium bromide were stirred in DMF (30 ml) for 72 h. After the completion of the reaction (as monitored by TLC) , the solid material was removed by filtration and the solvent evaporated under vacuum. Dichloromethane (20 ml) was added and the solution filtered. The solvent was removed and the product purified byrecrystallization from ethanol to afford red crystals in 60% yield . The formulation of the product was established by proton and carbon-13 NMR spectroscopy.

Refinement top

H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

Structure description top

For the synthesis of compounds with dioxoindolinyl and oxazolidinyl units, see: Alsubari et al. (2009); Bouhfid et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C13H12N2O4 at the 50% probability level; hydrogen atoms are drawn as spheres of an arbitrary radius.
3-[2-(2,3-dioxoindolin-1-yl)ethyl]-1,3-oxazolidin-2-one top
Crystal data top
C13H12N2O4Z = 2
Mr = 260.25F(000) = 272
Triclinic, P1Dx = 1.397 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1198 (2) ÅCell parameters from 4652 reflections
b = 7.4694 (2) Åθ = 2.7–25.5°
c = 12.0319 (3) ŵ = 0.11 mm1
α = 83.338 (2)°T = 293 K
β = 79.084 (2)°Block, red
γ = 81.372 (2)°0.3 × 0.3 × 0.3 mm
V = 618.64 (3) Å3
Data collection top
Bruker APEXII
diffractometer
2105 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 27.5°, θmin = 1.7°
φ and ω scansh = 99
16105 measured reflectionsk = 99
2856 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.0776P]
where P = (Fo2 + 2Fc2)/3
2856 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C13H12N2O4γ = 81.372 (2)°
Mr = 260.25V = 618.64 (3) Å3
Triclinic, P1Z = 2
a = 7.1198 (2) ÅMo Kα radiation
b = 7.4694 (2) ŵ = 0.11 mm1
c = 12.0319 (3) ÅT = 293 K
α = 83.338 (2)°0.3 × 0.3 × 0.3 mm
β = 79.084 (2)°
Data collection top
Bruker APEXII
diffractometer
2105 reflections with I > 2σ(I)
16105 measured reflectionsRint = 0.029
2856 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.07Δρmax = 0.15 e Å3
2856 reflectionsΔρmin = 0.22 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.52252 (19)0.72705 (19)0.96655 (11)0.0698 (4)
O20.62176 (17)0.59350 (18)0.80356 (10)0.0650 (4)
O30.0398 (2)1.06952 (18)0.81418 (11)0.0710 (4)
O40.1729 (2)1.32239 (15)0.61954 (12)0.0735 (4)
N10.30085 (18)0.66870 (17)0.87600 (10)0.0465 (3)
N20.13257 (17)0.86176 (15)0.67978 (10)0.0409 (3)
C10.4910 (2)0.6559 (2)0.87395 (13)0.0485 (4)
C20.3389 (3)0.8000 (3)1.02957 (17)0.0723 (5)
H2A0.31860.93161.01670.087*
H2B0.33250.76621.11040.087*
C30.1916 (3)0.7179 (3)0.98519 (14)0.0599 (4)
H3A0.15230.61211.03370.072*
H3B0.07880.80530.97660.072*
C40.2235 (2)0.5789 (2)0.79784 (13)0.0472 (4)
H4A0.17250.47110.83740.057*
H4B0.32670.54050.73690.057*
C50.0649 (2)0.7017 (2)0.74742 (13)0.0470 (4)
H5A0.01160.63300.70000.056*
H5B0.03780.74040.80850.056*
C60.1067 (2)1.0296 (2)0.71898 (13)0.0477 (4)
C70.1775 (2)1.16148 (19)0.61515 (14)0.0482 (4)
C80.2403 (2)1.04883 (18)0.52062 (12)0.0408 (3)
C90.3139 (2)1.0915 (2)0.40725 (14)0.0520 (4)
H90.33301.21010.37970.062*
C100.3580 (3)0.9532 (3)0.33635 (14)0.0588 (4)
H100.40780.97830.25980.071*
C110.3288 (2)0.7779 (2)0.37813 (14)0.0563 (4)
H110.35890.68700.32850.068*
C120.2556 (2)0.7318 (2)0.49236 (13)0.0464 (4)
H120.23770.61280.51980.056*
C130.21104 (18)0.87131 (18)0.56258 (11)0.0368 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0697 (8)0.0806 (9)0.0668 (8)0.0181 (7)0.0215 (6)0.0121 (7)
O20.0485 (7)0.0773 (8)0.0623 (8)0.0093 (6)0.0045 (6)0.0006 (6)
O30.0900 (9)0.0660 (8)0.0544 (7)0.0057 (7)0.0051 (6)0.0280 (6)
O40.0969 (10)0.0341 (6)0.0964 (10)0.0070 (6)0.0291 (8)0.0164 (6)
N10.0461 (7)0.0516 (7)0.0404 (7)0.0029 (5)0.0048 (5)0.0079 (5)
N20.0463 (7)0.0356 (6)0.0416 (6)0.0052 (5)0.0067 (5)0.0086 (5)
C10.0532 (9)0.0461 (8)0.0448 (8)0.0110 (7)0.0066 (7)0.0045 (6)
C20.0919 (15)0.0705 (12)0.0573 (11)0.0044 (10)0.0156 (10)0.0205 (9)
C30.0624 (11)0.0717 (11)0.0414 (9)0.0004 (8)0.0018 (7)0.0108 (8)
C40.0548 (9)0.0405 (7)0.0456 (8)0.0087 (6)0.0054 (7)0.0041 (6)
C50.0440 (8)0.0493 (8)0.0484 (8)0.0124 (6)0.0045 (6)0.0052 (7)
C60.0503 (8)0.0427 (8)0.0515 (9)0.0020 (6)0.0125 (7)0.0152 (6)
C70.0504 (8)0.0358 (7)0.0633 (10)0.0014 (6)0.0220 (7)0.0107 (6)
C80.0405 (7)0.0354 (7)0.0496 (8)0.0031 (5)0.0170 (6)0.0048 (6)
C90.0538 (9)0.0514 (9)0.0524 (9)0.0100 (7)0.0186 (7)0.0082 (7)
C100.0612 (10)0.0749 (12)0.0403 (9)0.0089 (8)0.0113 (7)0.0011 (8)
C110.0608 (10)0.0628 (10)0.0471 (9)0.0019 (8)0.0124 (7)0.0205 (8)
C120.0531 (9)0.0374 (7)0.0505 (9)0.0023 (6)0.0118 (7)0.0123 (6)
C130.0354 (7)0.0358 (7)0.0413 (7)0.0026 (5)0.0119 (5)0.0070 (5)
Geometric parameters (Å, º) top
O1—C11.357 (2)C4—H4A0.9700
O1—C21.445 (2)C4—H4B0.9700
O2—C11.2099 (19)C5—H5A0.9700
O3—C61.2072 (18)C5—H5B0.9700
O4—C71.2043 (18)C6—C71.552 (2)
N1—C11.339 (2)C7—C81.455 (2)
N1—C41.4458 (19)C8—C91.384 (2)
N1—C31.4509 (19)C8—C131.394 (2)
N2—C61.3652 (18)C9—C101.378 (2)
N2—C131.4127 (17)C9—H90.9300
N2—C51.4570 (19)C10—C111.378 (3)
C2—C31.497 (3)C10—H100.9300
C2—H2A0.9700C11—C121.397 (2)
C2—H2B0.9700C11—H110.9300
C3—H3A0.9700C12—C131.3799 (19)
C3—H3B0.9700C12—H120.9300
C4—C51.518 (2)
C1—O1—C2108.70 (14)N2—C5—H5A109.0
C1—N1—C4121.55 (12)C4—C5—H5A109.0
C1—N1—C3111.44 (13)N2—C5—H5B109.0
C4—N1—C3123.13 (13)C4—C5—H5B109.0
C6—N2—C13110.57 (12)H5A—C5—H5B107.8
C6—N2—C5123.66 (13)O3—C6—N2127.54 (16)
C13—N2—C5125.33 (11)O3—C6—C7126.54 (14)
O2—C1—N1128.43 (15)N2—C6—C7105.91 (12)
O2—C1—O1122.25 (16)O4—C7—C8131.16 (17)
N1—C1—O1109.31 (14)O4—C7—C6123.49 (15)
O1—C2—C3105.01 (14)C8—C7—C6105.34 (12)
O1—C2—H2A110.7C9—C8—C13121.28 (13)
C3—C2—H2A110.7C9—C8—C7131.54 (14)
O1—C2—H2B110.7C13—C8—C7107.17 (13)
C3—C2—H2B110.7C10—C9—C8118.13 (15)
H2A—C2—H2B108.8C10—C9—H9120.9
N1—C3—C2100.50 (14)C8—C9—H9120.9
N1—C3—H3A111.7C11—C10—C9120.42 (15)
C2—C3—H3A111.7C11—C10—H10119.8
N1—C3—H3B111.7C9—C10—H10119.8
C2—C3—H3B111.7C10—C11—C12122.36 (15)
H3A—C3—H3B109.4C10—C11—H11118.8
N1—C4—C5112.13 (12)C12—C11—H11118.8
N1—C4—H4A109.2C13—C12—C11116.79 (14)
C5—C4—H4A109.2C13—C12—H12121.6
N1—C4—H4B109.2C11—C12—H12121.6
C5—C4—H4B109.2C12—C13—C8121.01 (13)
H4A—C4—H4B107.9C12—C13—N2127.98 (13)
N2—C5—C4112.80 (12)C8—C13—N2111.01 (11)
C4—N1—C1—O210.0 (2)O3—C6—C7—C8178.75 (15)
C3—N1—C1—O2168.48 (16)N2—C6—C7—C80.25 (15)
C4—N1—C1—O1170.25 (13)O4—C7—C8—C90.1 (3)
C3—N1—C1—O111.80 (18)C6—C7—C8—C9178.84 (14)
C2—O1—C1—O2176.40 (16)O4—C7—C8—C13178.82 (17)
C2—O1—C1—N13.34 (19)C6—C7—C8—C130.11 (15)
C1—O1—C2—C316.2 (2)C13—C8—C9—C100.1 (2)
C1—N1—C3—C220.76 (19)C7—C8—C9—C10178.89 (15)
C4—N1—C3—C2178.81 (14)C8—C9—C10—C110.1 (2)
O1—C2—C3—N121.31 (19)C9—C10—C11—C120.4 (3)
C1—N1—C4—C5135.55 (14)C10—C11—C12—C130.7 (2)
C3—N1—C4—C568.55 (18)C11—C12—C13—C80.6 (2)
C6—N2—C5—C499.82 (16)C11—C12—C13—N2178.77 (13)
C13—N2—C5—C488.45 (16)C9—C8—C13—C120.3 (2)
N1—C4—C5—N262.71 (16)C7—C8—C13—C12179.42 (13)
C13—N2—C6—O3178.69 (15)C9—C8—C13—N2179.15 (12)
C5—N2—C6—O35.9 (2)C7—C8—C13—N20.07 (15)
C13—N2—C6—C70.30 (15)C6—N2—C13—C12179.21 (14)
C5—N2—C6—C7173.10 (12)C5—N2—C13—C126.6 (2)
O3—C6—C7—O40.1 (3)C6—N2—C13—C80.24 (16)
N2—C6—C7—O4179.09 (15)C5—N2—C13—C8172.90 (12)

Experimental details

Crystal data
Chemical formulaC13H12N2O4
Mr260.25
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.1198 (2), 7.4694 (2), 12.0319 (3)
α, β, γ (°)83.338 (2), 79.084 (2), 81.372 (2)
V3)618.64 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.3 × 0.3 × 0.3
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16105, 2856, 2105
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.129, 1.07
No. of reflections2856
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationAlsubari, A., Bouhfid, R. & Essassi, E. M. (2009). ARKIVOC, xii, 337–346.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBouhfid, R., Joly, N., Ohmani, F., Essassi, E. M., Lequart, V., Banoub, J., Kheddid, K., Charof, R., Massoui, M. & Martin, P. (2008). Lett. Org. Chem. pp. 3–7.  Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds