metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl­ammonium di­aqua­(pyridine-2,4-di­carboxyl­ato-κ2N,O2)cuprate(II)

aCollege of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China, bCollege of Information Technology and Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China, and cState Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
*Correspondence e-mail: JDWangYsu@gmail.com

(Received 10 December 2009; accepted 20 January 2010; online 27 January 2010)

The asymmetric unit of the title compound, (C2H8N)2[Cu(C7H3NO4)2(H2O)2], contains one-half of a mononuclear [Cu(C7H3NO4)2(H2O)2]2− anion, one dimethyl­ammonium cation and one aqua ligand. The CuII atom, lying on an inversion center, is coordinated by two symmetry-related N atoms and two O atoms from one pyridine-2,4-dicarboxyl­ate ligand and two symmetry-related aqua ligands and exhibits a distorted octa­hedral trans-[CuN2O4] coordination geometry. Multiple crystallographically independent O—H⋯O and N—H⋯O hydrogen bonds form a three-dimensional network in the crystal structure.

Related literature

For the structural diversity and potential applications of coordination polymers constructed from metal ions and bridging ligands, see: Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]). For general background to metal complexes of pyridine-2,4-dicarboxyl­ates, see: Mahata & Natarajan (2005[Mahata, P. & Natarajan, S. (2005). Eur. J. Inorg. Chem. pp. 2156-2163.]); Bai et al. (2008[Bai, Z.-S., Xu, J., Su, Z. & Sun, W.-Y. (2008). Inorg. Chem. Commun. 11, 1227-1230.]); Chen & Beatty (2008[Chen, C.-L. & Beatty, A. M. (2008). J. Am. Chem. Soc. 130, 17222-17223.]). For similar structures, see: Zou et al. (2008[Zou, R.-Q., Zhong, R.-Q., Du, M., Dandey, D. S. & Xu, Q. (2008). Cryst. Growth Des. 8, 452-459.]); Noro et al. (2005[Noro, S., Miyasaka, H., Kitagawa, S., Wada, T., Okubo, T., Yamashita, M. & Mitani, T. (2005). Inorg. Chem. 44, 133-146.]). For comparative bond lengths and angles, see: Chutia et al. (2009[Chutia, P., Kato, S., Kojima, T. & Satokawa, S. (2009). Polyhedron, 28 , 370-380.]); Klein et al. (1982[Klein, C. L., Majeste, R. J., Trefonas, L. M. & O'Connor, C. J. (1982). Inorg. Chem. 21, 1891-1897.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H8N)2[Cu(C7H3NO4)2(H2O)2]

  • Mr = 521.98

  • Monoclinic, P 21 /n

  • a = 7.9854 (7) Å

  • b = 9.4648 (8) Å

  • c = 14.9380 (12) Å

  • β = 103.540 (1)°

  • V = 1097.64 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 293 K

  • 0.31 × 0.16 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.732, Tmax = 0.849

  • 5508 measured reflections

  • 2160 independent reflections

  • 1992 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.079

  • S = 1.06

  • 2160 reflections

  • 159 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9733 (11)
Cu1—N1 1.9810 (14)
Cu1—O1W 2.4162 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4i 0.83 (2) 1.85 (2) 2.680 (2) 174
O1W—H1Wb⋯O3ii 0.81 (2) 2.00 (2) 2.809 (2) 172
N2—H2A⋯O3 0.90 1.92 2.783 (2) 161
N2—H2B⋯O2iii 0.90 1.94 2.778 (2) 154
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+2; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coordination polymers constructed from metal ions and bridging ligands have been of great interest due to their structural diversity and many potential applications (Eddaoudi et al., 2001; Kitagawa et al., 2004). Pyridinedicarboxylates(pydc) have been extensively studied as excellent bridging ligands in the area of metal-organic frameworks (Mahata et al., 2005; Bai et al. 2008; Chen et al. 2008). Herein we report the crystal structure of the title compound [Cu(2,4-pydc)2(H2O)2][NH2(CH3)2]2, (2,4-pydc= pyridine-2,4-dicarboxylate) .The CuII atom, lying on an inversion center, is coordinated by two symmetry-related N atoms and two O atoms from one pyridine-2,4-dicarboxylate ligand and two symmetry-related aqua ligands and exhibits a distorted octahedral trans-[ CuN2O4] coordination geometry (Table 1 and Fig. 1). The bond lengths and angles are all in normal ranges (Chutia et al., 2009; Klein et al., 1982). Multiple crystallographically independent hydrogen bonds form a three-dimensional network in the crystal structure, Table 2.

Related literature top

For the structural diversity and potential applications of coordination polymers constructed from metal ions and bridging ligands, see: Eddaoudi et al. (2001); Kitagawa et al. (2004). For general background to metal complexes of pyridine-2,4-dicarboxylates, see: Mahata & Natarajan (2005); Bai et al. (2008); Chen et al. (2008). For similar structures, see: Zou et al. (2008); Noro et al. (2005). For comparative bond lengths and angles, see: Chutia et al. (2009); Klein et al. (1982).

Experimental top

A solution of Cu(NO3)2.3H2O (0.024 g, 0.1 mmol) in H2O (3 ml) was added to a suspending solution of 2,4-pydc (0.017 g, 0.1 mmol) in H2O and DMF(1:1, 7 ml). The mixture was stirred for 30 minutes and sealed in a 15 ml Teflon-lined stainless steel autoclave and heated at 423 K for 3 d under autogenous pressure. When cooled to room temperature, green block crystals of the title compound were obtained (yield 0.045 g, 86% based on Cu).

Refinement top

H atoms of the pyridine ring were positioned geometrically and refined as riding atoms, with C—H = 0.93-0.96 Å and with Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(C) for CH3 group. H atoms of water molecule were located in a difference Fourier map and refined as riding, with Uiso(H) = 1.2Ueq(O).

Structure description top

Coordination polymers constructed from metal ions and bridging ligands have been of great interest due to their structural diversity and many potential applications (Eddaoudi et al., 2001; Kitagawa et al., 2004). Pyridinedicarboxylates(pydc) have been extensively studied as excellent bridging ligands in the area of metal-organic frameworks (Mahata et al., 2005; Bai et al. 2008; Chen et al. 2008). Herein we report the crystal structure of the title compound [Cu(2,4-pydc)2(H2O)2][NH2(CH3)2]2, (2,4-pydc= pyridine-2,4-dicarboxylate) .The CuII atom, lying on an inversion center, is coordinated by two symmetry-related N atoms and two O atoms from one pyridine-2,4-dicarboxylate ligand and two symmetry-related aqua ligands and exhibits a distorted octahedral trans-[ CuN2O4] coordination geometry (Table 1 and Fig. 1). The bond lengths and angles are all in normal ranges (Chutia et al., 2009; Klein et al., 1982). Multiple crystallographically independent hydrogen bonds form a three-dimensional network in the crystal structure, Table 2.

For the structural diversity and potential applications of coordination polymers constructed from metal ions and bridging ligands, see: Eddaoudi et al. (2001); Kitagawa et al. (2004). For general background to metal complexes of pyridine-2,4-dicarboxylates, see: Mahata & Natarajan (2005); Bai et al. (2008); Chen et al. (2008). For similar structures, see: Zou et al. (2008); Noro et al. (2005). For comparative bond lengths and angles, see: Chutia et al. (2009); Klein et al. (1982).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x, 1 - y, 2 - z.]
Dimethylammonium diaqua(pyridine-2,4-dicarboxylato-κ2N,O2)cuprate(II) top
Crystal data top
(C2H8N)2[Cu(C7H3NO4)2(H2O)2]F(000) = 542
Mr = 521.98Dx = 1.579 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3343 reflections
a = 7.9854 (7) Åθ = 2.6–26.0°
b = 9.4648 (8) ŵ = 1.06 mm1
c = 14.9380 (12) ÅT = 293 K
β = 103.540 (1)°Block, green
V = 1097.64 (16) Å30.31 × 0.16 × 0.16 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
2160 independent reflections
Radiation source: sealed tube1992 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
φ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.732, Tmax = 0.849k = 711
5508 measured reflectionsl = 1218
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.427P]
where P = (Fo2 + 2Fc2)/3
2160 reflections(Δ/σ)max = 0.001
159 parametersΔρmax = 0.35 e Å3
2 restraintsΔρmin = 0.26 e Å3
Crystal data top
(C2H8N)2[Cu(C7H3NO4)2(H2O)2]V = 1097.64 (16) Å3
Mr = 521.98Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.9854 (7) ŵ = 1.06 mm1
b = 9.4648 (8) ÅT = 293 K
c = 14.9380 (12) Å0.31 × 0.16 × 0.16 mm
β = 103.540 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2160 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1992 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.849Rint = 0.016
5508 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0292 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.35 e Å3
2160 reflectionsΔρmin = 0.26 e Å3
159 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50001.00000.02668 (12)
N10.15726 (18)0.55054 (15)0.92027 (9)0.0235 (3)
N20.7815 (2)0.47684 (16)0.59707 (11)0.0302 (3)
H2A0.69570.46700.62640.036*
H2B0.80780.39040.57930.036*
O10.15272 (15)0.33417 (12)1.02961 (8)0.0291 (3)
O20.38987 (16)0.24074 (13)0.99920 (9)0.0337 (3)
O30.57116 (18)0.46822 (17)0.72146 (10)0.0393 (3)
O40.4794 (2)0.68865 (19)0.68723 (12)0.0618 (5)
O1W0.18306 (19)0.62993 (16)1.12457 (10)0.0400 (3)
H1WA0.126 (3)0.687 (2)1.1473 (16)0.048*
H1WB0.250 (2)0.594 (2)1.1680 (12)0.048*
C10.2761 (2)0.33162 (18)0.98819 (11)0.0253 (3)
C20.2792 (2)0.45160 (18)0.92182 (11)0.0223 (3)
C30.3928 (2)0.45788 (18)0.86496 (11)0.0234 (3)
H30.47550.38800.86740.028*
C40.3812 (2)0.57093 (18)0.80377 (11)0.0249 (3)
C50.2608 (2)0.67552 (18)0.80637 (11)0.0277 (4)
H50.25450.75490.76900.033*
C60.1501 (2)0.66179 (18)0.86455 (11)0.0269 (4)
H60.06860.73190.86490.032*
C70.4887 (2)0.5772 (2)0.73205 (12)0.0337 (4)
C80.9339 (3)0.5361 (3)0.66186 (15)0.0414 (5)
H8A1.02420.55130.63030.062*
H8B0.97280.47120.71180.062*
H8C0.90370.62440.68560.062*
C90.7204 (3)0.5659 (2)0.51421 (13)0.0409 (5)
H9A0.66530.64900.53060.061*
H9B0.63960.51340.46860.061*
H9C0.81660.59310.48980.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03408 (19)0.02407 (18)0.02744 (19)0.00826 (11)0.01843 (13)0.00608 (11)
N10.0288 (7)0.0230 (7)0.0207 (6)0.0025 (6)0.0095 (5)0.0003 (6)
N20.0352 (8)0.0289 (8)0.0295 (8)0.0024 (6)0.0136 (7)0.0061 (6)
O10.0363 (7)0.0269 (6)0.0297 (6)0.0071 (5)0.0190 (5)0.0078 (5)
O20.0357 (7)0.0289 (7)0.0411 (7)0.0097 (5)0.0183 (6)0.0119 (6)
O30.0368 (7)0.0531 (8)0.0329 (7)0.0035 (6)0.0183 (6)0.0039 (6)
O40.0617 (10)0.0642 (11)0.0720 (11)0.0089 (8)0.0411 (9)0.0378 (9)
O1W0.0444 (8)0.0413 (8)0.0345 (7)0.0109 (6)0.0095 (6)0.0020 (6)
C10.0304 (8)0.0230 (8)0.0242 (8)0.0016 (7)0.0097 (7)0.0016 (6)
C20.0258 (8)0.0208 (8)0.0209 (7)0.0009 (6)0.0070 (6)0.0010 (6)
C30.0236 (8)0.0235 (8)0.0240 (8)0.0001 (6)0.0074 (6)0.0001 (7)
C40.0245 (8)0.0276 (9)0.0228 (8)0.0058 (6)0.0062 (6)0.0009 (7)
C50.0333 (9)0.0245 (9)0.0250 (8)0.0027 (7)0.0063 (7)0.0059 (7)
C60.0320 (8)0.0231 (8)0.0260 (8)0.0043 (7)0.0079 (7)0.0026 (7)
C70.0277 (9)0.0459 (12)0.0287 (9)0.0047 (8)0.0090 (7)0.0085 (8)
C80.0349 (10)0.0507 (12)0.0376 (11)0.0059 (9)0.0066 (8)0.0036 (10)
C90.0472 (11)0.0445 (12)0.0319 (10)0.0041 (9)0.0110 (8)0.0005 (9)
Geometric parameters (Å, º) top
Cu1—O11.9733 (11)O1W—H1WB0.815 (10)
Cu1—O1i1.9733 (11)C1—C21.512 (2)
Cu1—N1i1.9810 (14)C2—C31.381 (2)
Cu1—N11.9810 (14)C3—C41.396 (2)
Cu1—O1Wi2.4162 (15)C3—H30.9300
Cu1—O1W2.4162 (15)C4—C51.387 (2)
N1—C61.335 (2)C4—C71.523 (2)
N1—C21.347 (2)C5—C61.383 (2)
N2—C81.477 (3)C5—H50.9300
N2—C91.483 (3)C6—H60.9300
N2—H2A0.9000C8—H8A0.9600
N2—H2B0.9000C8—H8B0.9600
O1—C11.281 (2)C8—H8C0.9600
O2—C11.234 (2)C9—H9A0.9600
O3—C71.253 (2)C9—H9B0.9600
O4—C71.242 (2)C9—H9C0.9600
O1W—H1WA0.832 (10)
O1—Cu1—O1i179.998 (1)N1—C2—C3122.38 (15)
O1—Cu1—N1i96.81 (5)N1—C2—C1114.25 (14)
O1i—Cu1—N1i83.18 (5)C3—C2—C1123.33 (15)
O1—Cu1—N183.19 (5)C2—C3—C4118.89 (16)
O1i—Cu1—N196.81 (5)C2—C3—H3120.6
N1i—Cu1—N1180.00 (5)C4—C3—H3120.6
O1—Cu1—O1Wi89.92 (5)C5—C4—C3117.97 (15)
O1i—Cu1—O1Wi90.08 (5)C5—C4—C7120.04 (15)
N1i—Cu1—O1Wi89.18 (5)C3—C4—C7121.90 (16)
N1—Cu1—O1Wi90.82 (5)C6—C5—C4119.98 (15)
O1—Cu1—O1W90.08 (5)C6—C5—H5120.0
O1i—Cu1—O1W89.91 (5)C4—C5—H5120.0
N1i—Cu1—O1W90.82 (5)N1—C6—C5121.69 (15)
N1—Cu1—O1W89.18 (5)N1—C6—H6119.2
O1Wi—Cu1—O1W180.00 (5)C5—C6—H6119.2
C6—N1—C2118.96 (14)O4—C7—O3126.71 (18)
C6—N1—Cu1128.65 (12)O4—C7—C4116.09 (18)
C2—N1—Cu1112.29 (11)O3—C7—C4117.13 (16)
C8—N2—C9113.01 (16)N2—C8—H8A109.5
C8—N2—H2A109.0N2—C8—H8B109.5
C9—N2—H2A109.0H8A—C8—H8B109.5
C8—N2—H2B109.0N2—C8—H8C109.5
C9—N2—H2B109.0H8A—C8—H8C109.5
H2A—N2—H2B107.8H8B—C8—H8C109.5
C1—O1—Cu1114.32 (10)N2—C9—H9A109.5
Cu1—O1W—H1WA110.7 (17)N2—C9—H9B109.5
Cu1—O1W—H1WB124.4 (18)H9A—C9—H9B109.5
H1WA—O1W—H1WB106 (2)N2—C9—H9C109.5
O2—C1—O1125.07 (15)H9A—C9—H9C109.5
O2—C1—C2119.13 (14)H9B—C9—H9C109.5
O1—C1—C2115.80 (14)
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4ii0.83 (2)1.85 (2)2.680 (2)174
O1W—H1Wb···O3iii0.81 (2)2.00 (2)2.809 (2)172
N2—H2A···O30.901.922.783 (2)161
N2—H2B···O2iv0.901.942.778 (2)154
Symmetry codes: (ii) x1/2, y+3/2, z+1/2; (iii) x+1, y+1, z+2; (iv) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula(C2H8N)2[Cu(C7H3NO4)2(H2O)2]
Mr521.98
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.9854 (7), 9.4648 (8), 14.9380 (12)
β (°) 103.540 (1)
V3)1097.64 (16)
Z2
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.31 × 0.16 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.732, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
5508, 2160, 1992
Rint0.016
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.079, 1.06
No. of reflections2160
No. of parameters159
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.26

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.9733 (11)Cu1—O1W2.4162 (15)
Cu1—N11.9810 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.83 (2)1.85 (2)2.680 (2)174
O1W—H1Wb···O3ii0.812 (18)2.002 (17)2.809 (2)172
N2—H2A···O30.901.922.783 (2)161
N2—H2B···O2iii0.901.942.778 (2)154
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1, y+1, z+2; (iii) x+1/2, y+1/2, z1/2.
 

References

First citationBai, Z.-S., Xu, J., Su, Z. & Sun, W.-Y. (2008). Inorg. Chem. Commun. 11, 1227–1230.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C.-L. & Beatty, A. M. (2008). J. Am. Chem. Soc. 130, 17222–17223.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChutia, P., Kato, S., Kojima, T. & Satokawa, S. (2009). Polyhedron, 28 , 370–380.  Web of Science CSD CrossRef CAS Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationKlein, C. L., Majeste, R. J., Trefonas, L. M. & O'Connor, C. J. (1982). Inorg. Chem. 21, 1891–1897.  CSD CrossRef CAS Web of Science Google Scholar
First citationMahata, P. & Natarajan, S. (2005). Eur. J. Inorg. Chem. pp. 2156–2163.  Web of Science CSD CrossRef Google Scholar
First citationNoro, S., Miyasaka, H., Kitagawa, S., Wada, T., Okubo, T., Yamashita, M. & Mitani, T. (2005). Inorg. Chem. 44, 133–146.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZou, R.-Q., Zhong, R.-Q., Du, M., Dandey, D. S. & Xu, Q. (2008). Cryst. Growth Des. 8, 452–459.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds