organic compounds
2,4,6,8-Tetrakis(4-bromophenyl)-3,7-diazabicyclo[3.3.1]nonan-9-one
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my
In the title compound, C31H24Br4N2O, one of the bromophenyl rings is disordered over two orientations with occupancies of 0.69 (2) and 0.31 (2). The bicyclo[3.3.1]nonane ring system adopts a chair–boat conformation. In the molecules are linked into chains along the c axis by intermolecular C—H⋯O and N—H⋯O hydrogen bonds. Further stabilization is provided by C—H⋯π interactions.
Related literature
For applications of bicyclo[3.3.1]nonane derivatives, see: Arias-Perez et al. (1997). For applications of N,N-diphenyl derivatives, see: Srikrishna & Vijayakumar (1998); Chinar Pathak et al. (2007). For bicyclic systems with see: Vijayakumar et al. (2000). For a related structure: see: Fun et al. (2009). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536809055226/ci2986sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809055226/ci2986Isup2.hkl
0.4 ml of acetone, 3.70 g of 4-bromobenzaldehyde and 0.7708 g of dry ammonium acetate were taken in a 1:4:2 molar ratio in ethanol and the mixture was heated on a water bath till it changes to red orange colour. The mixture was allowed to stand until a solid appears. The solid product was washed with ether and ethanol (1:1) until the disappearance of yellow colour. The separated solid was filtered off and recrystallized from chloroform-benzene mixture. The purity of the compound was checked by TLC and melting point recorded (yield: 57%, m. p. 511 K).
Atoms H1N1 and H1N2 were located in a difference Fourier map and were refined using a riding model. The remaining H hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.98] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). One of the bromophenyl rings (C11–C17/Br2) is disordered over two positions with occupancies of 0.69 (2) and 0.31 (2). Rigid and similarity restraints were applied to the disordered ring.
Bicyclo[3.3.1]nonane moieties are present in many biologically active molecules like
and drugs (Arias-Perez et al., 1997). Functionalized 3-azabicyclo[3.3.1]nonanes have been studied intensively because of their pharmaceutical use and these compounds find applications as an important class of organic compounds in the field of molecular recognition. The 1,5-diphenyl-3,7-diazabicyclo[3.3.1]nonan-9-ones are local anesthetics. Some of them possess hypotensive activity. N,N-diphenyl derivatives are found to be antichloristic and anti-thrombic (Srikrishna & Vijayakumar, 1998; Chinar Pathak et al., 2007). The synthesis and stereochemistry of 3,7-diazabicyclo[3.3.1]nonan-9-ones and their derivatives are of much interest due to their diverse biological activities, such as antibacterial, antifungal, anti-arrhythmic, antiphologistic, antithrombic, calcium antagonistic, hypotensive and neuroleptic and also because of their presence in naturally occurring lupin The of 3,7-diazabicyclo[3.3.1]nonanes (bispidines) is of considerable interest both from the theoretical view point and due to their biological activity. In recent years the 2,4,6,8-tetraaryl-3,7-diazabicyclo[3.3.1]nonanes constitutes an interesting case for the study because of the presence of four If all the aryls are in equatorial orientations, molecular models indicate close proximity of the aryls in both rings in the bicyclic systems (Vijayakumar et al., 2000).The bicyclo[3.3.1]nonane ring system (O1/N1/N2/C7–C11/C18/C25) adopts a chair-boat conformation with puckering parameter Q = 0.770 (4) Å, Θ = 91.8 (3)° and φ = 2.2 (3)° for one of the piperidine rings (N1/C7–C11) and Q = 0.640 (4) Å, Θ = 0.0 (4)° and φ = 139 (12)° for the other piperidine ring (N2/C8–C10/C18/C25) (Cremer & Pople, 1975). The N atoms adopt a pyramidal configuration. The phenyl rings substituted at C7 (C1–C6) and C11 [C12A–C17A (major component) and C12B–C17B (minor component)] positions are oriented with one another with an angle of 40.0 (7)° [41.2 (18)° in the minor component]. The phenyl rings substituted at C18 (C19–C24) and C25 (C26–C31) form a dihedral angle of 31.3 (2)°. Two bromophenyl groups substituted at C7 and C11 are in equatorial orientations with torsion angles C6—C7—C8—C9 = 123.3 (3)°, C9—C10—C11—C12A = -112.7 (7)° for major component and C9—C10—C11—C12B = -125.5 (19)° for minor component. The other two bromophenyl groups substituted at C18 and C25 have torsion angles of C9—C8—C18—C19 = -175.2 (3)° and C9—C10—C25—C26 = 176.6 (3)°. Bond lengths (Allen et al., 1987) and angles are within the normal range and are comparable to a closely related structure (Fun et al., 2009).
In the π interactions (Table 1).
(Fig. 2), intermolecular C18—H18A···O1 and N2—H1N2···O1 hydrogen bonds link the molecules into chains along c axis. The structure is further stabilized by C—H···For applications of bicyclo[3.3.1]nonane derivatives, see: Arias-Perez et al. (1997). For applications of N,N-diphenyl derivatives, see: Srikrishna & Vijayakumar (1998); Chinar Pathak et al. (2007). For bicyclic systems with
see: Vijayakumar et al. (2000). For a related structure: see: Fun et al. (2009). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Open bonds indicate the minor disordered component. | |
Fig. 2. The crystal packing of the title compound, showing the extended one-dimensional chains linked along the c axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity. Only the major components are shown. |
C31H24Br4N2O | F(000) = 1488 |
Mr = 760.16 | Dx = 1.756 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 8924 reflections |
a = 14.7409 (5) Å | θ = 2.6–25.2° |
b = 27.7762 (10) Å | µ = 5.63 mm−1 |
c = 7.1538 (2) Å | T = 296 K |
β = 101.067 (2)° | Plate, colourless |
V = 2874.62 (16) Å3 | 0.89 × 0.19 × 0.10 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 8336 independent reflections |
Radiation source: fine-focus sealed tube | 4019 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
φ and ω scans | θmax = 30.1°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −20→14 |
Tmin = 0.082, Tmax = 0.614 | k = −38→31 |
37831 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0556P)2 + 2.5808P] where P = (Fo2 + 2Fc2)/3 |
8336 reflections | (Δ/σ)max = 0.001 |
409 parameters | Δρmax = 0.79 e Å−3 |
180 restraints | Δρmin = −0.79 e Å−3 |
C31H24Br4N2O | V = 2874.62 (16) Å3 |
Mr = 760.16 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 14.7409 (5) Å | µ = 5.63 mm−1 |
b = 27.7762 (10) Å | T = 296 K |
c = 7.1538 (2) Å | 0.89 × 0.19 × 0.10 mm |
β = 101.067 (2)° |
Bruker SMART APEXII CCD area-detector diffractometer | 8336 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 4019 reflections with I > 2σ(I) |
Tmin = 0.082, Tmax = 0.614 | Rint = 0.045 |
37831 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 180 restraints |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.79 e Å−3 |
8336 reflections | Δρmin = −0.79 e Å−3 |
409 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.31050 (3) | 0.487998 (19) | 0.72659 (7) | 0.06406 (17) | |
Br2A | 1.1481 (2) | 0.53133 (10) | 1.3533 (4) | 0.0839 (10) | 0.69 (2) |
Br2B | 1.1745 (18) | 0.5373 (5) | 1.275 (5) | 0.157 (9) | 0.31 (2) |
Br3 | 0.30786 (4) | 0.66382 (3) | −0.10599 (9) | 0.0953 (2) | |
Br4 | 1.20123 (3) | 0.67899 (2) | 0.36272 (9) | 0.07356 (19) | |
O1 | 0.72350 (19) | 0.69393 (11) | 0.9876 (4) | 0.0478 (7) | |
N1 | 0.7408 (2) | 0.58644 (12) | 0.7607 (5) | 0.0429 (8) | |
H1N1 | 0.7422 | 0.5573 | 0.7230 | 0.036 (11)* | |
N2 | 0.74301 (19) | 0.68444 (11) | 0.4561 (5) | 0.0374 (7) | |
H1N2 | 0.7425 | 0.7003 | 0.3532 | 0.038 (11)* | |
C1 | 0.5800 (3) | 0.53202 (15) | 0.7522 (6) | 0.0456 (10) | |
H1A | 0.6382 | 0.5198 | 0.8031 | 0.055* | |
C2 | 0.5024 (3) | 0.50554 (16) | 0.7674 (6) | 0.0492 (11) | |
H2A | 0.5085 | 0.4756 | 0.8265 | 0.059* | |
C3 | 0.4165 (3) | 0.52380 (16) | 0.6947 (6) | 0.0439 (10) | |
C4 | 0.4065 (3) | 0.56740 (15) | 0.6027 (6) | 0.0460 (10) | |
H4A | 0.3479 | 0.5793 | 0.5518 | 0.055* | |
C5 | 0.4841 (3) | 0.59328 (15) | 0.5867 (6) | 0.0465 (10) | |
H5A | 0.4773 | 0.6227 | 0.5236 | 0.056* | |
C6 | 0.5728 (3) | 0.57663 (14) | 0.6625 (5) | 0.0364 (9) | |
C7 | 0.6570 (2) | 0.60577 (13) | 0.6387 (5) | 0.0372 (9) | |
H7A | 0.6643 | 0.6032 | 0.5057 | 0.045* | |
C8 | 0.6489 (2) | 0.66002 (13) | 0.6871 (5) | 0.0345 (8) | |
H8A | 0.5909 | 0.6659 | 0.7313 | 0.041* | |
C9 | 0.7300 (3) | 0.67358 (13) | 0.8402 (5) | 0.0359 (9) | |
C10 | 0.8211 (2) | 0.66416 (14) | 0.7791 (5) | 0.0366 (9) | |
H10A | 0.8720 | 0.6733 | 0.8825 | 0.044* | |
C11 | 0.8276 (2) | 0.60953 (14) | 0.7382 (6) | 0.0391 (9) | |
H11A | 0.8388 | 0.6044 | 0.6090 | 0.047* | 0.69 (2) |
H11B | 0.8321 | 0.6063 | 0.6039 | 0.047* | 0.31 (2) |
C12A | 0.9042 (12) | 0.5860 (11) | 0.885 (3) | 0.038 (3) | 0.69 (2) |
C13A | 0.9955 (13) | 0.5865 (9) | 0.858 (2) | 0.051 (3) | 0.69 (2) |
H13A | 1.0078 | 0.5987 | 0.7446 | 0.062* | 0.69 (2) |
C14A | 1.0693 (9) | 0.5694 (6) | 0.994 (2) | 0.056 (3) | 0.69 (2) |
H14A | 1.1297 | 0.5703 | 0.9737 | 0.068* | 0.69 (2) |
C15A | 1.0490 (10) | 0.5514 (6) | 1.1589 (19) | 0.052 (3) | 0.69 (2) |
C16A | 0.9581 (9) | 0.5494 (6) | 1.187 (2) | 0.058 (3) | 0.69 (2) |
H16A | 0.9458 | 0.5360 | 1.2988 | 0.070* | 0.69 (2) |
C17A | 0.8892 (11) | 0.5664 (8) | 1.058 (2) | 0.048 (3) | 0.69 (2) |
H17A | 0.8295 | 0.5654 | 1.0817 | 0.057* | 0.69 (2) |
C12B | 0.915 (3) | 0.590 (3) | 0.853 (8) | 0.047 (7) | 0.31 (2) |
C13B | 0.995 (3) | 0.5912 (19) | 0.799 (5) | 0.050 (6) | 0.31 (2) |
H13B | 0.9978 | 0.6032 | 0.6788 | 0.060* | 0.31 (2) |
C14B | 1.074 (2) | 0.5748 (15) | 0.919 (5) | 0.067 (7) | 0.31 (2) |
H14B | 1.1309 | 0.5748 | 0.8791 | 0.080* | 0.31 (2) |
C15B | 1.067 (2) | 0.5587 (14) | 1.098 (6) | 0.060 (7) | 0.31 (2) |
C16B | 0.991 (2) | 0.5515 (13) | 1.157 (5) | 0.066 (6) | 0.31 (2) |
H16B | 0.9877 | 0.5363 | 1.2712 | 0.079* | 0.31 (2) |
C17B | 0.905 (3) | 0.571 (2) | 1.018 (7) | 0.061 (6) | 0.31 (2) |
H17B | 0.8469 | 0.5694 | 1.0502 | 0.073* | 0.31 (2) |
C18 | 0.6555 (2) | 0.69378 (14) | 0.5159 (5) | 0.0361 (9) | |
H18A | 0.6560 | 0.7272 | 0.5603 | 0.043* | |
C19 | 0.5739 (2) | 0.68748 (14) | 0.3557 (5) | 0.0354 (9) | |
C20 | 0.4955 (3) | 0.71480 (15) | 0.3534 (6) | 0.0425 (10) | |
H20A | 0.4963 | 0.7385 | 0.4455 | 0.051* | |
C21 | 0.4157 (3) | 0.70809 (17) | 0.2188 (6) | 0.0525 (11) | |
H21A | 0.3634 | 0.7267 | 0.2203 | 0.063* | |
C22 | 0.4158 (3) | 0.67304 (18) | 0.0822 (6) | 0.0519 (11) | |
C23 | 0.4933 (3) | 0.64617 (17) | 0.0766 (6) | 0.0486 (11) | |
H23A | 0.4927 | 0.6231 | −0.0179 | 0.058* | |
C24 | 0.5721 (3) | 0.65356 (15) | 0.2121 (5) | 0.0417 (10) | |
H24A | 0.6249 | 0.6356 | 0.2074 | 0.050* | |
C25 | 0.8226 (2) | 0.69706 (14) | 0.6039 (5) | 0.0371 (9) | |
H25A | 0.8152 | 0.7305 | 0.6421 | 0.045* | |
C26 | 0.9132 (2) | 0.69287 (14) | 0.5379 (5) | 0.0377 (9) | |
C27 | 0.9219 (3) | 0.67096 (15) | 0.3685 (6) | 0.0452 (10) | |
H27A | 0.8697 | 0.6588 | 0.2885 | 0.054* | |
C28 | 1.0073 (3) | 0.66702 (16) | 0.3171 (6) | 0.0506 (11) | |
H28A | 1.0124 | 0.6523 | 0.2029 | 0.061* | |
C29 | 1.0844 (3) | 0.68484 (16) | 0.4343 (6) | 0.0479 (10) | |
C30 | 1.0784 (3) | 0.70730 (16) | 0.6042 (6) | 0.0505 (11) | |
H30A | 1.1308 | 0.7192 | 0.6844 | 0.061* | |
C31 | 0.9919 (3) | 0.71153 (15) | 0.6511 (6) | 0.0472 (10) | |
H31A | 0.9865 | 0.7275 | 0.7627 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0530 (3) | 0.0716 (4) | 0.0666 (3) | −0.0215 (2) | 0.0090 (2) | 0.0103 (3) |
Br2A | 0.0692 (10) | 0.0664 (8) | 0.0957 (18) | 0.0137 (7) | −0.0356 (12) | 0.0011 (9) |
Br2B | 0.124 (8) | 0.068 (3) | 0.219 (15) | 0.046 (4) | −0.118 (10) | −0.047 (6) |
Br3 | 0.0508 (3) | 0.1428 (6) | 0.0794 (4) | 0.0087 (3) | −0.0203 (3) | −0.0159 (4) |
Br4 | 0.0425 (3) | 0.0858 (4) | 0.0980 (4) | 0.0077 (2) | 0.0277 (3) | 0.0056 (3) |
O1 | 0.0504 (16) | 0.0562 (19) | 0.0374 (16) | −0.0039 (14) | 0.0100 (13) | −0.0084 (14) |
N1 | 0.0348 (17) | 0.031 (2) | 0.059 (2) | 0.0011 (14) | −0.0004 (15) | 0.0032 (17) |
N2 | 0.0309 (15) | 0.044 (2) | 0.0380 (18) | 0.0006 (14) | 0.0076 (13) | 0.0047 (16) |
C1 | 0.042 (2) | 0.044 (3) | 0.048 (2) | −0.0005 (19) | 0.0045 (19) | 0.008 (2) |
C2 | 0.055 (3) | 0.041 (3) | 0.051 (3) | −0.008 (2) | 0.008 (2) | 0.011 (2) |
C3 | 0.043 (2) | 0.052 (3) | 0.037 (2) | −0.0163 (19) | 0.0091 (18) | −0.004 (2) |
C4 | 0.039 (2) | 0.046 (3) | 0.050 (2) | −0.0014 (19) | 0.0008 (18) | 0.003 (2) |
C5 | 0.041 (2) | 0.042 (3) | 0.053 (3) | −0.0031 (19) | −0.0015 (19) | 0.007 (2) |
C6 | 0.039 (2) | 0.036 (2) | 0.033 (2) | −0.0031 (16) | 0.0044 (16) | −0.0024 (17) |
C7 | 0.0338 (19) | 0.038 (2) | 0.039 (2) | −0.0013 (16) | 0.0048 (16) | 0.0010 (18) |
C8 | 0.0306 (18) | 0.037 (2) | 0.037 (2) | −0.0005 (16) | 0.0084 (15) | −0.0014 (17) |
C9 | 0.043 (2) | 0.031 (2) | 0.036 (2) | −0.0008 (17) | 0.0112 (17) | 0.0006 (18) |
C10 | 0.0330 (18) | 0.040 (2) | 0.035 (2) | −0.0005 (16) | 0.0041 (15) | −0.0048 (17) |
C11 | 0.0332 (19) | 0.041 (2) | 0.041 (2) | 0.0009 (17) | 0.0029 (17) | −0.0018 (18) |
C12A | 0.039 (5) | 0.022 (5) | 0.052 (7) | 0.000 (4) | 0.004 (4) | 0.006 (5) |
C13A | 0.048 (5) | 0.052 (7) | 0.053 (7) | 0.007 (4) | 0.006 (5) | 0.007 (6) |
C14A | 0.041 (4) | 0.067 (9) | 0.057 (9) | 0.012 (4) | −0.003 (6) | 0.004 (8) |
C15A | 0.041 (5) | 0.040 (6) | 0.065 (7) | 0.002 (4) | −0.012 (5) | 0.012 (5) |
C16A | 0.046 (6) | 0.049 (5) | 0.072 (6) | −0.007 (5) | −0.006 (4) | 0.014 (4) |
C17A | 0.046 (5) | 0.045 (6) | 0.049 (6) | −0.003 (4) | 0.001 (4) | 0.016 (4) |
C12B | 0.040 (9) | 0.040 (16) | 0.057 (14) | 0.002 (11) | −0.004 (10) | −0.004 (11) |
C13B | 0.029 (7) | 0.044 (11) | 0.069 (15) | 0.010 (7) | −0.011 (10) | 0.011 (14) |
C14B | 0.049 (9) | 0.057 (12) | 0.083 (17) | 0.022 (9) | −0.018 (11) | 0.012 (15) |
C15B | 0.051 (10) | 0.041 (14) | 0.073 (16) | 0.008 (10) | −0.028 (11) | 0.002 (14) |
C16B | 0.059 (13) | 0.054 (11) | 0.070 (12) | −0.009 (14) | −0.027 (10) | 0.003 (9) |
C17B | 0.045 (10) | 0.060 (14) | 0.071 (15) | 0.000 (10) | −0.003 (9) | 0.011 (13) |
C18 | 0.0325 (18) | 0.029 (2) | 0.046 (2) | 0.0024 (15) | 0.0076 (17) | 0.0019 (18) |
C19 | 0.0350 (19) | 0.036 (2) | 0.037 (2) | 0.0005 (16) | 0.0091 (16) | 0.0103 (18) |
C20 | 0.041 (2) | 0.045 (3) | 0.043 (2) | 0.0067 (18) | 0.0115 (18) | 0.0083 (19) |
C21 | 0.036 (2) | 0.065 (3) | 0.057 (3) | 0.008 (2) | 0.011 (2) | 0.015 (3) |
C22 | 0.032 (2) | 0.077 (3) | 0.044 (2) | −0.001 (2) | −0.0004 (17) | 0.008 (2) |
C23 | 0.044 (2) | 0.066 (3) | 0.035 (2) | 0.001 (2) | 0.0071 (18) | 0.000 (2) |
C24 | 0.037 (2) | 0.049 (3) | 0.040 (2) | 0.0068 (18) | 0.0106 (17) | 0.007 (2) |
C25 | 0.0312 (18) | 0.037 (2) | 0.043 (2) | 0.0000 (16) | 0.0067 (16) | 0.0007 (18) |
C26 | 0.0347 (19) | 0.035 (2) | 0.043 (2) | 0.0007 (16) | 0.0067 (17) | 0.0014 (18) |
C27 | 0.040 (2) | 0.049 (3) | 0.048 (2) | −0.0043 (19) | 0.0114 (18) | −0.006 (2) |
C28 | 0.048 (2) | 0.055 (3) | 0.052 (3) | 0.001 (2) | 0.018 (2) | −0.009 (2) |
C29 | 0.032 (2) | 0.049 (3) | 0.064 (3) | 0.0026 (18) | 0.0131 (19) | 0.007 (2) |
C30 | 0.035 (2) | 0.057 (3) | 0.056 (3) | −0.004 (2) | 0.0005 (19) | −0.004 (2) |
C31 | 0.040 (2) | 0.051 (3) | 0.051 (2) | −0.0043 (19) | 0.0090 (19) | −0.008 (2) |
Br1—C3 | 1.902 (4) | C14A—C15A | 1.365 (12) |
Br2A—C15A | 1.897 (13) | C14A—H14A | 0.93 |
Br2B—C15B | 1.92 (3) | C15A—C16A | 1.394 (13) |
Br3—C22 | 1.894 (4) | C16A—C17A | 1.32 (2) |
Br4—C29 | 1.895 (4) | C16A—H16A | 0.93 |
O1—C9 | 1.217 (4) | C17A—H17A | 0.93 |
N1—C11 | 1.468 (5) | C12B—C13B | 1.30 (5) |
N1—C7 | 1.470 (5) | C12B—C17B | 1.32 (4) |
N1—H1N1 | 0.85 | C13B—C14B | 1.39 (3) |
N2—C18 | 1.458 (4) | C13B—H13B | 0.93 |
N2—C25 | 1.463 (5) | C14B—C15B | 1.38 (4) |
N2—H1N2 | 0.86 | C14B—H14B | 0.93 |
C1—C2 | 1.381 (6) | C15B—C16B | 1.29 (4) |
C1—C6 | 1.390 (5) | C16B—C17B | 1.55 (5) |
C1—H1A | 0.93 | C16B—H16B | 0.93 |
C2—C3 | 1.371 (6) | C17B—H17B | 0.93 |
C2—H2A | 0.93 | C18—C19 | 1.504 (5) |
C3—C4 | 1.373 (6) | C18—H18A | 0.98 |
C4—C5 | 1.375 (5) | C19—C20 | 1.380 (5) |
C4—H4A | 0.93 | C19—C24 | 1.391 (5) |
C5—C6 | 1.394 (5) | C20—C21 | 1.382 (5) |
C5—H5A | 0.93 | C20—H20A | 0.93 |
C6—C7 | 1.519 (5) | C21—C22 | 1.379 (6) |
C7—C8 | 1.556 (5) | C21—H21A | 0.93 |
C7—H7A | 0.98 | C22—C23 | 1.373 (6) |
C8—C9 | 1.506 (5) | C23—C24 | 1.377 (5) |
C8—C18 | 1.560 (5) | C23—H23A | 0.93 |
C8—H8A | 0.98 | C24—H24A | 0.93 |
C9—C10 | 1.513 (5) | C25—C26 | 1.504 (5) |
C10—C11 | 1.552 (5) | C25—H25A | 0.98 |
C10—C25 | 1.555 (5) | C26—C31 | 1.382 (5) |
C10—H10A | 0.98 | C26—C27 | 1.383 (5) |
C11—C12B | 1.50 (4) | C27—C28 | 1.382 (5) |
C11—C12A | 1.533 (19) | C27—H27A | 0.93 |
C11—H11A | 0.98 | C28—C29 | 1.369 (6) |
C11—H11B | 0.98 | C28—H28A | 0.93 |
C12A—C13A | 1.40 (2) | C29—C30 | 1.384 (6) |
C12A—C17A | 1.406 (15) | C30—C31 | 1.384 (5) |
C13A—C14A | 1.396 (16) | C30—H30A | 0.93 |
C13A—H13A | 0.93 | C31—H31A | 0.93 |
C11—N1—C7 | 115.2 (3) | C17A—C16A—H16A | 119.5 |
C11—N1—H1N1 | 107.7 | C15A—C16A—H16A | 119.5 |
C7—N1—H1N1 | 103.1 | C16A—C17A—C12A | 121.6 (12) |
C18—N2—C25 | 112.2 (3) | C16A—C17A—H17A | 119.2 |
C18—N2—H1N2 | 107.3 | C12A—C17A—H17A | 119.2 |
C25—N2—H1N2 | 111.8 | C13B—C12B—C17B | 123 (4) |
C2—C1—C6 | 121.3 (4) | C13B—C12B—C11 | 124 (3) |
C2—C1—H1A | 119.3 | C17B—C12B—C11 | 114 (4) |
C6—C1—H1A | 119.3 | C12B—C13B—C14B | 120 (3) |
C3—C2—C1 | 119.5 (4) | C12B—C13B—H13B | 119.8 |
C3—C2—H2A | 120.3 | C14B—C13B—H13B | 119.8 |
C1—C2—H2A | 120.3 | C15B—C14B—C13B | 118 (3) |
C2—C3—C4 | 121.0 (4) | C15B—C14B—H14B | 120.9 |
C2—C3—Br1 | 118.8 (3) | C13B—C14B—H14B | 121.0 |
C4—C3—Br1 | 120.2 (3) | C16B—C15B—C14B | 125 (3) |
C3—C4—C5 | 119.1 (4) | C16B—C15B—Br2B | 113 (3) |
C3—C4—H4A | 120.5 | C14B—C15B—Br2B | 121 (3) |
C5—C4—H4A | 120.5 | C15B—C16B—C17B | 113 (2) |
C4—C5—C6 | 121.8 (4) | C15B—C16B—H16B | 123.4 |
C4—C5—H5A | 119.1 | C17B—C16B—H16B | 123.4 |
C6—C5—H5A | 119.1 | C12B—C17B—C16B | 119 (3) |
C1—C6—C5 | 117.3 (4) | C12B—C17B—H17B | 120.3 |
C1—C6—C7 | 122.3 (3) | C16B—C17B—H17B | 120.3 |
C5—C6—C7 | 120.3 (3) | N2—C18—C19 | 112.3 (3) |
N1—C7—C6 | 110.5 (3) | N2—C18—C8 | 108.4 (3) |
N1—C7—C8 | 108.3 (3) | C19—C18—C8 | 111.5 (3) |
C6—C7—C8 | 113.0 (3) | N2—C18—H18A | 108.2 |
N1—C7—H7A | 108.3 | C19—C18—H18A | 108.2 |
C6—C7—H7A | 108.3 | C8—C18—H18A | 108.2 |
C8—C7—H7A | 108.3 | C20—C19—C24 | 117.8 (4) |
C9—C8—C7 | 108.6 (3) | C20—C19—C18 | 119.4 (4) |
C9—C8—C18 | 105.0 (3) | C24—C19—C18 | 122.7 (3) |
C7—C8—C18 | 112.8 (3) | C19—C20—C21 | 122.2 (4) |
C9—C8—H8A | 110.1 | C19—C20—H20A | 118.9 |
C7—C8—H8A | 110.1 | C21—C20—H20A | 118.9 |
C18—C8—H8A | 110.1 | C22—C21—C20 | 118.2 (4) |
O1—C9—C8 | 124.3 (3) | C22—C21—H21A | 120.9 |
O1—C9—C10 | 123.6 (3) | C20—C21—H21A | 120.9 |
C8—C9—C10 | 111.8 (3) | C23—C22—C21 | 121.2 (4) |
C9—C10—C11 | 108.3 (3) | C23—C22—Br3 | 119.8 (4) |
C9—C10—C25 | 106.3 (3) | C21—C22—Br3 | 119.0 (3) |
C11—C10—C25 | 114.3 (3) | C22—C23—C24 | 119.6 (4) |
C9—C10—H10A | 109.3 | C22—C23—H23A | 120.2 |
C11—C10—H10A | 109.3 | C24—C23—H23A | 120.2 |
C25—C10—H10A | 109.3 | C23—C24—C19 | 120.9 (4) |
N1—C11—C12B | 117 (2) | C23—C24—H24A | 119.5 |
N1—C11—C12A | 106.3 (8) | C19—C24—H24A | 119.5 |
N1—C11—C10 | 108.7 (3) | N2—C25—C26 | 113.1 (3) |
C12B—C11—C10 | 109 (3) | N2—C25—C10 | 108.0 (3) |
C12A—C11—C10 | 110.6 (13) | C26—C25—C10 | 111.0 (3) |
N1—C11—H11A | 110.4 | N2—C25—H25A | 108.2 |
C12B—C11—H11A | 100.5 | C26—C25—H25A | 108.2 |
C12A—C11—H11A | 110.4 | C10—C25—H25A | 108.2 |
C10—C11—H11A | 110.4 | C31—C26—C27 | 118.0 (4) |
N1—C11—H11B | 107.0 | C31—C26—C25 | 118.9 (3) |
C12B—C11—H11B | 107.0 | C27—C26—C25 | 123.1 (3) |
C12A—C11—H11B | 116.9 | C28—C27—C26 | 120.7 (4) |
C10—C11—H11B | 107.0 | C28—C27—H27A | 119.7 |
C13A—C12A—C17A | 116.3 (14) | C26—C27—H27A | 119.7 |
C13A—C12A—C11 | 120.3 (12) | C29—C28—C27 | 120.0 (4) |
C17A—C12A—C11 | 123.2 (13) | C29—C28—H28A | 120.0 |
C12A—C13A—C14A | 122.9 (10) | C27—C28—H28A | 120.0 |
C12A—C13A—H13A | 118.6 | C28—C29—C30 | 120.9 (4) |
C14A—C13A—H13A | 118.6 | C28—C29—Br4 | 119.6 (3) |
C15A—C14A—C13A | 117.1 (10) | C30—C29—Br4 | 119.4 (3) |
C15A—C14A—H14A | 121.4 | C31—C30—C29 | 118.0 (4) |
C13A—C14A—H14A | 121.4 | C31—C30—H30A | 121.0 |
C14A—C15A—C16A | 121.1 (10) | C29—C30—H30A | 121.0 |
C14A—C15A—Br2A | 118.3 (10) | C26—C31—C30 | 122.3 (4) |
C16A—C15A—Br2A | 120.5 (8) | C26—C31—H31A | 118.8 |
C17A—C16A—C15A | 120.9 (10) | C30—C31—H31A | 118.8 |
C6—C1—C2—C3 | −0.8 (6) | C10—C11—C12B—C13B | −85 (6) |
C1—C2—C3—C4 | 1.7 (6) | N1—C11—C12B—C17B | −30 (7) |
C1—C2—C3—Br1 | −177.4 (3) | C12A—C11—C12B—C17B | −4 (16) |
C2—C3—C4—C5 | −1.1 (6) | C10—C11—C12B—C17B | 94 (6) |
Br1—C3—C4—C5 | 178.0 (3) | C17B—C12B—C13B—C14B | −4 (9) |
C3—C4—C5—C6 | −0.5 (6) | C11—C12B—C13B—C14B | 176 (5) |
C2—C1—C6—C5 | −0.7 (6) | C12B—C13B—C14B—C15B | −2 (7) |
C2—C1—C6—C7 | −178.1 (4) | C13B—C14B—C15B—C16B | 10 (7) |
C4—C5—C6—C1 | 1.3 (6) | C13B—C14B—C15B—Br2B | −178 (3) |
C4—C5—C6—C7 | 178.8 (4) | C14B—C15B—C16B—C17B | −10 (6) |
C11—N1—C7—C6 | 175.4 (3) | Br2B—C15B—C16B—C17B | 177 (3) |
C11—N1—C7—C8 | −60.3 (4) | C13B—C12B—C17B—C16B | 3 (10) |
C1—C6—C7—N1 | −13.9 (5) | C11—C12B—C17B—C16B | −177 (4) |
C5—C6—C7—N1 | 168.8 (3) | C15B—C16B—C17B—C12B | 4 (7) |
C1—C6—C7—C8 | −135.4 (4) | C25—N2—C18—C19 | 172.0 (3) |
C5—C6—C7—C8 | 47.3 (5) | C25—N2—C18—C8 | −64.4 (4) |
N1—C7—C8—C9 | 0.5 (4) | C9—C8—C18—N2 | 60.7 (4) |
C6—C7—C8—C9 | 123.3 (3) | C7—C8—C18—N2 | −57.4 (4) |
N1—C7—C8—C18 | 116.6 (3) | C9—C8—C18—C19 | −175.2 (3) |
C6—C7—C8—C18 | −120.6 (3) | C7—C8—C18—C19 | 66.7 (4) |
C7—C8—C9—O1 | −128.3 (4) | N2—C18—C19—C20 | −149.5 (3) |
C18—C8—C9—O1 | 110.7 (4) | C8—C18—C19—C20 | 88.7 (4) |
C7—C8—C9—C10 | 58.4 (4) | N2—C18—C19—C24 | 33.4 (5) |
C18—C8—C9—C10 | −62.6 (4) | C8—C18—C19—C24 | −88.5 (4) |
O1—C9—C10—C11 | 125.8 (4) | C24—C19—C20—C21 | 2.5 (6) |
C8—C9—C10—C11 | −60.8 (4) | C18—C19—C20—C21 | −174.8 (4) |
O1—C9—C10—C25 | −110.9 (4) | C19—C20—C21—C22 | −0.5 (6) |
C8—C9—C10—C25 | 62.4 (4) | C20—C21—C22—C23 | −1.4 (7) |
C7—N1—C11—C12B | −178 (3) | C20—C21—C22—Br3 | −179.1 (3) |
C7—N1—C11—C12A | 176.9 (13) | C21—C22—C23—C24 | 1.3 (7) |
C7—N1—C11—C10 | 57.8 (4) | Br3—C22—C23—C24 | 179.0 (3) |
C9—C10—C11—N1 | 3.6 (4) | C22—C23—C24—C19 | 0.7 (6) |
C25—C10—C11—N1 | −114.7 (3) | C20—C19—C24—C23 | −2.6 (6) |
C9—C10—C11—C12B | −125.5 (19) | C18—C19—C24—C23 | 174.6 (4) |
C25—C10—C11—C12B | 116.2 (19) | C18—N2—C25—C26 | −173.7 (3) |
C9—C10—C11—C12A | −112.7 (7) | C18—N2—C25—C10 | 63.1 (4) |
C25—C10—C11—C12A | 128.9 (7) | C9—C10—C25—N2 | −59.0 (4) |
N1—C11—C12A—C13A | 157 (2) | C11—C10—C25—N2 | 60.4 (4) |
C12B—C11—C12A—C13A | 1 (19) | C9—C10—C25—C26 | 176.6 (3) |
C10—C11—C12A—C13A | −85 (2) | C11—C10—C25—C26 | −64.0 (4) |
N1—C11—C12A—C17A | −28 (3) | N2—C25—C26—C31 | 168.9 (4) |
C12B—C11—C12A—C17A | 176 (23) | C10—C25—C26—C31 | −69.6 (5) |
C10—C11—C12A—C17A | 89 (3) | N2—C25—C26—C27 | −11.3 (5) |
C17A—C12A—C13A—C14A | −1 (4) | C10—C25—C26—C27 | 110.2 (4) |
C11—C12A—C13A—C14A | 174 (2) | C31—C26—C27—C28 | 1.5 (6) |
C12A—C13A—C14A—C15A | 0 (3) | C25—C26—C27—C28 | −178.3 (4) |
C13A—C14A—C15A—C16A | 1 (2) | C26—C27—C28—C29 | 0.1 (7) |
C13A—C14A—C15A—Br2A | −176.4 (14) | C27—C28—C29—C30 | −0.5 (7) |
C14A—C15A—C16A—C17A | −2 (3) | C27—C28—C29—Br4 | 179.8 (3) |
Br2A—C15A—C16A—C17A | 175.3 (15) | C28—C29—C30—C31 | −0.6 (7) |
C15A—C16A—C17A—C12A | 2 (3) | Br4—C29—C30—C31 | 179.2 (3) |
C13A—C12A—C17A—C16A | 0 (4) | C27—C26—C31—C30 | −2.6 (6) |
C11—C12A—C17A—C16A | −175 (2) | C25—C26—C31—C30 | 177.2 (4) |
N1—C11—C12B—C13B | 150 (5) | C29—C30—C31—C26 | 2.2 (7) |
C12A—C11—C12B—C13B | 177 (26) |
Cg1, Cg2 and Cg3 are the centroids of the C12A–C17A, C19–C24 and C26–C31 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N2···O1i | 0.86 | 2.58 | 3.319 (4) | 145 |
C18—H18A···O1ii | 0.98 | 2.50 | 3.294 (5) | 138 |
C5—H5A···Cg2 | 0.93 | 2.77 | 3.614 (5) | 151 |
C28—H28A···Cg1i | 0.93 | 2.67 | 3.433 (9) | 140 |
C31—H31A···Cg3iii | 0.93 | 2.80 | 3.640 (5) | 151 |
C13B—H13B···Cg3 | 0.93 | 2.76 | 3.53 (5) | 141 |
Symmetry codes: (i) x, y, z−1; (ii) x, −y+3/2, z−1/2; (iii) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C31H24Br4N2O |
Mr | 760.16 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 14.7409 (5), 27.7762 (10), 7.1538 (2) |
β (°) | 101.067 (2) |
V (Å3) | 2874.62 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.63 |
Crystal size (mm) | 0.89 × 0.19 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.082, 0.614 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 37831, 8336, 4019 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.705 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.141, 1.01 |
No. of reflections | 8336 |
No. of parameters | 409 |
No. of restraints | 180 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.79, −0.79 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg1, Cg2 and Cg3 are the centroids of the C12A–C17A, C19–C24 and C26–C31 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N2···O1i | 0.86 | 2.58 | 3.319 (4) | 145 |
C18—H18A···O1ii | 0.98 | 2.50 | 3.294 (5) | 138 |
C5—H5A···Cg2 | 0.93 | 2.77 | 3.614 (5) | 151 |
C28—H28A···Cg1i | 0.93 | 2.67 | 3.433 (9) | 140 |
C31—H31A···Cg3iii | 0.93 | 2.80 | 3.640 (5) | 151 |
C13B—H13B···Cg3 | 0.93 | 2.76 | 3.53 (5) | 141 |
Symmetry codes: (i) x, y, z−1; (ii) x, −y+3/2, z−1/2; (iii) x, −y+3/2, z+1/2. |
Acknowledgements
HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of the post of Assistant Research Officer under the Research University Golden Goose Grant (1001/PFIZIK/811012). VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Arias-Perez, M. S., Alejo, A. & Maroto, A. (1997). Tetrahedron, 53, 13099–13110. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chinar Pathak, Karthikeyan, S., Kunal More & Vijayakumar, V. (2007). Indian J. Heterocycl. Chem. 16, 295–296. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Fun, H.-K., Yeap, C. S., Rajesh, K., Sarveswari, S. & Vijayakumar, V. (2009). Acta Cryst. E65, o2486–o2487. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Srikrishna, A. & Vijayakumar, D. (1998). Tetrahedron Lett. 39, 5833–5834. Web of Science CrossRef CAS Google Scholar
Vijayakumar, V., Sundaravadivelu, M., Perumal, S. & Hewlins, M. J. E. (2000). Magn. Reson. Chem. 38, 883–885. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Bicyclo[3.3.1]nonane moieties are present in many biologically active molecules like alkaloids and drugs (Arias-Perez et al., 1997). Functionalized 3-azabicyclo[3.3.1]nonanes have been studied intensively because of their pharmaceutical use and these compounds find applications as an important class of organic compounds in the field of molecular recognition. The 1,5-diphenyl-3,7-diazabicyclo[3.3.1]nonan-9-ones are local anesthetics. Some of them possess hypotensive activity. N,N-diphenyl derivatives are found to be antichloristic and anti-thrombic (Srikrishna & Vijayakumar, 1998; Chinar Pathak et al., 2007). The synthesis and stereochemistry of 3,7-diazabicyclo[3.3.1]nonan-9-ones and their derivatives are of much interest due to their diverse biological activities, such as antibacterial, antifungal, anti-arrhythmic, antiphologistic, antithrombic, calcium antagonistic, hypotensive and neuroleptic and also because of their presence in naturally occurring lupin alkaloids. The conformational analysis of 3,7-diazabicyclo[3.3.1]nonanes (bispidines) is of considerable interest both from the theoretical view point and due to their biological activity. In recent years the 2,4,6,8-tetraaryl-3,7-diazabicyclo[3.3.1]nonanes constitutes an interesting case for the study because of the presence of four aryl groups. If all the aryls are in equatorial orientations, molecular models indicate close proximity of the aryls in both rings in the bicyclic systems (Vijayakumar et al., 2000).
The bicyclo[3.3.1]nonane ring system (O1/N1/N2/C7–C11/C18/C25) adopts a chair-boat conformation with puckering parameter Q = 0.770 (4) Å, Θ = 91.8 (3)° and φ = 2.2 (3)° for one of the piperidine rings (N1/C7–C11) and Q = 0.640 (4) Å, Θ = 0.0 (4)° and φ = 139 (12)° for the other piperidine ring (N2/C8–C10/C18/C25) (Cremer & Pople, 1975). The N atoms adopt a pyramidal configuration. The phenyl rings substituted at C7 (C1–C6) and C11 [C12A–C17A (major component) and C12B–C17B (minor component)] positions are oriented with one another with an angle of 40.0 (7)° [41.2 (18)° in the minor component]. The phenyl rings substituted at C18 (C19–C24) and C25 (C26–C31) form a dihedral angle of 31.3 (2)°. Two bromophenyl groups substituted at C7 and C11 are in equatorial orientations with torsion angles C6—C7—C8—C9 = 123.3 (3)°, C9—C10—C11—C12A = -112.7 (7)° for major component and C9—C10—C11—C12B = -125.5 (19)° for minor component. The other two bromophenyl groups substituted at C18 and C25 have torsion angles of C9—C8—C18—C19 = -175.2 (3)° and C9—C10—C25—C26 = 176.6 (3)°. Bond lengths (Allen et al., 1987) and angles are within the normal range and are comparable to a closely related structure (Fun et al., 2009).
In the crystal structure (Fig. 2), intermolecular C18—H18A···O1 and N2—H1N2···O1 hydrogen bonds link the molecules into chains along c axis. The structure is further stabilized by C—H···π interactions (Table 1).