organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6,8-Tetra­kis(4-bromo­phen­yl)-3,7-di­aza­bi­cyclo­[3.3.1]nonan-9-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 12 December 2009; accepted 23 December 2009; online 9 January 2010)

In the title compound, C31H24Br4N2O, one of the bromo­phenyl rings is disordered over two orientations with occupancies of 0.69 (2) and 0.31 (2). The bicyclo­[3.3.1]nonane ring system adopts a chair–boat conformation. In the crystal structure, mol­ecules are linked into chains along the c axis by inter­molecular C—H⋯O and N—H⋯O hydrogen bonds. Further stabilization is provided by C—H⋯π inter­actions.

Related literature

For applications of bicyclo­[3.3.1]nonane derivatives, see: Arias-Perez et al. (1997[Arias-Perez, M. S., Alejo, A. & Maroto, A. (1997). Tetrahedron, 53, 13099-13110.]). For applications of N,N-diphenyl derivatives, see: Srikrishna & Vijayakumar (1998[Srikrishna, A. & Vijayakumar, D. (1998). Tetrahedron Lett. 39, 5833-5834.]); Chinar Pathak et al. (2007[Chinar Pathak, Karthikeyan, S., Kunal More & Vijayakumar, V. (2007). Indian J. Heterocycl. Chem. 16, 295-296.]). For bicyclic systems with aryl groups, see: Vijayakumar et al. (2000[Vijayakumar, V., Sundaravadivelu, M., Perumal, S. & Hewlins, M. J. E. (2000). Magn. Reson. Chem. 38, 883-885.]). For a related structure: see: Fun et al. (2009[Fun, H.-K., Yeap, C. S., Rajesh, K., Sarveswari, S. & Vijayakumar, V. (2009). Acta Cryst. E65, o2486-o2487.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C31H24Br4N2O

  • Mr = 760.16

  • Monoclinic, P 21 /c

  • a = 14.7409 (5) Å

  • b = 27.7762 (10) Å

  • c = 7.1538 (2) Å

  • β = 101.067 (2)°

  • V = 2874.62 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.63 mm−1

  • T = 296 K

  • 0.89 × 0.19 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.082, Tmax = 0.614

  • 37831 measured reflections

  • 8336 independent reflections

  • 4019 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.141

  • S = 1.01

  • 8336 reflections

  • 409 parameters

  • 180 restraints

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C12A–C17A, C19–C24 and C26–C31 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.86 2.58 3.319 (4) 145
C18—H18A⋯O1ii 0.98 2.50 3.294 (5) 138
C5—H5ACg2 0.93 2.77 3.614 (5) 151
C28—H28ACg1i 0.93 2.67 3.433 (9) 140
C31—H31ACg3iii 0.93 2.80 3.640 (5) 151
C13B—H13BCg3 0.93 2.76 3.53 (5) 141
Symmetry codes: (i) x, y, z-1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Bicyclo[3.3.1]nonane moieties are present in many biologically active molecules like alkaloids and drugs (Arias-Perez et al., 1997). Functionalized 3-azabicyclo[3.3.1]nonanes have been studied intensively because of their pharmaceutical use and these compounds find applications as an important class of organic compounds in the field of molecular recognition. The 1,5-diphenyl-3,7-diazabicyclo[3.3.1]nonan-9-ones are local anesthetics. Some of them possess hypotensive activity. N,N-diphenyl derivatives are found to be antichloristic and anti-thrombic (Srikrishna & Vijayakumar, 1998; Chinar Pathak et al., 2007). The synthesis and stereochemistry of 3,7-diazabicyclo[3.3.1]nonan-9-ones and their derivatives are of much interest due to their diverse biological activities, such as antibacterial, antifungal, anti-arrhythmic, antiphologistic, antithrombic, calcium antagonistic, hypotensive and neuroleptic and also because of their presence in naturally occurring lupin alkaloids. The conformational analysis of 3,7-diazabicyclo[3.3.1]nonanes (bispidines) is of considerable interest both from the theoretical view point and due to their biological activity. In recent years the 2,4,6,8-tetraaryl-3,7-diazabicyclo[3.3.1]nonanes constitutes an interesting case for the study because of the presence of four aryl groups. If all the aryls are in equatorial orientations, molecular models indicate close proximity of the aryls in both rings in the bicyclic systems (Vijayakumar et al., 2000).

The bicyclo[3.3.1]nonane ring system (O1/N1/N2/C7–C11/C18/C25) adopts a chair-boat conformation with puckering parameter Q = 0.770 (4) Å, Θ = 91.8 (3)° and φ = 2.2 (3)° for one of the piperidine rings (N1/C7–C11) and Q = 0.640 (4) Å, Θ = 0.0 (4)° and φ = 139 (12)° for the other piperidine ring (N2/C8–C10/C18/C25) (Cremer & Pople, 1975). The N atoms adopt a pyramidal configuration. The phenyl rings substituted at C7 (C1–C6) and C11 [C12A–C17A (major component) and C12B–C17B (minor component)] positions are oriented with one another with an angle of 40.0 (7)° [41.2 (18)° in the minor component]. The phenyl rings substituted at C18 (C19–C24) and C25 (C26–C31) form a dihedral angle of 31.3 (2)°. Two bromophenyl groups substituted at C7 and C11 are in equatorial orientations with torsion angles C6—C7—C8—C9 = 123.3 (3)°, C9—C10—C11—C12A = -112.7 (7)° for major component and C9—C10—C11—C12B = -125.5 (19)° for minor component. The other two bromophenyl groups substituted at C18 and C25 have torsion angles of C9—C8—C18—C19 = -175.2 (3)° and C9—C10—C25—C26 = 176.6 (3)°. Bond lengths (Allen et al., 1987) and angles are within the normal range and are comparable to a closely related structure (Fun et al., 2009).

In the crystal structure (Fig. 2), intermolecular C18—H18A···O1 and N2—H1N2···O1 hydrogen bonds link the molecules into chains along c axis. The structure is further stabilized by C—H···π interactions (Table 1).

Related literature top

For applications of bicyclo[3.3.1]nonane derivatives, see: Arias-Perez et al. (1997). For applications of N,N-diphenyl derivatives, see: Srikrishna & Vijayakumar (1998); Chinar Pathak et al. (2007). For bicyclic systems with aryl groups, see: Vijayakumar et al. (2000). For a related structure: see: Fun et al. (2009). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Experimental top

0.4 ml of acetone, 3.70 g of 4-bromobenzaldehyde and 0.7708 g of dry ammonium acetate were taken in a 1:4:2 molar ratio in ethanol and the mixture was heated on a water bath till it changes to red orange colour. The mixture was allowed to stand until a solid appears. The solid product was washed with ether and ethanol (1:1) until the disappearance of yellow colour. The separated solid was filtered off and recrystallized from chloroform-benzene mixture. The purity of the compound was checked by TLC and melting point recorded (yield: 57%, m. p. 511 K).

Refinement top

Atoms H1N1 and H1N2 were located in a difference Fourier map and were refined using a riding model. The remaining H hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.98] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). One of the bromophenyl rings (C11–C17/Br2) is disordered over two positions with occupancies of 0.69 (2) and 0.31 (2). Rigid and similarity restraints were applied to the disordered ring.

Structure description top

Bicyclo[3.3.1]nonane moieties are present in many biologically active molecules like alkaloids and drugs (Arias-Perez et al., 1997). Functionalized 3-azabicyclo[3.3.1]nonanes have been studied intensively because of their pharmaceutical use and these compounds find applications as an important class of organic compounds in the field of molecular recognition. The 1,5-diphenyl-3,7-diazabicyclo[3.3.1]nonan-9-ones are local anesthetics. Some of them possess hypotensive activity. N,N-diphenyl derivatives are found to be antichloristic and anti-thrombic (Srikrishna & Vijayakumar, 1998; Chinar Pathak et al., 2007). The synthesis and stereochemistry of 3,7-diazabicyclo[3.3.1]nonan-9-ones and their derivatives are of much interest due to their diverse biological activities, such as antibacterial, antifungal, anti-arrhythmic, antiphologistic, antithrombic, calcium antagonistic, hypotensive and neuroleptic and also because of their presence in naturally occurring lupin alkaloids. The conformational analysis of 3,7-diazabicyclo[3.3.1]nonanes (bispidines) is of considerable interest both from the theoretical view point and due to their biological activity. In recent years the 2,4,6,8-tetraaryl-3,7-diazabicyclo[3.3.1]nonanes constitutes an interesting case for the study because of the presence of four aryl groups. If all the aryls are in equatorial orientations, molecular models indicate close proximity of the aryls in both rings in the bicyclic systems (Vijayakumar et al., 2000).

The bicyclo[3.3.1]nonane ring system (O1/N1/N2/C7–C11/C18/C25) adopts a chair-boat conformation with puckering parameter Q = 0.770 (4) Å, Θ = 91.8 (3)° and φ = 2.2 (3)° for one of the piperidine rings (N1/C7–C11) and Q = 0.640 (4) Å, Θ = 0.0 (4)° and φ = 139 (12)° for the other piperidine ring (N2/C8–C10/C18/C25) (Cremer & Pople, 1975). The N atoms adopt a pyramidal configuration. The phenyl rings substituted at C7 (C1–C6) and C11 [C12A–C17A (major component) and C12B–C17B (minor component)] positions are oriented with one another with an angle of 40.0 (7)° [41.2 (18)° in the minor component]. The phenyl rings substituted at C18 (C19–C24) and C25 (C26–C31) form a dihedral angle of 31.3 (2)°. Two bromophenyl groups substituted at C7 and C11 are in equatorial orientations with torsion angles C6—C7—C8—C9 = 123.3 (3)°, C9—C10—C11—C12A = -112.7 (7)° for major component and C9—C10—C11—C12B = -125.5 (19)° for minor component. The other two bromophenyl groups substituted at C18 and C25 have torsion angles of C9—C8—C18—C19 = -175.2 (3)° and C9—C10—C25—C26 = 176.6 (3)°. Bond lengths (Allen et al., 1987) and angles are within the normal range and are comparable to a closely related structure (Fun et al., 2009).

In the crystal structure (Fig. 2), intermolecular C18—H18A···O1 and N2—H1N2···O1 hydrogen bonds link the molecules into chains along c axis. The structure is further stabilized by C—H···π interactions (Table 1).

For applications of bicyclo[3.3.1]nonane derivatives, see: Arias-Perez et al. (1997). For applications of N,N-diphenyl derivatives, see: Srikrishna & Vijayakumar (1998); Chinar Pathak et al. (2007). For bicyclic systems with aryl groups, see: Vijayakumar et al. (2000). For a related structure: see: Fun et al. (2009). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Open bonds indicate the minor disordered component.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the extended one-dimensional chains linked along the c axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity. Only the major components are shown.
2,4,6,8-Tetrakis(4-bromophenyl)-3,7-diazabicyclo[3.3.1]nonan-9-one top
Crystal data top
C31H24Br4N2OF(000) = 1488
Mr = 760.16Dx = 1.756 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8924 reflections
a = 14.7409 (5) Åθ = 2.6–25.2°
b = 27.7762 (10) ŵ = 5.63 mm1
c = 7.1538 (2) ÅT = 296 K
β = 101.067 (2)°Plate, colourless
V = 2874.62 (16) Å30.89 × 0.19 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8336 independent reflections
Radiation source: fine-focus sealed tube4019 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2014
Tmin = 0.082, Tmax = 0.614k = 3831
37831 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0556P)2 + 2.5808P]
where P = (Fo2 + 2Fc2)/3
8336 reflections(Δ/σ)max = 0.001
409 parametersΔρmax = 0.79 e Å3
180 restraintsΔρmin = 0.79 e Å3
Crystal data top
C31H24Br4N2OV = 2874.62 (16) Å3
Mr = 760.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.7409 (5) ŵ = 5.63 mm1
b = 27.7762 (10) ÅT = 296 K
c = 7.1538 (2) Å0.89 × 0.19 × 0.10 mm
β = 101.067 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8336 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4019 reflections with I > 2σ(I)
Tmin = 0.082, Tmax = 0.614Rint = 0.045
37831 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051180 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.01Δρmax = 0.79 e Å3
8336 reflectionsΔρmin = 0.79 e Å3
409 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.31050 (3)0.487998 (19)0.72659 (7)0.06406 (17)
Br2A1.1481 (2)0.53133 (10)1.3533 (4)0.0839 (10)0.69 (2)
Br2B1.1745 (18)0.5373 (5)1.275 (5)0.157 (9)0.31 (2)
Br30.30786 (4)0.66382 (3)0.10599 (9)0.0953 (2)
Br41.20123 (3)0.67899 (2)0.36272 (9)0.07356 (19)
O10.72350 (19)0.69393 (11)0.9876 (4)0.0478 (7)
N10.7408 (2)0.58644 (12)0.7607 (5)0.0429 (8)
H1N10.74220.55730.72300.036 (11)*
N20.74301 (19)0.68444 (11)0.4561 (5)0.0374 (7)
H1N20.74250.70030.35320.038 (11)*
C10.5800 (3)0.53202 (15)0.7522 (6)0.0456 (10)
H1A0.63820.51980.80310.055*
C20.5024 (3)0.50554 (16)0.7674 (6)0.0492 (11)
H2A0.50850.47560.82650.059*
C30.4165 (3)0.52380 (16)0.6947 (6)0.0439 (10)
C40.4065 (3)0.56740 (15)0.6027 (6)0.0460 (10)
H4A0.34790.57930.55180.055*
C50.4841 (3)0.59328 (15)0.5867 (6)0.0465 (10)
H5A0.47730.62270.52360.056*
C60.5728 (3)0.57663 (14)0.6625 (5)0.0364 (9)
C70.6570 (2)0.60577 (13)0.6387 (5)0.0372 (9)
H7A0.66430.60320.50570.045*
C80.6489 (2)0.66002 (13)0.6871 (5)0.0345 (8)
H8A0.59090.66590.73130.041*
C90.7300 (3)0.67358 (13)0.8402 (5)0.0359 (9)
C100.8211 (2)0.66416 (14)0.7791 (5)0.0366 (9)
H10A0.87200.67330.88250.044*
C110.8276 (2)0.60953 (14)0.7382 (6)0.0391 (9)
H11A0.83880.60440.60900.047*0.69 (2)
H11B0.83210.60630.60390.047*0.31 (2)
C12A0.9042 (12)0.5860 (11)0.885 (3)0.038 (3)0.69 (2)
C13A0.9955 (13)0.5865 (9)0.858 (2)0.051 (3)0.69 (2)
H13A1.00780.59870.74460.062*0.69 (2)
C14A1.0693 (9)0.5694 (6)0.994 (2)0.056 (3)0.69 (2)
H14A1.12970.57030.97370.068*0.69 (2)
C15A1.0490 (10)0.5514 (6)1.1589 (19)0.052 (3)0.69 (2)
C16A0.9581 (9)0.5494 (6)1.187 (2)0.058 (3)0.69 (2)
H16A0.94580.53601.29880.070*0.69 (2)
C17A0.8892 (11)0.5664 (8)1.058 (2)0.048 (3)0.69 (2)
H17A0.82950.56541.08170.057*0.69 (2)
C12B0.915 (3)0.590 (3)0.853 (8)0.047 (7)0.31 (2)
C13B0.995 (3)0.5912 (19)0.799 (5)0.050 (6)0.31 (2)
H13B0.99780.60320.67880.060*0.31 (2)
C14B1.074 (2)0.5748 (15)0.919 (5)0.067 (7)0.31 (2)
H14B1.13090.57480.87910.080*0.31 (2)
C15B1.067 (2)0.5587 (14)1.098 (6)0.060 (7)0.31 (2)
C16B0.991 (2)0.5515 (13)1.157 (5)0.066 (6)0.31 (2)
H16B0.98770.53631.27120.079*0.31 (2)
C17B0.905 (3)0.571 (2)1.018 (7)0.061 (6)0.31 (2)
H17B0.84690.56941.05020.073*0.31 (2)
C180.6555 (2)0.69378 (14)0.5159 (5)0.0361 (9)
H18A0.65600.72720.56030.043*
C190.5739 (2)0.68748 (14)0.3557 (5)0.0354 (9)
C200.4955 (3)0.71480 (15)0.3534 (6)0.0425 (10)
H20A0.49630.73850.44550.051*
C210.4157 (3)0.70809 (17)0.2188 (6)0.0525 (11)
H21A0.36340.72670.22030.063*
C220.4158 (3)0.67304 (18)0.0822 (6)0.0519 (11)
C230.4933 (3)0.64617 (17)0.0766 (6)0.0486 (11)
H23A0.49270.62310.01790.058*
C240.5721 (3)0.65356 (15)0.2121 (5)0.0417 (10)
H24A0.62490.63560.20740.050*
C250.8226 (2)0.69706 (14)0.6039 (5)0.0371 (9)
H25A0.81520.73050.64210.045*
C260.9132 (2)0.69287 (14)0.5379 (5)0.0377 (9)
C270.9219 (3)0.67096 (15)0.3685 (6)0.0452 (10)
H27A0.86970.65880.28850.054*
C281.0073 (3)0.66702 (16)0.3171 (6)0.0506 (11)
H28A1.01240.65230.20290.061*
C291.0844 (3)0.68484 (16)0.4343 (6)0.0479 (10)
C301.0784 (3)0.70730 (16)0.6042 (6)0.0505 (11)
H30A1.13080.71920.68440.061*
C310.9919 (3)0.71153 (15)0.6511 (6)0.0472 (10)
H31A0.98650.72750.76270.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0530 (3)0.0716 (4)0.0666 (3)0.0215 (2)0.0090 (2)0.0103 (3)
Br2A0.0692 (10)0.0664 (8)0.0957 (18)0.0137 (7)0.0356 (12)0.0011 (9)
Br2B0.124 (8)0.068 (3)0.219 (15)0.046 (4)0.118 (10)0.047 (6)
Br30.0508 (3)0.1428 (6)0.0794 (4)0.0087 (3)0.0203 (3)0.0159 (4)
Br40.0425 (3)0.0858 (4)0.0980 (4)0.0077 (2)0.0277 (3)0.0056 (3)
O10.0504 (16)0.0562 (19)0.0374 (16)0.0039 (14)0.0100 (13)0.0084 (14)
N10.0348 (17)0.031 (2)0.059 (2)0.0011 (14)0.0004 (15)0.0032 (17)
N20.0309 (15)0.044 (2)0.0380 (18)0.0006 (14)0.0076 (13)0.0047 (16)
C10.042 (2)0.044 (3)0.048 (2)0.0005 (19)0.0045 (19)0.008 (2)
C20.055 (3)0.041 (3)0.051 (3)0.008 (2)0.008 (2)0.011 (2)
C30.043 (2)0.052 (3)0.037 (2)0.0163 (19)0.0091 (18)0.004 (2)
C40.039 (2)0.046 (3)0.050 (2)0.0014 (19)0.0008 (18)0.003 (2)
C50.041 (2)0.042 (3)0.053 (3)0.0031 (19)0.0015 (19)0.007 (2)
C60.039 (2)0.036 (2)0.033 (2)0.0031 (16)0.0044 (16)0.0024 (17)
C70.0338 (19)0.038 (2)0.039 (2)0.0013 (16)0.0048 (16)0.0010 (18)
C80.0306 (18)0.037 (2)0.037 (2)0.0005 (16)0.0084 (15)0.0014 (17)
C90.043 (2)0.031 (2)0.036 (2)0.0008 (17)0.0112 (17)0.0006 (18)
C100.0330 (18)0.040 (2)0.035 (2)0.0005 (16)0.0041 (15)0.0048 (17)
C110.0332 (19)0.041 (2)0.041 (2)0.0009 (17)0.0029 (17)0.0018 (18)
C12A0.039 (5)0.022 (5)0.052 (7)0.000 (4)0.004 (4)0.006 (5)
C13A0.048 (5)0.052 (7)0.053 (7)0.007 (4)0.006 (5)0.007 (6)
C14A0.041 (4)0.067 (9)0.057 (9)0.012 (4)0.003 (6)0.004 (8)
C15A0.041 (5)0.040 (6)0.065 (7)0.002 (4)0.012 (5)0.012 (5)
C16A0.046 (6)0.049 (5)0.072 (6)0.007 (5)0.006 (4)0.014 (4)
C17A0.046 (5)0.045 (6)0.049 (6)0.003 (4)0.001 (4)0.016 (4)
C12B0.040 (9)0.040 (16)0.057 (14)0.002 (11)0.004 (10)0.004 (11)
C13B0.029 (7)0.044 (11)0.069 (15)0.010 (7)0.011 (10)0.011 (14)
C14B0.049 (9)0.057 (12)0.083 (17)0.022 (9)0.018 (11)0.012 (15)
C15B0.051 (10)0.041 (14)0.073 (16)0.008 (10)0.028 (11)0.002 (14)
C16B0.059 (13)0.054 (11)0.070 (12)0.009 (14)0.027 (10)0.003 (9)
C17B0.045 (10)0.060 (14)0.071 (15)0.000 (10)0.003 (9)0.011 (13)
C180.0325 (18)0.029 (2)0.046 (2)0.0024 (15)0.0076 (17)0.0019 (18)
C190.0350 (19)0.036 (2)0.037 (2)0.0005 (16)0.0091 (16)0.0103 (18)
C200.041 (2)0.045 (3)0.043 (2)0.0067 (18)0.0115 (18)0.0083 (19)
C210.036 (2)0.065 (3)0.057 (3)0.008 (2)0.011 (2)0.015 (3)
C220.032 (2)0.077 (3)0.044 (2)0.001 (2)0.0004 (17)0.008 (2)
C230.044 (2)0.066 (3)0.035 (2)0.001 (2)0.0071 (18)0.000 (2)
C240.037 (2)0.049 (3)0.040 (2)0.0068 (18)0.0106 (17)0.007 (2)
C250.0312 (18)0.037 (2)0.043 (2)0.0000 (16)0.0067 (16)0.0007 (18)
C260.0347 (19)0.035 (2)0.043 (2)0.0007 (16)0.0067 (17)0.0014 (18)
C270.040 (2)0.049 (3)0.048 (2)0.0043 (19)0.0114 (18)0.006 (2)
C280.048 (2)0.055 (3)0.052 (3)0.001 (2)0.018 (2)0.009 (2)
C290.032 (2)0.049 (3)0.064 (3)0.0026 (18)0.0131 (19)0.007 (2)
C300.035 (2)0.057 (3)0.056 (3)0.004 (2)0.0005 (19)0.004 (2)
C310.040 (2)0.051 (3)0.051 (2)0.0043 (19)0.0090 (19)0.008 (2)
Geometric parameters (Å, º) top
Br1—C31.902 (4)C14A—C15A1.365 (12)
Br2A—C15A1.897 (13)C14A—H14A0.93
Br2B—C15B1.92 (3)C15A—C16A1.394 (13)
Br3—C221.894 (4)C16A—C17A1.32 (2)
Br4—C291.895 (4)C16A—H16A0.93
O1—C91.217 (4)C17A—H17A0.93
N1—C111.468 (5)C12B—C13B1.30 (5)
N1—C71.470 (5)C12B—C17B1.32 (4)
N1—H1N10.85C13B—C14B1.39 (3)
N2—C181.458 (4)C13B—H13B0.93
N2—C251.463 (5)C14B—C15B1.38 (4)
N2—H1N20.86C14B—H14B0.93
C1—C21.381 (6)C15B—C16B1.29 (4)
C1—C61.390 (5)C16B—C17B1.55 (5)
C1—H1A0.93C16B—H16B0.93
C2—C31.371 (6)C17B—H17B0.93
C2—H2A0.93C18—C191.504 (5)
C3—C41.373 (6)C18—H18A0.98
C4—C51.375 (5)C19—C201.380 (5)
C4—H4A0.93C19—C241.391 (5)
C5—C61.394 (5)C20—C211.382 (5)
C5—H5A0.93C20—H20A0.93
C6—C71.519 (5)C21—C221.379 (6)
C7—C81.556 (5)C21—H21A0.93
C7—H7A0.98C22—C231.373 (6)
C8—C91.506 (5)C23—C241.377 (5)
C8—C181.560 (5)C23—H23A0.93
C8—H8A0.98C24—H24A0.93
C9—C101.513 (5)C25—C261.504 (5)
C10—C111.552 (5)C25—H25A0.98
C10—C251.555 (5)C26—C311.382 (5)
C10—H10A0.98C26—C271.383 (5)
C11—C12B1.50 (4)C27—C281.382 (5)
C11—C12A1.533 (19)C27—H27A0.93
C11—H11A0.98C28—C291.369 (6)
C11—H11B0.98C28—H28A0.93
C12A—C13A1.40 (2)C29—C301.384 (6)
C12A—C17A1.406 (15)C30—C311.384 (5)
C13A—C14A1.396 (16)C30—H30A0.93
C13A—H13A0.93C31—H31A0.93
C11—N1—C7115.2 (3)C17A—C16A—H16A119.5
C11—N1—H1N1107.7C15A—C16A—H16A119.5
C7—N1—H1N1103.1C16A—C17A—C12A121.6 (12)
C18—N2—C25112.2 (3)C16A—C17A—H17A119.2
C18—N2—H1N2107.3C12A—C17A—H17A119.2
C25—N2—H1N2111.8C13B—C12B—C17B123 (4)
C2—C1—C6121.3 (4)C13B—C12B—C11124 (3)
C2—C1—H1A119.3C17B—C12B—C11114 (4)
C6—C1—H1A119.3C12B—C13B—C14B120 (3)
C3—C2—C1119.5 (4)C12B—C13B—H13B119.8
C3—C2—H2A120.3C14B—C13B—H13B119.8
C1—C2—H2A120.3C15B—C14B—C13B118 (3)
C2—C3—C4121.0 (4)C15B—C14B—H14B120.9
C2—C3—Br1118.8 (3)C13B—C14B—H14B121.0
C4—C3—Br1120.2 (3)C16B—C15B—C14B125 (3)
C3—C4—C5119.1 (4)C16B—C15B—Br2B113 (3)
C3—C4—H4A120.5C14B—C15B—Br2B121 (3)
C5—C4—H4A120.5C15B—C16B—C17B113 (2)
C4—C5—C6121.8 (4)C15B—C16B—H16B123.4
C4—C5—H5A119.1C17B—C16B—H16B123.4
C6—C5—H5A119.1C12B—C17B—C16B119 (3)
C1—C6—C5117.3 (4)C12B—C17B—H17B120.3
C1—C6—C7122.3 (3)C16B—C17B—H17B120.3
C5—C6—C7120.3 (3)N2—C18—C19112.3 (3)
N1—C7—C6110.5 (3)N2—C18—C8108.4 (3)
N1—C7—C8108.3 (3)C19—C18—C8111.5 (3)
C6—C7—C8113.0 (3)N2—C18—H18A108.2
N1—C7—H7A108.3C19—C18—H18A108.2
C6—C7—H7A108.3C8—C18—H18A108.2
C8—C7—H7A108.3C20—C19—C24117.8 (4)
C9—C8—C7108.6 (3)C20—C19—C18119.4 (4)
C9—C8—C18105.0 (3)C24—C19—C18122.7 (3)
C7—C8—C18112.8 (3)C19—C20—C21122.2 (4)
C9—C8—H8A110.1C19—C20—H20A118.9
C7—C8—H8A110.1C21—C20—H20A118.9
C18—C8—H8A110.1C22—C21—C20118.2 (4)
O1—C9—C8124.3 (3)C22—C21—H21A120.9
O1—C9—C10123.6 (3)C20—C21—H21A120.9
C8—C9—C10111.8 (3)C23—C22—C21121.2 (4)
C9—C10—C11108.3 (3)C23—C22—Br3119.8 (4)
C9—C10—C25106.3 (3)C21—C22—Br3119.0 (3)
C11—C10—C25114.3 (3)C22—C23—C24119.6 (4)
C9—C10—H10A109.3C22—C23—H23A120.2
C11—C10—H10A109.3C24—C23—H23A120.2
C25—C10—H10A109.3C23—C24—C19120.9 (4)
N1—C11—C12B117 (2)C23—C24—H24A119.5
N1—C11—C12A106.3 (8)C19—C24—H24A119.5
N1—C11—C10108.7 (3)N2—C25—C26113.1 (3)
C12B—C11—C10109 (3)N2—C25—C10108.0 (3)
C12A—C11—C10110.6 (13)C26—C25—C10111.0 (3)
N1—C11—H11A110.4N2—C25—H25A108.2
C12B—C11—H11A100.5C26—C25—H25A108.2
C12A—C11—H11A110.4C10—C25—H25A108.2
C10—C11—H11A110.4C31—C26—C27118.0 (4)
N1—C11—H11B107.0C31—C26—C25118.9 (3)
C12B—C11—H11B107.0C27—C26—C25123.1 (3)
C12A—C11—H11B116.9C28—C27—C26120.7 (4)
C10—C11—H11B107.0C28—C27—H27A119.7
C13A—C12A—C17A116.3 (14)C26—C27—H27A119.7
C13A—C12A—C11120.3 (12)C29—C28—C27120.0 (4)
C17A—C12A—C11123.2 (13)C29—C28—H28A120.0
C12A—C13A—C14A122.9 (10)C27—C28—H28A120.0
C12A—C13A—H13A118.6C28—C29—C30120.9 (4)
C14A—C13A—H13A118.6C28—C29—Br4119.6 (3)
C15A—C14A—C13A117.1 (10)C30—C29—Br4119.4 (3)
C15A—C14A—H14A121.4C31—C30—C29118.0 (4)
C13A—C14A—H14A121.4C31—C30—H30A121.0
C14A—C15A—C16A121.1 (10)C29—C30—H30A121.0
C14A—C15A—Br2A118.3 (10)C26—C31—C30122.3 (4)
C16A—C15A—Br2A120.5 (8)C26—C31—H31A118.8
C17A—C16A—C15A120.9 (10)C30—C31—H31A118.8
C6—C1—C2—C30.8 (6)C10—C11—C12B—C13B85 (6)
C1—C2—C3—C41.7 (6)N1—C11—C12B—C17B30 (7)
C1—C2—C3—Br1177.4 (3)C12A—C11—C12B—C17B4 (16)
C2—C3—C4—C51.1 (6)C10—C11—C12B—C17B94 (6)
Br1—C3—C4—C5178.0 (3)C17B—C12B—C13B—C14B4 (9)
C3—C4—C5—C60.5 (6)C11—C12B—C13B—C14B176 (5)
C2—C1—C6—C50.7 (6)C12B—C13B—C14B—C15B2 (7)
C2—C1—C6—C7178.1 (4)C13B—C14B—C15B—C16B10 (7)
C4—C5—C6—C11.3 (6)C13B—C14B—C15B—Br2B178 (3)
C4—C5—C6—C7178.8 (4)C14B—C15B—C16B—C17B10 (6)
C11—N1—C7—C6175.4 (3)Br2B—C15B—C16B—C17B177 (3)
C11—N1—C7—C860.3 (4)C13B—C12B—C17B—C16B3 (10)
C1—C6—C7—N113.9 (5)C11—C12B—C17B—C16B177 (4)
C5—C6—C7—N1168.8 (3)C15B—C16B—C17B—C12B4 (7)
C1—C6—C7—C8135.4 (4)C25—N2—C18—C19172.0 (3)
C5—C6—C7—C847.3 (5)C25—N2—C18—C864.4 (4)
N1—C7—C8—C90.5 (4)C9—C8—C18—N260.7 (4)
C6—C7—C8—C9123.3 (3)C7—C8—C18—N257.4 (4)
N1—C7—C8—C18116.6 (3)C9—C8—C18—C19175.2 (3)
C6—C7—C8—C18120.6 (3)C7—C8—C18—C1966.7 (4)
C7—C8—C9—O1128.3 (4)N2—C18—C19—C20149.5 (3)
C18—C8—C9—O1110.7 (4)C8—C18—C19—C2088.7 (4)
C7—C8—C9—C1058.4 (4)N2—C18—C19—C2433.4 (5)
C18—C8—C9—C1062.6 (4)C8—C18—C19—C2488.5 (4)
O1—C9—C10—C11125.8 (4)C24—C19—C20—C212.5 (6)
C8—C9—C10—C1160.8 (4)C18—C19—C20—C21174.8 (4)
O1—C9—C10—C25110.9 (4)C19—C20—C21—C220.5 (6)
C8—C9—C10—C2562.4 (4)C20—C21—C22—C231.4 (7)
C7—N1—C11—C12B178 (3)C20—C21—C22—Br3179.1 (3)
C7—N1—C11—C12A176.9 (13)C21—C22—C23—C241.3 (7)
C7—N1—C11—C1057.8 (4)Br3—C22—C23—C24179.0 (3)
C9—C10—C11—N13.6 (4)C22—C23—C24—C190.7 (6)
C25—C10—C11—N1114.7 (3)C20—C19—C24—C232.6 (6)
C9—C10—C11—C12B125.5 (19)C18—C19—C24—C23174.6 (4)
C25—C10—C11—C12B116.2 (19)C18—N2—C25—C26173.7 (3)
C9—C10—C11—C12A112.7 (7)C18—N2—C25—C1063.1 (4)
C25—C10—C11—C12A128.9 (7)C9—C10—C25—N259.0 (4)
N1—C11—C12A—C13A157 (2)C11—C10—C25—N260.4 (4)
C12B—C11—C12A—C13A1 (19)C9—C10—C25—C26176.6 (3)
C10—C11—C12A—C13A85 (2)C11—C10—C25—C2664.0 (4)
N1—C11—C12A—C17A28 (3)N2—C25—C26—C31168.9 (4)
C12B—C11—C12A—C17A176 (23)C10—C25—C26—C3169.6 (5)
C10—C11—C12A—C17A89 (3)N2—C25—C26—C2711.3 (5)
C17A—C12A—C13A—C14A1 (4)C10—C25—C26—C27110.2 (4)
C11—C12A—C13A—C14A174 (2)C31—C26—C27—C281.5 (6)
C12A—C13A—C14A—C15A0 (3)C25—C26—C27—C28178.3 (4)
C13A—C14A—C15A—C16A1 (2)C26—C27—C28—C290.1 (7)
C13A—C14A—C15A—Br2A176.4 (14)C27—C28—C29—C300.5 (7)
C14A—C15A—C16A—C17A2 (3)C27—C28—C29—Br4179.8 (3)
Br2A—C15A—C16A—C17A175.3 (15)C28—C29—C30—C310.6 (7)
C15A—C16A—C17A—C12A2 (3)Br4—C29—C30—C31179.2 (3)
C13A—C12A—C17A—C16A0 (4)C27—C26—C31—C302.6 (6)
C11—C12A—C17A—C16A175 (2)C25—C26—C31—C30177.2 (4)
N1—C11—C12B—C13B150 (5)C29—C30—C31—C262.2 (7)
C12A—C11—C12B—C13B177 (26)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C12A–C17A, C19–C24 and C26–C31 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.862.583.319 (4)145
C18—H18A···O1ii0.982.503.294 (5)138
C5—H5A···Cg20.932.773.614 (5)151
C28—H28A···Cg1i0.932.673.433 (9)140
C31—H31A···Cg3iii0.932.803.640 (5)151
C13B—H13B···Cg30.932.763.53 (5)141
Symmetry codes: (i) x, y, z1; (ii) x, y+3/2, z1/2; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC31H24Br4N2O
Mr760.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.7409 (5), 27.7762 (10), 7.1538 (2)
β (°) 101.067 (2)
V3)2874.62 (16)
Z4
Radiation typeMo Kα
µ (mm1)5.63
Crystal size (mm)0.89 × 0.19 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.082, 0.614
No. of measured, independent and
observed [I > 2σ(I)] reflections
37831, 8336, 4019
Rint0.045
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.141, 1.01
No. of reflections8336
No. of parameters409
No. of restraints180
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.79

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C12A–C17A, C19–C24 and C26–C31 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.862.583.319 (4)145
C18—H18A···O1ii0.982.503.294 (5)138
C5—H5A···Cg20.932.773.614 (5)151
C28—H28A···Cg1i0.932.673.433 (9)140
C31—H31A···Cg3iii0.932.803.640 (5)151
C13B—H13B···Cg30.932.763.53 (5)141
Symmetry codes: (i) x, y, z1; (ii) x, y+3/2, z1/2; (iii) x, y+3/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of the post of Assistant Research Officer under the Research University Golden Goose Grant (1001/PFIZIK/811012). VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArias-Perez, M. S., Alejo, A. & Maroto, A. (1997). Tetrahedron, 53, 13099–13110.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChinar Pathak, Karthikeyan, S., Kunal More & Vijayakumar, V. (2007). Indian J. Heterocycl. Chem. 16, 295–296.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Yeap, C. S., Rajesh, K., Sarveswari, S. & Vijayakumar, V. (2009). Acta Cryst. E65, o2486–o2487.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrikrishna, A. & Vijayakumar, D. (1998). Tetrahedron Lett. 39, 5833–5834.  Web of Science CrossRef CAS Google Scholar
First citationVijayakumar, V., Sundaravadivelu, M., Perumal, S. & Hewlins, M. J. E. (2000). Magn. Reson. Chem. 38, 883–885.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds