organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Di­chloro­acetyl-r-2,c-6-bis­­(4-meth­oxy­phen­yl)-t-3,t-5-di­methyl­piperidin-4-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 17 December 2009; accepted 19 December 2009; online 9 January 2010)

In the title compound, C23H25Cl2NO4, the piperidine ring adopts a distorted boat conformation. The dihedral angle between the benzene rings is 54.8 (1)°. In the crystal, the mol­ecules are linked into a two-dimensional network parallel to the ab plane by C—H⋯O hydrogen bonds.

Related literature

For the biological properties of piperidin-4-one compounds, see: El-Subbagh et al. (2000[El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-obaid, A. M. (2000). J. Med. Chem. 43, 2915-2921.]); Jerom & Spencer (1988[Jerom, B. R. & Spencer, K. H. (1988). Eur. Patent Appl. EP 277794.]); Perumal et al. (2001[Perumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159.]); Hagenbach & Gysin (1952[Hagenbach, R. E. & Gysin, H. (1952). Experientia, 8, 184-185.]); Mobio et al. (1989[Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). Khim. Farm. Zh. 23, 421-427.]); Katritzky & Fan (1990[Katritzky, A. R. & Fan, W. J. (1990). J. Org. Chem. 55, 3205-3209.]); Ganellin & Spickett (1965[Ganellin, C. R. & Spickett, R. G. W. (1965). J. Med. Chem. 8, 619-625.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C23H25Cl2NO4

  • Mr = 450.34

  • Monoclinic, P 21 /c

  • a = 8.1251 (7) Å

  • b = 9.9702 (9) Å

  • c = 27.649 (2) Å

  • β = 92.265 (5)°

  • V = 2238.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.27 × 0.26 × 0.23 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.917, Tmax = 0.929

  • 19833 measured reflections

  • 5379 independent reflections

  • 3699 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.123

  • S = 1.03

  • 5379 reflections

  • 276 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.98 2.40 3.326 (2) 158
C5—H5⋯O1ii 0.98 2.59 3.408 (2) 141
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidin-4-one derivatives possess varied biological properties such as antiviral, antitumour (El-Subbagh et al., 2000), analgesic (Jerom & Spencer, 1988), local anaesthetic (Perumal et al., 2001; Hagenbach & Gysin, 1952), antimicrobial, bactericidal, fungicidal, herbicidal, insecticidal, antihistaminic, anti-inflammatory, anticancer, CNS stimulant and depressant activities (Mobio et al., 1989; Katritzky & Fan, 1990; Ganellin & Spickett, 1965). In view of these importance and to ascertain the molecular conformation, a crystallographic study of the title compound has been carried out.

The ORTEP diagram of the title compound is shown in Fig.1. The piperidine ring adopts a distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2 = 0.737 (2) Å, q3 = 0.013 (2) Å, φ2 = 285.4 (1)° and Δs(C3 or C6) = 19.0 (2)°. The sum of the bond angles around the atom N1 (359.1°) of the piperidine ring is in accordance with sp2 hybridization.

The crystal packing is stabilized by C—H···O intermolecular interactions. Atom C2 of the molecule at (x, y, z) donates a proton to atom O3 of the molecule at (1 - x, 1/2 + y, 1/2 - z), forming a C5 (Bernstein et al., 1995) zigzag chain running along the b axis. The chains are cross linked via C5—H5···O1 intermolecular interactions, forming a two-dimensional network parallel to the ab plane.

Related literature top

For the biological properties of piperidin-4-one compounds, see: El-Subbagh et al. (2000); Jerom & Spencer (1988); Perumal et al. (2001); Hagenbach & Gysin (1952); Mobio et al. (1989); Katritzky & Fan (1990); Ganellin & Spickett (1965). For ring puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a solution of r-2,c-6-bis(4-methoxyphenyl)-t-3,t-5-dimethylpiperidin-4-one (1.69 g) in anhydrous benzene (60 ml) was added triethylamine (2.08 ml) and dichloroacetylchloride (1.42 ml). The reaction mixture was allowed to stir at room temperature for 8 hr and the solution was washed with water (4 × 25 ml). The organic layer was dried over anhydrous sodium sulfate, passed through a short column of silica, evaporated and crystallized from benzene-petroleum ether (60–80° C) (9:1 v/v).

Refinement top

H atoms were positioned geometrically (C-H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(Cmethyl) and 1.2 Ueq(C).

Structure description top

Piperidin-4-one derivatives possess varied biological properties such as antiviral, antitumour (El-Subbagh et al., 2000), analgesic (Jerom & Spencer, 1988), local anaesthetic (Perumal et al., 2001; Hagenbach & Gysin, 1952), antimicrobial, bactericidal, fungicidal, herbicidal, insecticidal, antihistaminic, anti-inflammatory, anticancer, CNS stimulant and depressant activities (Mobio et al., 1989; Katritzky & Fan, 1990; Ganellin & Spickett, 1965). In view of these importance and to ascertain the molecular conformation, a crystallographic study of the title compound has been carried out.

The ORTEP diagram of the title compound is shown in Fig.1. The piperidine ring adopts a distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2 = 0.737 (2) Å, q3 = 0.013 (2) Å, φ2 = 285.4 (1)° and Δs(C3 or C6) = 19.0 (2)°. The sum of the bond angles around the atom N1 (359.1°) of the piperidine ring is in accordance with sp2 hybridization.

The crystal packing is stabilized by C—H···O intermolecular interactions. Atom C2 of the molecule at (x, y, z) donates a proton to atom O3 of the molecule at (1 - x, 1/2 + y, 1/2 - z), forming a C5 (Bernstein et al., 1995) zigzag chain running along the b axis. The chains are cross linked via C5—H5···O1 intermolecular interactions, forming a two-dimensional network parallel to the ab plane.

For the biological properties of piperidin-4-one compounds, see: El-Subbagh et al. (2000); Jerom & Spencer (1988); Perumal et al. (2001); Hagenbach & Gysin (1952); Mobio et al. (1989); Katritzky & Fan (1990); Ganellin & Spickett (1965). For ring puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
1-Dichloroacetyl-r-2,c-6-bis(4-methoxyphenyl)- t-3,t-5-dimethylpiperidin-4-one top
Crystal data top
C23H25Cl2NO4F(000) = 944
Mr = 450.34Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2335 reflections
a = 8.1251 (7) Åθ = 1.5–28.4°
b = 9.9702 (9) ŵ = 0.32 mm1
c = 27.649 (2) ÅT = 293 K
β = 92.265 (5)°Block, colourless
V = 2238.0 (3) Å30.27 × 0.26 × 0.23 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5379 independent reflections
Radiation source: fine-focus sealed tube3699 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and φ scansθmax = 28.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 810
Tmin = 0.917, Tmax = 0.929k = 1313
19833 measured reflectionsl = 3636
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.6929P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5379 reflectionsΔρmax = 0.27 e Å3
276 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (7)
Crystal data top
C23H25Cl2NO4V = 2238.0 (3) Å3
Mr = 450.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1251 (7) ŵ = 0.32 mm1
b = 9.9702 (9) ÅT = 293 K
c = 27.649 (2) Å0.27 × 0.26 × 0.23 mm
β = 92.265 (5)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5379 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3699 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.929Rint = 0.026
19833 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
5379 reflectionsΔρmin = 0.36 e Å3
276 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.25916 (8)1.01921 (6)0.20873 (3)0.0839 (2)
Cl20.26208 (12)0.94382 (8)0.10863 (3)0.1095 (3)
O10.03043 (18)0.80082 (15)0.18222 (7)0.0785 (5)
O20.7057 (2)0.78446 (18)0.00094 (6)0.0835 (5)
O30.42430 (17)0.31447 (14)0.24506 (5)0.0588 (4)
O40.1564 (2)0.25273 (19)0.03205 (6)0.0880 (5)
N10.23306 (16)0.64601 (13)0.17753 (5)0.0373 (3)
C20.41000 (18)0.60777 (16)0.17209 (6)0.0347 (3)
H20.47470.64620.19940.042*
C30.42732 (19)0.45310 (16)0.17457 (6)0.0375 (4)
H30.35930.41650.14760.045*
C40.3566 (2)0.40055 (17)0.22066 (6)0.0400 (4)
C50.1976 (2)0.46357 (18)0.23518 (6)0.0429 (4)
H50.12270.39160.24430.051*
C60.1163 (2)0.54088 (17)0.19306 (6)0.0407 (4)
H60.02210.58820.20610.049*
C70.1748 (2)0.77330 (18)0.17704 (7)0.0466 (4)
C80.2948 (2)0.88677 (18)0.16834 (7)0.0536 (5)
H80.40820.85440.17310.064*
C90.48157 (19)0.65819 (16)0.12568 (6)0.0367 (4)
C100.4080 (2)0.63098 (19)0.08098 (6)0.0451 (4)
H100.30860.58460.07930.054*
C110.4787 (2)0.6711 (2)0.03850 (7)0.0530 (5)
H110.42740.65140.00870.064*
C120.6256 (3)0.7404 (2)0.04089 (8)0.0563 (5)
C130.7005 (2)0.76910 (19)0.08502 (8)0.0561 (5)
H130.79920.81650.08660.067*
C140.6297 (2)0.72769 (18)0.12718 (7)0.0471 (4)
H140.68210.74670.15690.056*
C150.6402 (4)0.7474 (3)0.04496 (10)0.1007 (10)
H15A0.62370.65210.04600.151*
H15B0.71550.77280.06930.151*
H15C0.53680.79210.05100.151*
C160.6029 (2)0.4058 (2)0.16746 (8)0.0572 (5)
H16A0.67620.44960.19050.086*
H16B0.63410.42760.13530.086*
H16C0.60910.31050.17210.086*
C170.2310 (3)0.5525 (2)0.27953 (7)0.0608 (5)
H17A0.27330.49860.30600.091*
H17B0.13040.59470.28840.091*
H17C0.31030.62000.27210.091*
C180.04865 (18)0.45810 (17)0.15056 (6)0.0401 (4)
C190.0299 (2)0.32074 (18)0.15241 (7)0.0477 (4)
H190.06350.27540.18050.057*
C200.0373 (2)0.2483 (2)0.11393 (7)0.0546 (5)
H200.04820.15570.11620.066*
C210.0879 (2)0.3135 (2)0.07232 (7)0.0572 (5)
C220.0711 (2)0.4514 (2)0.06939 (7)0.0582 (5)
H220.10490.49630.04120.070*
C230.0045 (2)0.5217 (2)0.10811 (7)0.0489 (4)
H230.00530.61440.10580.059*
C240.1684 (5)0.1120 (3)0.03207 (13)0.1282 (14)
H24A0.06020.07380.03570.192*
H24B0.21970.08250.00210.192*
H24C0.23350.08380.05840.192*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0931 (5)0.0454 (3)0.1115 (5)0.0192 (3)0.0188 (4)0.0273 (3)
Cl20.1680 (8)0.0806 (5)0.0815 (5)0.0454 (5)0.0254 (5)0.0328 (4)
O10.0488 (8)0.0526 (9)0.1349 (15)0.0178 (7)0.0149 (9)0.0099 (9)
O20.0905 (12)0.0833 (12)0.0795 (11)0.0124 (10)0.0404 (9)0.0208 (9)
O30.0665 (9)0.0521 (8)0.0577 (8)0.0080 (7)0.0027 (7)0.0194 (7)
O40.0982 (13)0.0853 (12)0.0777 (11)0.0069 (10)0.0324 (9)0.0231 (9)
N10.0331 (7)0.0329 (7)0.0461 (7)0.0036 (6)0.0056 (6)0.0005 (6)
C20.0295 (8)0.0346 (8)0.0400 (8)0.0026 (7)0.0028 (6)0.0002 (7)
C30.0368 (8)0.0347 (8)0.0411 (8)0.0054 (7)0.0052 (6)0.0028 (7)
C40.0446 (9)0.0355 (9)0.0399 (8)0.0032 (8)0.0004 (7)0.0005 (7)
C50.0448 (9)0.0443 (10)0.0403 (9)0.0049 (8)0.0108 (7)0.0001 (8)
C60.0327 (8)0.0413 (9)0.0489 (9)0.0009 (7)0.0107 (7)0.0014 (8)
C70.0437 (10)0.0386 (9)0.0574 (10)0.0089 (8)0.0025 (8)0.0050 (8)
C80.0599 (12)0.0335 (9)0.0675 (12)0.0111 (9)0.0015 (9)0.0006 (9)
C90.0332 (8)0.0314 (8)0.0457 (9)0.0030 (7)0.0047 (7)0.0042 (7)
C100.0386 (9)0.0488 (10)0.0484 (9)0.0037 (8)0.0052 (7)0.0056 (8)
C110.0550 (11)0.0589 (12)0.0455 (10)0.0019 (10)0.0078 (8)0.0089 (9)
C120.0575 (12)0.0486 (11)0.0645 (12)0.0050 (10)0.0234 (10)0.0158 (10)
C130.0415 (10)0.0453 (11)0.0824 (14)0.0057 (9)0.0143 (10)0.0102 (10)
C140.0397 (9)0.0403 (9)0.0612 (11)0.0019 (8)0.0021 (8)0.0049 (8)
C150.132 (3)0.105 (2)0.0691 (17)0.0001 (19)0.0486 (17)0.0209 (16)
C160.0496 (11)0.0542 (11)0.0691 (12)0.0199 (9)0.0174 (9)0.0149 (10)
C170.0735 (14)0.0637 (13)0.0459 (10)0.0017 (11)0.0100 (9)0.0107 (9)
C180.0269 (8)0.0437 (9)0.0500 (9)0.0019 (7)0.0051 (7)0.0009 (8)
C190.0434 (10)0.0448 (10)0.0549 (10)0.0009 (8)0.0001 (8)0.0033 (8)
C200.0490 (11)0.0443 (10)0.0701 (13)0.0017 (9)0.0040 (9)0.0066 (10)
C210.0456 (11)0.0642 (13)0.0613 (12)0.0067 (10)0.0060 (9)0.0129 (10)
C220.0495 (11)0.0697 (14)0.0545 (11)0.0055 (10)0.0087 (9)0.0068 (10)
C230.0390 (9)0.0470 (10)0.0606 (11)0.0019 (8)0.0002 (8)0.0063 (9)
C240.163 (3)0.085 (2)0.131 (3)0.030 (2)0.063 (2)0.055 (2)
Geometric parameters (Å, º) top
Cl1—C81.7609 (19)C10—H100.93
Cl2—C81.757 (2)C11—C121.379 (3)
O1—C71.218 (2)C11—H110.93
O2—C121.376 (2)C12—C131.372 (3)
O2—C151.406 (3)C13—C141.383 (3)
O3—C41.210 (2)C13—H130.93
O4—C211.367 (2)C14—H140.93
O4—C241.406 (4)C15—H15A0.96
N1—C71.354 (2)C15—H15B0.96
N1—C61.489 (2)C15—H15C0.96
N1—C21.501 (2)C16—H16A0.96
C2—C91.516 (2)C16—H16B0.96
C2—C31.550 (2)C16—H16C0.96
C2—H20.98C17—H17A0.96
C3—C41.512 (2)C17—H17B0.96
C3—C161.523 (2)C17—H17C0.96
C3—H30.98C18—C191.379 (2)
C4—C51.506 (2)C18—C231.388 (2)
C5—C61.525 (2)C19—C201.380 (3)
C5—C171.529 (2)C19—H190.93
C5—H50.98C20—C211.370 (3)
C6—C181.521 (2)C20—H200.93
C6—H60.98C21—C221.384 (3)
C7—O11.218 (2)C22—C231.373 (3)
C7—C81.519 (3)C22—H220.93
C8—H80.98C23—H230.93
C9—C101.378 (2)C24—H24A0.96
C9—C141.388 (2)C24—H24B0.96
C10—C111.386 (2)C24—H24C0.96
C12—O2—C15117.82 (19)C13—C12—C11119.99 (17)
C21—O4—C24117.9 (2)O2—C12—C11123.9 (2)
C7—N1—C6115.85 (14)C12—C13—C14120.19 (18)
C7—N1—C2124.96 (14)C12—C13—H13119.9
C6—N1—C2118.31 (12)C14—C13—H13119.9
N1—C2—C9113.69 (12)C13—C14—C9120.84 (18)
N1—C2—C3109.51 (12)C13—C14—H14119.6
C9—C2—C3109.29 (13)C9—C14—H14119.6
N1—C2—H2108.1O2—C15—H15A109.5
C9—C2—H2108.1O2—C15—H15B109.5
C3—C2—H2108.1H15A—C15—H15B109.5
C4—C3—C16113.00 (14)O2—C15—H15C109.5
C4—C3—C2110.20 (13)H15A—C15—H15C109.5
C16—C3—C2112.72 (14)H15B—C15—H15C109.5
C4—C3—H3106.8C3—C16—H16A109.5
C16—C3—H3106.8C3—C16—H16B109.5
C2—C3—H3106.8H16A—C16—H16B109.5
O3—C4—C5121.55 (15)C3—C16—H16C109.5
O3—C4—C3122.41 (16)H16A—C16—H16C109.5
C5—C4—C3116.02 (14)H16B—C16—H16C109.5
C4—C5—C6110.96 (13)C5—C17—H17A109.5
C4—C5—C17109.19 (14)C5—C17—H17B109.5
C6—C5—C17112.17 (15)H17A—C17—H17B109.5
C4—C5—H5108.1C5—C17—H17C109.5
C6—C5—H5108.1H17A—C17—H17C109.5
C17—C5—H5108.1H17B—C17—H17C109.5
N1—C6—C18111.99 (13)C19—C18—C23116.98 (17)
N1—C6—C5108.31 (13)C19—C18—C6123.20 (16)
C18—C6—C5116.62 (14)C23—C18—C6119.76 (16)
N1—C6—H6106.4C18—C19—C20122.15 (18)
C18—C6—H6106.4C18—C19—H19118.9
C5—C6—H6106.4C20—C19—H19118.9
O1—C7—N1123.20 (17)C21—C20—C19119.69 (19)
O1—C7—C8118.56 (16)C21—C20—H20120.2
N1—C7—C8118.22 (15)C19—C20—H20120.2
C7—C8—Cl2108.39 (14)O4—C21—C20125.0 (2)
C7—C8—Cl1109.58 (13)O4—C21—C22115.48 (19)
Cl2—C8—Cl1109.31 (10)C20—C21—C22119.56 (19)
C7—C8—H8109.8C23—C22—C21119.88 (19)
Cl2—C8—H8109.8C23—C22—H22120.1
Cl1—C8—H8109.8C21—C22—H22120.1
C10—C9—C14118.03 (16)C22—C23—C18121.74 (18)
C10—C9—C2121.78 (14)C22—C23—H23119.1
C14—C9—C2120.10 (15)C18—C23—H23119.1
C9—C10—C11121.56 (17)O4—C24—H24A109.5
C9—C10—H10119.2O4—C24—H24B109.5
C11—C10—H10119.2H24A—C24—H24B109.5
C12—C11—C10119.40 (18)O4—C24—H24C109.5
C12—C11—H11120.3H24A—C24—H24C109.5
C10—C11—H11120.3H24B—C24—H24C109.5
C13—C12—O2116.11 (19)
C7—N1—C2—C957.4 (2)N1—C2—C9—C1054.2 (2)
C6—N1—C2—C9133.76 (14)C3—C2—C9—C1068.44 (19)
C7—N1—C2—C3179.99 (15)N1—C2—C9—C14129.30 (15)
C6—N1—C2—C311.19 (18)C3—C2—C9—C14108.02 (17)
N1—C2—C3—C454.86 (17)C14—C9—C10—C110.1 (3)
C9—C2—C3—C4180.00 (13)C2—C9—C10—C11176.45 (16)
N1—C2—C3—C16177.88 (14)C9—C10—C11—C120.3 (3)
C9—C2—C3—C1652.74 (18)C15—O2—C12—C13174.8 (2)
C16—C3—C4—O310.3 (2)C15—O2—C12—C115.1 (3)
C2—C3—C4—O3137.45 (17)C10—C11—C12—C130.0 (3)
C16—C3—C4—C5168.53 (15)C10—C11—C12—O2179.92 (19)
C2—C3—C4—C541.42 (19)O2—C12—C13—C14179.40 (18)
O3—C4—C5—C6165.48 (16)C11—C12—C13—C140.5 (3)
C3—C4—C5—C615.6 (2)C12—C13—C14—C90.8 (3)
O3—C4—C5—C1770.4 (2)C10—C9—C14—C130.5 (3)
C3—C4—C5—C17108.51 (17)C2—C9—C14—C13177.04 (16)
C7—N1—C6—C18105.44 (17)N1—C6—C18—C19138.12 (16)
C2—N1—C6—C1884.76 (17)C5—C6—C18—C1912.6 (2)
C7—N1—C6—C5124.58 (15)N1—C6—C18—C2344.8 (2)
C2—N1—C6—C545.23 (18)C5—C6—C18—C23170.39 (14)
C4—C5—C6—N158.81 (17)C23—C18—C19—C200.5 (3)
C17—C5—C6—N163.61 (17)C6—C18—C19—C20177.62 (16)
C4—C5—C6—C1868.56 (18)C18—C19—C20—C210.1 (3)
C17—C5—C6—C18169.01 (14)C24—O4—C21—C203.5 (4)
C6—N1—C7—O19.9 (3)C24—O4—C21—C22176.7 (3)
C2—N1—C7—O1178.98 (17)C19—C20—C21—O4179.80 (19)
C6—N1—C7—C8171.65 (15)C19—C20—C21—C220.1 (3)
C2—N1—C7—C82.6 (2)O4—C21—C22—C23179.61 (18)
O1—C7—C8—Cl274.4 (2)C20—C21—C22—C230.1 (3)
N1—C7—C8—Cl2104.09 (17)C21—C22—C23—C180.6 (3)
O1—C7—C8—Cl144.8 (2)C19—C18—C23—C220.7 (3)
N1—C7—C8—Cl1136.69 (15)C6—C18—C23—C22177.94 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.982.403.326 (2)158
C5—H5···O1ii0.982.593.408 (2)141
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H25Cl2NO4
Mr450.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.1251 (7), 9.9702 (9), 27.649 (2)
β (°) 92.265 (5)
V3)2238.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.27 × 0.26 × 0.23
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.917, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
19833, 5379, 3699
Rint0.026
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.123, 1.03
No. of reflections5379
No. of parameters276
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.36

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.982.403.326 (2)158
C5—H5···O1ii0.982.593.408 (2)141
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y1/2, z+1/2.
 

Acknowledgements

KR thanks the GNR X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the management of Kandaswami Kandar's College, Velur, Namakkal, Tamil Nadu, India, for the encouragement to pursue the programme.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-obaid, A. M. (2000). J. Med. Chem. 43, 2915–2921.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGanellin, C. R. & Spickett, R. G. W. (1965). J. Med. Chem. 8, 619–625.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHagenbach, R. E. & Gysin, H. (1952). Experientia, 8, 184–185.  CrossRef PubMed CAS Web of Science Google Scholar
First citationJerom, B. R. & Spencer, K. H. (1988). Eur. Patent Appl. EP 277794.  Google Scholar
First citationKatritzky, A. R. & Fan, W. J. (1990). J. Org. Chem. 55, 3205–3209.  CrossRef CAS Web of Science Google Scholar
First citationMobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). Khim. Farm. Zh. 23, 421–427.  CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPerumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds