metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chloridobis[2-(1,5-di­methyl-1H-pyrazol-3-yl-κN2)-1-methyl-1H-imidazole-κN3]copper(II) chloride methanol hemisolvate tetra­hydrate

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences, Pharmacochimie, Avenue Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: l_elammari@fsr.ac.ma

(Received 20 December 2009; accepted 1 January 2010; online 9 January 2010)

In the title compound, [CuCl(C9H12N4)2]Cl·0.5CH3OH·4H2O, the CuII ion adopts a distorted trigonal-bipyramidal coordination arising from two bidentate ligands and a Cl anion. The two heterocyclic ligands are planar with dihedral angles of 3.4 (1) and 0.7 (1)° between the pyrazole and imidazole rings. In the crystal, water mol­ecules and uncoordinated chloride anions form an O—H⋯Cl and O—H⋯O hydrogen-bonded sheet parallel to (100) which lies between two layers of complex mol­ecules. The packing is further stabilized by C—H⋯Cl and C—H⋯O hydrogen bonds. The methanol solvent mol­ecule is disordered across a centre of inversion.

Related literature

For applications of transition metal complexes with biheterocyclic ligands, see: Allen & Wilson (1963[Allen, C. F. H. & Wilson, B. D. (1963). US Patent No. 3 106 467.]); El-Khawass & Bistawroos (1990[El-Khawass, E. S. M. & Bistawroos, A. E. (1990). Alex. J. Pharm. Sci. 4, 77-79.]); Pearson (1975[Pearson, I. (1975). US Patent No. 3 883 549.]); Trofimenko (1993[Trofimenko, S. (1993). Chem. Rev. 93, 943-980.]); Tsuboi et al. (1994[Tsuboi, S., Moriie, K., Hatsutori, Y., Wada, K., Sone, S., Oohigata, T. & Ito, A. (1994). Jpn Kokai Tokkyo Koho, JP 06 184 114.]); Hartfiel et al. (1993[Hartfiel, U., Dorfmeister, G., Franke, H., Geisler, J., Johann, G. & Rees, R. (1993). Eur. Patent Appl. EP 542 388.]). For the preparation of biheterocyclic ligands, see: Tjiou et al. (1989[Tjiou, E. M., Fruchier, A., Pellegerin, V. & Tarago, G. (1989). J. Heterocycl. Chem. 26, 893-898.]); Bouhaddioui (1993[Bouhaddioui, S. (1993). Thèse de doctorat d'état, Université Mohammed 1er, Faculté des Sciences Oujda, Morocco.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl(C9H12N4)2]Cl·0.5CH4O·4H2O

  • Mr = 574.98

  • Monoclinic, P 21 /c

  • a = 12.5213 (3) Å

  • b = 15.5386 (4) Å

  • c = 14.1806 (4) Å

  • β = 100.883 (1)°

  • V = 2709.40 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 298 K

  • 0.44 × 0.33 × 0.19 mm

Data collection
  • Bruker X8 APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.668, Tmax = 0.820

  • 47954 measured reflections

  • 7884 independent reflections

  • 5480 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.124

  • S = 1.01

  • 7884 reflections

  • 323 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 1.9531 (17)
Cu1—N5 1.9545 (17)
Cu1—N4 2.2161 (14)
Cu1—N8 2.2415 (14)
Cu1—Cl1 2.2739 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl2i 0.85 2.33 3.162 (2) 167
O1—H1B⋯Cl2 0.84 2.34 3.186 (2) 175
O2—H2A⋯Cl2 0.83 2.39 3.205 (3) 165
O3—H3B⋯Cl2ii 0.85 2.38 3.234 (3) 174
O4—H4A⋯O1 0.84 1.98 2.793 (3) 165
O4—H4B⋯O2iii 0.83 1.89 2.706 (4) 165
C11—H11⋯Cl2iv 0.93 2.75 3.592 (2) 151
C18—H18C⋯Cl1v 0.96 2.76 3.708 (3) 177
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The ability of biheterocycles to form stable and biochemically interesting complexes, with transition metals has prompted several researchers to test them in several areas: medicine (El-Khawass & Bistawroos, 1990, Trofimenko, 1993), agriculture (Tsuboi et al., 1994, Hartfiel et al., 1993) and the photography industry (Allen & Wilson, 1963; Pearson, 1975). To contribute to the understanding of interaction of these heterocyclic compounds with transition metals, we have studied a copper complex of a biheterocycle prepared by Tjiou et al. (1989) and methylated using phase transfer catalysis process (Bouhaddioui, 1993).

The CuII ion adopts a distorted trigonal bipyramidal coordination arising from two bidentate ligands and a Cl- anion (Fig. 1). The axial positions are occupied by N1 and N5 [N1—Cu1—N5 = 173.03 (7)°], while atoms Cu1, Cl1, N4 and N8 lie in the equatorial plane [N4—Cu1—Cl1 = 128.60 (4)°, N8—Cu1—Cl1 = 132.50 (4)° and N4—Cu1—N8 = 98.90 (6)°]. The two organic ligands are almost planar; the dihedral angle between N1/C1/C2/N2/C3 and N3/N4/C4-C6 planes is 3.4 (1)° and that between N5/C10/C11/N6/C12 and N7/N8/C13-C15 planes is 0.7 (1)°.

In the crystal, the water molecules and uncoordinated chloride ions form a O—H···Cl and O—H···O hydrogen-bonded sheet parallel to the (100) and it lies between two layers of complex molecules. The packing is further stabilized by C—H···Cl and C—H···O hydrogen bonds (Table 2 and Fig.2).

Related literature top

For applications of transition metal complexes with biheterocyclic ligands, see: Allen & Wilson (1963); El-Khawass & Bistawroos (1990); Pearson (1975); Trofimenko (1993); Tsuboi et al. (1994); Hartfiel et al. (1993). For the preparation of biheterocyclic ligands, see: Tjiou et al. (1989); Bouhaddioui (1993).

Experimental top

The title compound was synthesized by mixing a solution of biheterocycle in methanol and an aqueous solution of cupric chloride with a ligand/metal ratio of 2. Heating was maintained for few minutes until dissolution of all ligand. Then a pinch of NaCl was added and the heating was continued. When the solution became clear, it was left to stand at room temperature. After a few days, green crystals were collected by filtration. They were dried over P2O5 in a desiccator for 48 h.

Refinement top

The methanol molecule is disordered across a centre of inversion. All O-bound H atoms were initially located in a difference map and refined with a O–H distance restraint of 0.84 (1) Å and an additional H···H restraint of 1.37 (2) Å for the water molecules. Later they were refined in the riding model with Uiso(H) set to 1.5Ueq(O). The C-bound H atoms were positioned geometrically [C-H = 0.93-0.96 Å] and refined using a riding model with Uiso(H) = 1.2-1.5Ueq(O). Reflections 110, 011 and 111 affected by beamstop were removed during refinement. The reflections 031, 313, 532 and 230 were omitted because the difference between their calculated and observed intensities are very large.

Structure description top

The ability of biheterocycles to form stable and biochemically interesting complexes, with transition metals has prompted several researchers to test them in several areas: medicine (El-Khawass & Bistawroos, 1990, Trofimenko, 1993), agriculture (Tsuboi et al., 1994, Hartfiel et al., 1993) and the photography industry (Allen & Wilson, 1963; Pearson, 1975). To contribute to the understanding of interaction of these heterocyclic compounds with transition metals, we have studied a copper complex of a biheterocycle prepared by Tjiou et al. (1989) and methylated using phase transfer catalysis process (Bouhaddioui, 1993).

The CuII ion adopts a distorted trigonal bipyramidal coordination arising from two bidentate ligands and a Cl- anion (Fig. 1). The axial positions are occupied by N1 and N5 [N1—Cu1—N5 = 173.03 (7)°], while atoms Cu1, Cl1, N4 and N8 lie in the equatorial plane [N4—Cu1—Cl1 = 128.60 (4)°, N8—Cu1—Cl1 = 132.50 (4)° and N4—Cu1—N8 = 98.90 (6)°]. The two organic ligands are almost planar; the dihedral angle between N1/C1/C2/N2/C3 and N3/N4/C4-C6 planes is 3.4 (1)° and that between N5/C10/C11/N6/C12 and N7/N8/C13-C15 planes is 0.7 (1)°.

In the crystal, the water molecules and uncoordinated chloride ions form a O—H···Cl and O—H···O hydrogen-bonded sheet parallel to the (100) and it lies between two layers of complex molecules. The packing is further stabilized by C—H···Cl and C—H···O hydrogen bonds (Table 2 and Fig.2).

For applications of transition metal complexes with biheterocyclic ligands, see: Allen & Wilson (1963); El-Khawass & Bistawroos (1990); Pearson (1975); Trofimenko (1993); Tsuboi et al. (1994); Hartfiel et al. (1993). For the preparation of biheterocyclic ligands, see: Tjiou et al. (1989); Bouhaddioui (1993).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram showing hydrogen-bonded (dashed lines) layer of solvent molecules between the complex molecules.
Chloridobis[2-(1,5-dimethyl-1H-pyrazol-3-yl-κN2)-1-methyl- 1H-imidazole-κN3]copper(II) chloride methanol hemisolvate tetrahydrate top
Crystal data top
[CuCl(C9H12N4)2]Cl·0.5CH4O·4H2OF(000) = 1200
Mr = 574.98Dx = 1.410 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4291 reflections
a = 12.5213 (3) Åθ = 2.6–29.8°
b = 15.5386 (4) ŵ = 1.04 mm1
c = 14.1806 (4) ÅT = 298 K
β = 100.883 (1)°Block, green
V = 2709.40 (12) Å30.44 × 0.33 × 0.19 mm
Z = 4
Data collection top
Bruker X8 APEXII area-detector
diffractometer
7884 independent reflections
Radiation source: fine-focus sealed tube5480 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 30.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1717
Tmin = 0.668, Tmax = 0.820k = 2021
47954 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0649P)2 + 0.7437P]
where P = (Fo2 + 2Fc2)/3
7884 reflections(Δ/σ)max = 0.001
323 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[CuCl(C9H12N4)2]Cl·0.5CH4O·4H2OV = 2709.40 (12) Å3
Mr = 574.98Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5213 (3) ŵ = 1.04 mm1
b = 15.5386 (4) ÅT = 298 K
c = 14.1806 (4) Å0.44 × 0.33 × 0.19 mm
β = 100.883 (1)°
Data collection top
Bruker X8 APEXII area-detector
diffractometer
7884 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5480 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 0.820Rint = 0.029
47954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.01Δρmax = 0.39 e Å3
7884 reflectionsΔρmin = 0.26 e Å3
323 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.900612 (18)0.233115 (15)0.118071 (16)0.04439 (9)
Cl10.90806 (7)0.08691 (4)0.12169 (4)0.0800 (2)
N10.78145 (13)0.23508 (10)0.00716 (12)0.0454 (3)
N20.70109 (13)0.28521 (11)0.13260 (12)0.0477 (4)
N31.05116 (12)0.37246 (10)0.01121 (11)0.0417 (3)
N40.96472 (12)0.32276 (9)0.02067 (10)0.0393 (3)
N51.01880 (13)0.24643 (10)0.22878 (12)0.0450 (4)
N61.09451 (12)0.30513 (12)0.36557 (12)0.0486 (4)
N70.74464 (12)0.38061 (10)0.21093 (10)0.0399 (3)
N80.83164 (11)0.32983 (9)0.20746 (10)0.0379 (3)
C10.68255 (17)0.19476 (15)0.01803 (16)0.0570 (5)
H10.65470.15320.01790.068*
C20.63247 (18)0.22604 (15)0.10454 (17)0.0571 (5)
H20.56430.21020.13840.068*
C30.79083 (15)0.28850 (11)0.06320 (12)0.0403 (4)
C40.89033 (15)0.33733 (10)0.05888 (12)0.0379 (3)
C50.92968 (17)0.39587 (12)0.11883 (13)0.0452 (4)
H50.89370.41630.17800.054*
C61.03251 (16)0.41695 (11)0.07205 (13)0.0443 (4)
C70.6782 (2)0.33629 (16)0.22015 (15)0.0620 (6)
H7A0.60520.32520.25310.093*
H7B0.72830.32110.26090.093*
H7C0.68590.39630.20420.093*
C81.11508 (19)0.47529 (14)0.10149 (17)0.0588 (5)
H8A1.08780.49720.16480.088*
H8B1.18110.44390.10160.088*
H8C1.12950.52240.05710.088*
C91.14876 (18)0.37281 (16)0.08480 (18)0.0626 (6)
H9A1.19150.42270.07710.094*
H9B1.19040.32180.07910.094*
H9C1.12900.37410.14700.094*
C101.12060 (17)0.21135 (15)0.25698 (17)0.0567 (5)
H101.15170.16960.22360.068*
C111.16802 (17)0.24752 (15)0.34115 (18)0.0583 (5)
H111.23720.23570.37590.070*
C121.00555 (14)0.30198 (12)0.29551 (13)0.0410 (4)
C130.90411 (14)0.34939 (11)0.28650 (12)0.0373 (3)
C140.86365 (16)0.41194 (12)0.34037 (13)0.0463 (4)
H140.89830.43590.39820.056*
C150.76163 (16)0.43081 (12)0.28999 (13)0.0446 (4)
C160.64923 (17)0.37722 (16)0.13561 (16)0.0570 (5)
H16A0.60960.43020.13450.086*
H16B0.60380.33020.14740.086*
H16C0.67100.36900.07480.086*
C170.6784 (2)0.49353 (17)0.31146 (19)0.0672 (6)
H17A0.70670.52330.37020.101*
H17B0.61350.46310.31810.101*
H17C0.66180.53430.25990.101*
C181.1111 (2)0.35786 (17)0.45289 (17)0.0655 (6)
H18A1.18210.34670.49020.098*
H18B1.05690.34380.49000.098*
H18C1.10530.41760.43560.098*
O50.6547 (5)0.0238 (4)0.0811 (5)0.130 (2)0.50
H5A0.65160.01480.11990.195*0.50
C190.5593 (8)0.0440 (7)0.0398 (6)0.123 (3)0.50
H19A0.51730.00730.02310.185*0.50
H19B0.52580.07850.08230.185*0.50
H19C0.56260.07620.01740.185*0.50
O10.38934 (14)0.50044 (13)0.08744 (14)0.0760 (5)
H1A0.38770.47020.03740.114*
H1B0.43830.53700.08410.114*
O20.6051 (2)0.73482 (18)0.27534 (18)0.1147 (9)
H2A0.61070.70260.22960.172*
H2B0.65810.72890.31990.172*
O30.6009 (3)0.6933 (2)0.46268 (19)0.1391 (11)
H3A0.54280.69090.42100.209*
H3B0.59190.73880.49380.209*
O40.3845 (3)0.4064 (2)0.25444 (18)0.1355 (10)
H4A0.39130.44170.21140.203*
H4B0.38360.35590.23500.203*
Cl20.58501 (5)0.62937 (4)0.07857 (5)0.07005 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.05202 (15)0.03657 (13)0.04530 (14)0.00040 (9)0.01102 (10)0.00375 (9)
Cl10.1459 (7)0.0368 (3)0.0565 (3)0.0098 (3)0.0171 (4)0.0002 (2)
N10.0476 (9)0.0430 (8)0.0478 (8)0.0077 (7)0.0150 (7)0.0046 (6)
N20.0480 (9)0.0485 (9)0.0462 (8)0.0079 (7)0.0078 (7)0.0106 (7)
N30.0440 (8)0.0371 (7)0.0465 (8)0.0030 (6)0.0150 (6)0.0028 (6)
N40.0412 (7)0.0366 (7)0.0423 (8)0.0017 (6)0.0132 (6)0.0050 (6)
N50.0451 (8)0.0440 (8)0.0481 (9)0.0087 (6)0.0147 (7)0.0099 (7)
N60.0430 (9)0.0481 (9)0.0521 (9)0.0002 (7)0.0025 (7)0.0122 (7)
N70.0399 (8)0.0383 (8)0.0425 (7)0.0049 (6)0.0106 (6)0.0043 (6)
N80.0379 (7)0.0365 (7)0.0405 (7)0.0032 (6)0.0101 (6)0.0033 (6)
C10.0536 (12)0.0569 (13)0.0624 (13)0.0135 (10)0.0162 (10)0.0089 (10)
C20.0450 (10)0.0635 (14)0.0624 (13)0.0067 (9)0.0094 (9)0.0179 (10)
C30.0449 (9)0.0368 (8)0.0403 (9)0.0034 (7)0.0108 (7)0.0082 (7)
C40.0479 (9)0.0322 (8)0.0356 (8)0.0038 (7)0.0131 (7)0.0027 (6)
C50.0636 (12)0.0383 (9)0.0364 (8)0.0039 (8)0.0161 (8)0.0031 (7)
C60.0598 (11)0.0327 (8)0.0463 (9)0.0000 (7)0.0248 (8)0.0012 (7)
C70.0657 (14)0.0666 (15)0.0504 (11)0.0174 (11)0.0029 (10)0.0034 (10)
C80.0776 (15)0.0408 (11)0.0663 (13)0.0104 (9)0.0347 (11)0.0020 (9)
C90.0494 (12)0.0639 (14)0.0715 (14)0.0105 (10)0.0036 (10)0.0135 (11)
C100.0514 (11)0.0585 (12)0.0633 (13)0.0173 (9)0.0188 (10)0.0174 (10)
C110.0438 (11)0.0633 (13)0.0666 (14)0.0114 (9)0.0073 (9)0.0216 (11)
C120.0393 (9)0.0391 (9)0.0452 (9)0.0011 (7)0.0096 (7)0.0129 (7)
C130.0418 (9)0.0335 (8)0.0373 (8)0.0018 (6)0.0097 (7)0.0066 (6)
C140.0544 (11)0.0415 (10)0.0427 (9)0.0012 (8)0.0084 (8)0.0016 (7)
C150.0533 (11)0.0377 (9)0.0459 (9)0.0048 (7)0.0172 (8)0.0016 (7)
C160.0481 (11)0.0620 (13)0.0577 (12)0.0108 (9)0.0016 (9)0.0007 (10)
C170.0730 (15)0.0591 (14)0.0723 (15)0.0229 (11)0.0205 (12)0.0053 (11)
C180.0644 (14)0.0619 (14)0.0622 (13)0.0024 (11)0.0085 (11)0.0021 (11)
O50.141 (5)0.120 (5)0.152 (5)0.030 (4)0.087 (4)0.050 (4)
C190.127 (7)0.145 (8)0.113 (6)0.004 (6)0.060 (5)0.030 (5)
O10.0805 (12)0.0732 (11)0.0803 (11)0.0101 (9)0.0307 (9)0.0129 (10)
O20.139 (2)0.123 (2)0.0857 (16)0.0216 (16)0.0300 (15)0.0303 (14)
O30.176 (3)0.147 (3)0.0957 (17)0.028 (2)0.0274 (18)0.0217 (18)
O40.195 (3)0.115 (2)0.0959 (17)0.022 (2)0.0239 (18)0.0127 (15)
Cl20.0692 (4)0.0644 (4)0.0750 (4)0.0088 (3)0.0097 (3)0.0167 (3)
Geometric parameters (Å, º) top
Cu1—N11.9531 (17)C8—H8B0.96
Cu1—N51.9545 (17)C8—H8C0.96
Cu1—N42.2161 (14)C9—H9A0.96
Cu1—N82.2415 (14)C9—H9B0.96
Cu1—Cl12.2739 (6)C9—H9C0.96
N1—C31.320 (2)C10—C111.351 (4)
N1—C11.374 (3)C10—H100.93
N2—C31.348 (2)C11—H110.93
N2—C21.368 (3)C12—C131.453 (2)
N2—C71.456 (3)C13—C141.390 (3)
N3—C61.350 (2)C14—C151.372 (3)
N3—N41.357 (2)C14—H140.93
N3—C91.450 (3)C15—C171.499 (3)
N4—C41.340 (2)C16—H16A0.96
N5—C121.314 (3)C16—H16B0.96
N5—C101.374 (3)C16—H16C0.96
N6—C121.346 (2)C17—H17A0.96
N6—C111.374 (3)C17—H17B0.96
N6—C181.467 (3)C17—H17C0.96
N7—C151.349 (2)C18—H18A0.96
N7—N81.354 (2)C18—H18B0.96
N7—C161.445 (3)C18—H18C0.96
N8—C131.337 (2)O5—C191.266 (10)
C1—C21.358 (3)O5—H5A0.82
C1—H10.93C19—H19A0.96
C2—H20.93C19—H19B0.96
C3—C41.450 (3)C19—H19C0.96
C4—C51.397 (2)O1—H1A0.85
C5—C61.372 (3)O1—H1B0.84
C5—H50.93O2—H2A0.83
C6—C81.493 (3)O2—H2B0.83
C7—H7A0.96O3—H3A0.85
C7—H7B0.96O3—H3B0.85
C7—H7C0.96O4—H4A0.84
C8—H8A0.96O4—H4B0.83
N1—Cu1—N5173.03 (7)C6—C8—H8B109.5
N1—Cu1—N478.45 (6)H8A—C8—H8B109.5
N5—Cu1—N497.22 (6)C6—C8—H8C109.5
N1—Cu1—N897.33 (6)H8A—C8—H8C109.5
N5—Cu1—N877.82 (6)H8B—C8—H8C109.5
N4—Cu1—N898.90 (6)N3—C9—H9A109.5
N1—Cu1—Cl193.19 (5)N3—C9—H9B109.5
N5—Cu1—Cl193.78 (5)H9A—C9—H9B109.5
N4—Cu1—Cl1128.60 (4)N3—C9—H9C109.5
N8—Cu1—Cl1132.50 (4)H9A—C9—H9C109.5
C3—N1—C1107.14 (17)H9B—C9—H9C109.5
C3—N1—Cu1117.07 (13)C11—C10—N5108.7 (2)
C1—N1—Cu1135.76 (15)C11—C10—H10125.6
C3—N2—C2107.22 (17)N5—C10—H10125.6
C3—N2—C7127.23 (19)C10—C11—N6106.85 (18)
C2—N2—C7125.53 (19)C10—C11—H11126.6
C6—N3—N4111.62 (15)N6—C11—H11126.6
C6—N3—C9127.65 (16)N5—C12—N6110.84 (16)
N4—N3—C9120.72 (15)N5—C12—C13119.79 (16)
C4—N4—N3105.15 (14)N6—C12—C13129.37 (18)
C4—N4—Cu1110.79 (11)N8—C13—C14111.07 (16)
N3—N4—Cu1144.00 (11)N8—C13—C12113.71 (15)
C12—N5—C10106.69 (18)C14—C13—C12135.21 (17)
C12—N5—Cu1117.93 (12)C15—C14—C13105.27 (16)
C10—N5—Cu1135.37 (15)C15—C14—H14127.4
C12—N6—C11106.90 (18)C13—C14—H14127.4
C12—N6—C18127.53 (18)N7—C15—C14107.11 (16)
C11—N6—C18125.55 (18)N7—C15—C17122.55 (19)
C15—N7—N8111.44 (15)C14—C15—C17130.34 (19)
C15—N7—C16127.86 (16)N7—C16—H16A109.5
N8—N7—C16120.70 (15)N7—C16—H16B109.5
C13—N8—N7105.10 (14)H16A—C16—H16B109.5
C13—N8—Cu1110.70 (11)N7—C16—H16C109.5
N7—N8—Cu1144.10 (11)H16A—C16—H16C109.5
C2—C1—N1108.2 (2)H16B—C16—H16C109.5
C2—C1—H1125.9C15—C17—H17A109.5
N1—C1—H1125.9C15—C17—H17B109.5
C1—C2—N2107.16 (19)H17A—C17—H17B109.5
C1—C2—H2126.4C15—C17—H17C109.5
N2—C2—H2126.4H17A—C17—H17C109.5
N1—C3—N2110.32 (17)H17B—C17—H17C109.5
N1—C3—C4119.69 (16)N6—C18—H18A109.5
N2—C3—C4129.94 (17)N6—C18—H18B109.5
N4—C4—C5110.70 (16)H18A—C18—H18B109.5
N4—C4—C3113.73 (15)N6—C18—H18C109.5
C5—C4—C3135.56 (17)H18A—C18—H18C109.5
C6—C5—C4105.54 (16)H18B—C18—H18C109.5
C6—C5—H5127.2C19—O5—H5A109.5
C4—C5—H5127.2O5—C19—H19A109.5
N3—C6—C5106.99 (16)O5—C19—H19B109.5
N3—C6—C8122.76 (19)H19A—C19—H19B109.5
C5—C6—C8130.25 (18)O5—C19—H19C109.5
N2—C7—H7A109.5H19A—C19—H19C109.5
N2—C7—H7B109.5H19B—C19—H19C109.5
H7A—C7—H7B109.5H1A—O1—H1B103.3
N2—C7—H7C109.5H2A—O2—H2B110.7
H7A—C7—H7C109.5H3A—O3—H3B102.6
H7B—C7—H7C109.5H4A—O4—H4B111.9
C6—C8—H8A109.5
N4—Cu1—N1—C34.61 (13)C2—N2—C3—C4176.81 (18)
N8—Cu1—N1—C393.03 (14)C7—N2—C3—C44.9 (3)
Cl1—Cu1—N1—C3133.39 (13)N3—N4—C4—C50.24 (19)
N4—Cu1—N1—C1177.6 (2)Cu1—N4—C4—C5178.19 (11)
N8—Cu1—N1—C184.8 (2)N3—N4—C4—C3179.21 (14)
Cl1—Cu1—N1—C148.8 (2)Cu1—N4—C4—C32.84 (17)
C6—N3—N4—C40.30 (19)N1—C3—C4—N40.8 (2)
C9—N3—N4—C4179.64 (18)N2—C3—C4—N4178.02 (17)
C6—N3—N4—Cu1177.04 (15)N1—C3—C4—C5177.79 (19)
C9—N3—N4—Cu13.6 (3)N2—C3—C4—C50.6 (3)
N1—Cu1—N4—C44.05 (12)N4—C4—C5—C60.1 (2)
N5—Cu1—N4—C4170.41 (12)C3—C4—C5—C6178.75 (19)
N8—Cu1—N4—C491.68 (12)N4—N3—C6—C50.2 (2)
Cl1—Cu1—N4—C488.86 (12)C9—N3—C6—C5179.53 (19)
N1—Cu1—N4—N3179.3 (2)N4—N3—C6—C8178.74 (17)
N5—Cu1—N4—N36.2 (2)C9—N3—C6—C80.5 (3)
N8—Cu1—N4—N384.9 (2)C4—C5—C6—N30.1 (2)
Cl1—Cu1—N4—N394.5 (2)C4—C5—C6—C8178.80 (19)
N4—Cu1—N5—C1295.69 (14)C12—N5—C10—C110.5 (2)
N8—Cu1—N5—C121.91 (13)Cu1—N5—C10—C11178.32 (15)
Cl1—Cu1—N5—C12134.62 (13)N5—C10—C11—N60.4 (3)
N4—Cu1—N5—C1083.1 (2)C12—N6—C11—C100.1 (2)
N8—Cu1—N5—C10179.3 (2)C18—N6—C11—C10178.7 (2)
Cl1—Cu1—N5—C1046.61 (19)C10—N5—C12—N60.5 (2)
C15—N7—N8—C130.05 (19)Cu1—N5—C12—N6178.63 (12)
C16—N7—N8—C13179.66 (17)C10—N5—C12—C13179.30 (16)
C15—N7—N8—Cu1175.72 (15)Cu1—N5—C12—C131.6 (2)
C16—N7—N8—Cu14.0 (3)C11—N6—C12—N50.2 (2)
N1—Cu1—N8—C13172.90 (11)C18—N6—C12—N5179.04 (19)
N5—Cu1—N8—C132.02 (11)C11—N6—C12—C13179.52 (18)
N4—Cu1—N8—C1393.51 (11)C18—N6—C12—C130.7 (3)
Cl1—Cu1—N8—C1385.92 (12)N7—N8—C13—C140.25 (18)
N1—Cu1—N8—N72.63 (19)Cu1—N8—C13—C14177.54 (12)
N5—Cu1—N8—N7177.6 (2)N7—N8—C13—C12179.07 (13)
N4—Cu1—N8—N782.02 (19)Cu1—N8—C13—C121.78 (17)
Cl1—Cu1—N8—N798.55 (19)N5—C12—C13—N80.3 (2)
C3—N1—C1—C20.7 (2)N6—C12—C13—N8179.36 (17)
Cu1—N1—C1—C2177.22 (15)N5—C12—C13—C14178.76 (19)
N1—C1—C2—N20.4 (2)N6—C12—C13—C141.5 (3)
C3—N2—C2—C10.1 (2)N8—C13—C14—C150.4 (2)
C7—N2—C2—C1178.17 (19)C12—C13—C14—C15178.76 (19)
C1—N1—C3—N20.8 (2)N8—N7—C15—C140.2 (2)
Cu1—N1—C3—N2177.57 (11)C16—N7—C15—C14179.86 (19)
C1—N1—C3—C4176.90 (16)N8—N7—C15—C17179.76 (18)
Cu1—N1—C3—C44.7 (2)C16—N7—C15—C170.1 (3)
C2—N2—C3—N10.6 (2)C13—C14—C15—N70.3 (2)
C7—N2—C3—N1177.67 (18)C13—C14—C15—C17179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl2i0.852.333.162 (2)167
O1—H1B···Cl20.842.343.186 (2)175
O2—H2A···Cl20.832.393.205 (3)165
O3—H3B···Cl2ii0.852.383.234 (3)174
O4—H4A···O10.841.982.793 (3)165
O4—H4B···O2iii0.831.892.706 (4)165
C11—H11···Cl2iv0.932.753.592 (2)151
C18—H18C···Cl1v0.962.763.708 (3)177
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+3/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+2, y1/2, z+1/2; (v) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CuCl(C9H12N4)2]Cl·0.5CH4O·4H2O
Mr574.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.5213 (3), 15.5386 (4), 14.1806 (4)
β (°) 100.883 (1)
V3)2709.40 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.44 × 0.33 × 0.19
Data collection
DiffractometerBruker X8 APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.668, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
47954, 7884, 5480
Rint0.029
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.124, 1.01
No. of reflections7884
No. of parameters323
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cu1—N11.9531 (17)Cu1—N82.2415 (14)
Cu1—N51.9545 (17)Cu1—Cl12.2739 (6)
Cu1—N42.2161 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl2i0.852.333.162 (2)167
O1—H1B···Cl20.842.343.186 (2)175
O2—H2A···Cl20.832.393.205 (3)165
O3—H3B···Cl2ii0.852.383.234 (3)174
O4—H4A···O10.841.982.793 (3)165
O4—H4B···O2iii0.831.892.706 (4)165
C11—H11···Cl2iv0.932.753.592 (2)151
C18—H18C···Cl1v0.962.763.708 (3)177
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+3/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+2, y1/2, z+1/2; (v) x+2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for making this work possible. They also thank H. Zouihri for his helpful technical assistance during the X-ray measurements.

References

First citationAllen, C. F. H. & Wilson, B. D. (1963). US Patent No. 3 106 467.  Google Scholar
First citationBouhaddioui, S. (1993). Thèse de doctorat d'état, Université Mohammed 1er, Faculté des Sciences Oujda, Morocco.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Khawass, E. S. M. & Bistawroos, A. E. (1990). Alex. J. Pharm. Sci. 4, 77–79.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHartfiel, U., Dorfmeister, G., Franke, H., Geisler, J., Johann, G. & Rees, R. (1993). Eur. Patent Appl. EP 542 388.  Google Scholar
First citationPearson, I. (1975). US Patent No. 3 883 549.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTjiou, E. M., Fruchier, A., Pellegerin, V. & Tarago, G. (1989). J. Heterocycl. Chem. 26, 893–898.  CrossRef CAS Google Scholar
First citationTrofimenko, S. (1993). Chem. Rev. 93, 943–980.  CrossRef CAS Web of Science Google Scholar
First citationTsuboi, S., Moriie, K., Hatsutori, Y., Wada, K., Sone, S., Oohigata, T. & Ito, A. (1994). Jpn Kokai Tokkyo Koho, JP 06 184 114.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds