metal-organic compounds
Chloridobis[2-(1,5-dimethyl-1H-pyrazol-3-yl-κN2)-1-methyl-1H-imidazole-κN3]copper(II) chloride methanol hemisolvate tetrahydrate
aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences, Pharmacochimie, Avenue Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: l_elammari@fsr.ac.ma
In the title compound, [CuCl(C9H12N4)2]Cl·0.5CH3OH·4H2O, the CuII ion adopts a distorted trigonal-bipyramidal coordination arising from two bidentate ligands and a Cl− anion. The two heterocyclic ligands are planar with dihedral angles of 3.4 (1) and 0.7 (1)° between the pyrazole and imidazole rings. In the crystal, water molecules and uncoordinated chloride anions form an O—H⋯Cl and O—H⋯O hydrogen-bonded sheet parallel to (100) which lies between two layers of complex molecules. The packing is further stabilized by C—H⋯Cl and C—H⋯O hydrogen bonds. The methanol solvent molecule is disordered across a centre of inversion.
Related literature
For applications of transition metal complexes with biheterocyclic ligands, see: Allen & Wilson (1963); El-Khawass & Bistawroos (1990); Pearson (1975); Trofimenko (1993); Tsuboi et al. (1994); Hartfiel et al. (1993). For the preparation of biheterocyclic ligands, see: Tjiou et al. (1989); Bouhaddioui (1993).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810000048/ci2996sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810000048/ci2996Isup2.hkl
The title compound was synthesized by mixing a solution of biheterocycle in methanol and an aqueous solution of cupric chloride with a ligand/metal ratio of 2. Heating was maintained for few minutes until dissolution of all ligand. Then a pinch of NaCl was added and the heating was continued. When the solution became clear, it was left to stand at room temperature. After a few days, green crystals were collected by filtration. They were dried over P2O5 in a desiccator for 48 h.
The methanol molecule is disordered across a centre of inversion. All O-bound H atoms were initially located in a difference map and refined with a O–H distance restraint of 0.84 (1) Å and an additional H···H restraint of 1.37 (2) Å for the water molecules. Later they were refined in the riding model with Uiso(H) set to 1.5Ueq(O). The C-bound H atoms were positioned geometrically [C-H = 0.93-0.96 Å] and refined using a riding model with Uiso(H) = 1.2-1.5Ueq(O). Reflections 110, 011 and 111 affected by beamstop were removed during The reflections 031, 313, 532 and 230 were omitted because the difference between their calculated and observed intensities are very large.
The ability of biheterocycles to form stable and biochemically interesting complexes, with transition metals has prompted several researchers to test them in several areas: medicine (El-Khawass & Bistawroos, 1990, Trofimenko, 1993), agriculture (Tsuboi et al., 1994, Hartfiel et al., 1993) and the photography industry (Allen & Wilson, 1963; Pearson, 1975). To contribute to the understanding of interaction of these
with transition metals, we have studied a copper complex of a biheterocycle prepared by Tjiou et al. (1989) and methylated using phase transfer catalysis process (Bouhaddioui, 1993).The CuII ion adopts a distorted trigonal bipyramidal coordination arising from two bidentate ligands and a Cl- anion (Fig. 1). The axial positions are occupied by N1 and N5 [N1—Cu1—N5 = 173.03 (7)°], while atoms Cu1, Cl1, N4 and N8 lie in the equatorial plane [N4—Cu1—Cl1 = 128.60 (4)°, N8—Cu1—Cl1 = 132.50 (4)° and N4—Cu1—N8 = 98.90 (6)°]. The two organic ligands are almost planar; the dihedral angle between N1/C1/C2/N2/C3 and N3/N4/C4-C6 planes is 3.4 (1)° and that between N5/C10/C11/N6/C12 and N7/N8/C13-C15 planes is 0.7 (1)°.
In the crystal, the water molecules and uncoordinated chloride ions form a O—H···Cl and O—H···O hydrogen-bonded sheet parallel to the (100) and it lies between two layers of complex molecules. The packing is further stabilized by C—H···Cl and C—H···O hydrogen bonds (Table 2 and Fig.2).
For applications of transition metal complexes with biheterocyclic ligands, see: Allen & Wilson (1963); El-Khawass & Bistawroos (1990); Pearson (1975); Trofimenko (1993); Tsuboi et al. (1994); Hartfiel et al. (1993). For the preparation of biheterocyclic ligands, see: Tjiou et al. (1989); Bouhaddioui (1993).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The asymmetric unit of the title compound, with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. | |
Fig. 2. Packing diagram showing hydrogen-bonded (dashed lines) layer of solvent molecules between the complex molecules. |
[CuCl(C9H12N4)2]Cl·0.5CH4O·4H2O | F(000) = 1200 |
Mr = 574.98 | Dx = 1.410 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4291 reflections |
a = 12.5213 (3) Å | θ = 2.6–29.8° |
b = 15.5386 (4) Å | µ = 1.04 mm−1 |
c = 14.1806 (4) Å | T = 298 K |
β = 100.883 (1)° | Block, green |
V = 2709.40 (12) Å3 | 0.44 × 0.33 × 0.19 mm |
Z = 4 |
Bruker X8 APEXII area-detector diffractometer | 7884 independent reflections |
Radiation source: fine-focus sealed tube | 5480 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
φ and ω scans | θmax = 30.0°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −17→17 |
Tmin = 0.668, Tmax = 0.820 | k = −20→21 |
47954 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0649P)2 + 0.7437P] where P = (Fo2 + 2Fc2)/3 |
7884 reflections | (Δ/σ)max = 0.001 |
323 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
[CuCl(C9H12N4)2]Cl·0.5CH4O·4H2O | V = 2709.40 (12) Å3 |
Mr = 574.98 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.5213 (3) Å | µ = 1.04 mm−1 |
b = 15.5386 (4) Å | T = 298 K |
c = 14.1806 (4) Å | 0.44 × 0.33 × 0.19 mm |
β = 100.883 (1)° |
Bruker X8 APEXII area-detector diffractometer | 7884 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 5480 reflections with I > 2σ(I) |
Tmin = 0.668, Tmax = 0.820 | Rint = 0.029 |
47954 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.39 e Å−3 |
7884 reflections | Δρmin = −0.26 e Å−3 |
323 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.900612 (18) | 0.233115 (15) | 0.118071 (16) | 0.04439 (9) | |
Cl1 | 0.90806 (7) | 0.08691 (4) | 0.12169 (4) | 0.0800 (2) | |
N1 | 0.78145 (13) | 0.23508 (10) | 0.00716 (12) | 0.0454 (3) | |
N2 | 0.70109 (13) | 0.28521 (11) | −0.13260 (12) | 0.0477 (4) | |
N3 | 1.05116 (12) | 0.37246 (10) | 0.01121 (11) | 0.0417 (3) | |
N4 | 0.96472 (12) | 0.32276 (9) | 0.02067 (10) | 0.0393 (3) | |
N5 | 1.01880 (13) | 0.24643 (10) | 0.22878 (12) | 0.0450 (4) | |
N6 | 1.09451 (12) | 0.30513 (12) | 0.36557 (12) | 0.0486 (4) | |
N7 | 0.74464 (12) | 0.38061 (10) | 0.21093 (10) | 0.0399 (3) | |
N8 | 0.83164 (11) | 0.32983 (9) | 0.20746 (10) | 0.0379 (3) | |
C1 | 0.68255 (17) | 0.19476 (15) | −0.01803 (16) | 0.0570 (5) | |
H1 | 0.6547 | 0.1532 | 0.0179 | 0.068* | |
C2 | 0.63247 (18) | 0.22604 (15) | −0.10454 (17) | 0.0571 (5) | |
H2 | 0.5643 | 0.2102 | −0.1384 | 0.068* | |
C3 | 0.79083 (15) | 0.28850 (11) | −0.06320 (12) | 0.0403 (4) | |
C4 | 0.89033 (15) | 0.33733 (10) | −0.05888 (12) | 0.0379 (3) | |
C5 | 0.92968 (17) | 0.39587 (12) | −0.11883 (13) | 0.0452 (4) | |
H5 | 0.8937 | 0.4163 | −0.1780 | 0.054* | |
C6 | 1.03251 (16) | 0.41695 (11) | −0.07205 (13) | 0.0443 (4) | |
C7 | 0.6782 (2) | 0.33629 (16) | −0.22015 (15) | 0.0620 (6) | |
H7A | 0.6052 | 0.3252 | −0.2531 | 0.093* | |
H7B | 0.7283 | 0.3211 | −0.2609 | 0.093* | |
H7C | 0.6859 | 0.3963 | −0.2042 | 0.093* | |
C8 | 1.11508 (19) | 0.47529 (14) | −0.10149 (17) | 0.0588 (5) | |
H8A | 1.0878 | 0.4972 | −0.1648 | 0.088* | |
H8B | 1.1811 | 0.4439 | −0.1016 | 0.088* | |
H8C | 1.1295 | 0.5224 | −0.0571 | 0.088* | |
C9 | 1.14876 (18) | 0.37281 (16) | 0.08480 (18) | 0.0626 (6) | |
H9A | 1.1915 | 0.4227 | 0.0771 | 0.094* | |
H9B | 1.1904 | 0.3218 | 0.0791 | 0.094* | |
H9C | 1.1290 | 0.3741 | 0.1470 | 0.094* | |
C10 | 1.12060 (17) | 0.21135 (15) | 0.25698 (17) | 0.0567 (5) | |
H10 | 1.1517 | 0.1696 | 0.2236 | 0.068* | |
C11 | 1.16802 (17) | 0.24752 (15) | 0.34115 (18) | 0.0583 (5) | |
H11 | 1.2372 | 0.2357 | 0.3759 | 0.070* | |
C12 | 1.00555 (14) | 0.30198 (12) | 0.29551 (13) | 0.0410 (4) | |
C13 | 0.90411 (14) | 0.34939 (11) | 0.28650 (12) | 0.0373 (3) | |
C14 | 0.86365 (16) | 0.41194 (12) | 0.34037 (13) | 0.0463 (4) | |
H14 | 0.8983 | 0.4359 | 0.3982 | 0.056* | |
C15 | 0.76163 (16) | 0.43081 (12) | 0.28999 (13) | 0.0446 (4) | |
C16 | 0.64923 (17) | 0.37722 (16) | 0.13561 (16) | 0.0570 (5) | |
H16A | 0.6096 | 0.4302 | 0.1345 | 0.086* | |
H16B | 0.6038 | 0.3302 | 0.1474 | 0.086* | |
H16C | 0.6710 | 0.3690 | 0.0748 | 0.086* | |
C17 | 0.6784 (2) | 0.49353 (17) | 0.31146 (19) | 0.0672 (6) | |
H17A | 0.7067 | 0.5233 | 0.3702 | 0.101* | |
H17B | 0.6135 | 0.4631 | 0.3181 | 0.101* | |
H17C | 0.6618 | 0.5343 | 0.2599 | 0.101* | |
C18 | 1.1111 (2) | 0.35786 (17) | 0.45289 (17) | 0.0655 (6) | |
H18A | 1.1821 | 0.3467 | 0.4902 | 0.098* | |
H18B | 1.0569 | 0.3438 | 0.4900 | 0.098* | |
H18C | 1.1053 | 0.4176 | 0.4356 | 0.098* | |
O5 | 0.6547 (5) | −0.0238 (4) | 0.0811 (5) | 0.130 (2) | 0.50 |
H5A | 0.6516 | 0.0148 | 0.1199 | 0.195* | 0.50 |
C19 | 0.5593 (8) | −0.0440 (7) | 0.0398 (6) | 0.123 (3) | 0.50 |
H19A | 0.5173 | 0.0073 | 0.0231 | 0.185* | 0.50 |
H19B | 0.5258 | −0.0785 | 0.0823 | 0.185* | 0.50 |
H19C | 0.5626 | −0.0762 | −0.0174 | 0.185* | 0.50 |
O1 | 0.38934 (14) | 0.50044 (13) | 0.08744 (14) | 0.0760 (5) | |
H1A | 0.3877 | 0.4702 | 0.0374 | 0.114* | |
H1B | 0.4383 | 0.5370 | 0.0841 | 0.114* | |
O2 | 0.6051 (2) | 0.73482 (18) | 0.27534 (18) | 0.1147 (9) | |
H2A | 0.6107 | 0.7026 | 0.2296 | 0.172* | |
H2B | 0.6581 | 0.7289 | 0.3199 | 0.172* | |
O3 | 0.6009 (3) | 0.6933 (2) | 0.46268 (19) | 0.1391 (11) | |
H3A | 0.5428 | 0.6909 | 0.4210 | 0.209* | |
H3B | 0.5919 | 0.7388 | 0.4938 | 0.209* | |
O4 | 0.3845 (3) | 0.4064 (2) | 0.25444 (18) | 0.1355 (10) | |
H4A | 0.3913 | 0.4417 | 0.2114 | 0.203* | |
H4B | 0.3836 | 0.3559 | 0.2350 | 0.203* | |
Cl2 | 0.58501 (5) | 0.62937 (4) | 0.07857 (5) | 0.07005 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.05202 (15) | 0.03657 (13) | 0.04530 (14) | −0.00040 (9) | 0.01102 (10) | 0.00375 (9) |
Cl1 | 0.1459 (7) | 0.0368 (3) | 0.0565 (3) | 0.0098 (3) | 0.0171 (4) | 0.0002 (2) |
N1 | 0.0476 (9) | 0.0430 (8) | 0.0478 (8) | −0.0077 (7) | 0.0150 (7) | −0.0046 (6) |
N2 | 0.0480 (9) | 0.0485 (9) | 0.0462 (8) | 0.0079 (7) | 0.0078 (7) | −0.0106 (7) |
N3 | 0.0440 (8) | 0.0371 (7) | 0.0465 (8) | −0.0030 (6) | 0.0150 (6) | 0.0028 (6) |
N4 | 0.0412 (7) | 0.0366 (7) | 0.0423 (8) | −0.0017 (6) | 0.0132 (6) | 0.0050 (6) |
N5 | 0.0451 (8) | 0.0440 (8) | 0.0481 (9) | 0.0087 (6) | 0.0147 (7) | 0.0099 (7) |
N6 | 0.0430 (9) | 0.0481 (9) | 0.0521 (9) | −0.0002 (7) | 0.0025 (7) | 0.0122 (7) |
N7 | 0.0399 (8) | 0.0383 (8) | 0.0425 (7) | 0.0049 (6) | 0.0106 (6) | 0.0043 (6) |
N8 | 0.0379 (7) | 0.0365 (7) | 0.0405 (7) | 0.0032 (6) | 0.0101 (6) | 0.0033 (6) |
C1 | 0.0536 (12) | 0.0569 (13) | 0.0624 (13) | −0.0135 (10) | 0.0162 (10) | −0.0089 (10) |
C2 | 0.0450 (10) | 0.0635 (14) | 0.0624 (13) | −0.0067 (9) | 0.0094 (9) | −0.0179 (10) |
C3 | 0.0449 (9) | 0.0368 (8) | 0.0403 (9) | 0.0034 (7) | 0.0108 (7) | −0.0082 (7) |
C4 | 0.0479 (9) | 0.0322 (8) | 0.0356 (8) | 0.0038 (7) | 0.0131 (7) | −0.0027 (6) |
C5 | 0.0636 (12) | 0.0383 (9) | 0.0364 (8) | 0.0039 (8) | 0.0161 (8) | 0.0031 (7) |
C6 | 0.0598 (11) | 0.0327 (8) | 0.0463 (9) | 0.0000 (7) | 0.0248 (8) | 0.0012 (7) |
C7 | 0.0657 (14) | 0.0666 (15) | 0.0504 (11) | 0.0174 (11) | 0.0029 (10) | −0.0034 (10) |
C8 | 0.0776 (15) | 0.0408 (11) | 0.0663 (13) | −0.0104 (9) | 0.0347 (11) | 0.0020 (9) |
C9 | 0.0494 (12) | 0.0639 (14) | 0.0715 (14) | −0.0105 (10) | 0.0036 (10) | 0.0135 (11) |
C10 | 0.0514 (11) | 0.0585 (12) | 0.0633 (13) | 0.0173 (9) | 0.0188 (10) | 0.0174 (10) |
C11 | 0.0438 (11) | 0.0633 (13) | 0.0666 (14) | 0.0114 (9) | 0.0073 (9) | 0.0216 (11) |
C12 | 0.0393 (9) | 0.0391 (9) | 0.0452 (9) | 0.0011 (7) | 0.0096 (7) | 0.0129 (7) |
C13 | 0.0418 (9) | 0.0335 (8) | 0.0373 (8) | −0.0018 (6) | 0.0097 (7) | 0.0066 (6) |
C14 | 0.0544 (11) | 0.0415 (10) | 0.0427 (9) | 0.0012 (8) | 0.0084 (8) | −0.0016 (7) |
C15 | 0.0533 (11) | 0.0377 (9) | 0.0459 (9) | 0.0048 (7) | 0.0172 (8) | 0.0016 (7) |
C16 | 0.0481 (11) | 0.0620 (13) | 0.0577 (12) | 0.0108 (9) | 0.0016 (9) | −0.0007 (10) |
C17 | 0.0730 (15) | 0.0591 (14) | 0.0723 (15) | 0.0229 (11) | 0.0205 (12) | −0.0053 (11) |
C18 | 0.0644 (14) | 0.0619 (14) | 0.0622 (13) | −0.0024 (11) | −0.0085 (11) | 0.0021 (11) |
O5 | 0.141 (5) | 0.120 (5) | 0.152 (5) | 0.030 (4) | 0.087 (4) | 0.050 (4) |
C19 | 0.127 (7) | 0.145 (8) | 0.113 (6) | 0.004 (6) | 0.060 (5) | 0.030 (5) |
O1 | 0.0805 (12) | 0.0732 (11) | 0.0803 (11) | −0.0101 (9) | 0.0307 (9) | −0.0129 (10) |
O2 | 0.139 (2) | 0.123 (2) | 0.0857 (16) | −0.0216 (16) | 0.0300 (15) | −0.0303 (14) |
O3 | 0.176 (3) | 0.147 (3) | 0.0957 (17) | 0.028 (2) | 0.0274 (18) | −0.0217 (18) |
O4 | 0.195 (3) | 0.115 (2) | 0.0959 (17) | −0.022 (2) | 0.0239 (18) | 0.0127 (15) |
Cl2 | 0.0692 (4) | 0.0644 (4) | 0.0750 (4) | −0.0088 (3) | 0.0097 (3) | −0.0167 (3) |
Cu1—N1 | 1.9531 (17) | C8—H8B | 0.96 |
Cu1—N5 | 1.9545 (17) | C8—H8C | 0.96 |
Cu1—N4 | 2.2161 (14) | C9—H9A | 0.96 |
Cu1—N8 | 2.2415 (14) | C9—H9B | 0.96 |
Cu1—Cl1 | 2.2739 (6) | C9—H9C | 0.96 |
N1—C3 | 1.320 (2) | C10—C11 | 1.351 (4) |
N1—C1 | 1.374 (3) | C10—H10 | 0.93 |
N2—C3 | 1.348 (2) | C11—H11 | 0.93 |
N2—C2 | 1.368 (3) | C12—C13 | 1.453 (2) |
N2—C7 | 1.456 (3) | C13—C14 | 1.390 (3) |
N3—C6 | 1.350 (2) | C14—C15 | 1.372 (3) |
N3—N4 | 1.357 (2) | C14—H14 | 0.93 |
N3—C9 | 1.450 (3) | C15—C17 | 1.499 (3) |
N4—C4 | 1.340 (2) | C16—H16A | 0.96 |
N5—C12 | 1.314 (3) | C16—H16B | 0.96 |
N5—C10 | 1.374 (3) | C16—H16C | 0.96 |
N6—C12 | 1.346 (2) | C17—H17A | 0.96 |
N6—C11 | 1.374 (3) | C17—H17B | 0.96 |
N6—C18 | 1.467 (3) | C17—H17C | 0.96 |
N7—C15 | 1.349 (2) | C18—H18A | 0.96 |
N7—N8 | 1.354 (2) | C18—H18B | 0.96 |
N7—C16 | 1.445 (3) | C18—H18C | 0.96 |
N8—C13 | 1.337 (2) | O5—C19 | 1.266 (10) |
C1—C2 | 1.358 (3) | O5—H5A | 0.82 |
C1—H1 | 0.93 | C19—H19A | 0.96 |
C2—H2 | 0.93 | C19—H19B | 0.96 |
C3—C4 | 1.450 (3) | C19—H19C | 0.96 |
C4—C5 | 1.397 (2) | O1—H1A | 0.85 |
C5—C6 | 1.372 (3) | O1—H1B | 0.84 |
C5—H5 | 0.93 | O2—H2A | 0.83 |
C6—C8 | 1.493 (3) | O2—H2B | 0.83 |
C7—H7A | 0.96 | O3—H3A | 0.85 |
C7—H7B | 0.96 | O3—H3B | 0.85 |
C7—H7C | 0.96 | O4—H4A | 0.84 |
C8—H8A | 0.96 | O4—H4B | 0.83 |
N1—Cu1—N5 | 173.03 (7) | C6—C8—H8B | 109.5 |
N1—Cu1—N4 | 78.45 (6) | H8A—C8—H8B | 109.5 |
N5—Cu1—N4 | 97.22 (6) | C6—C8—H8C | 109.5 |
N1—Cu1—N8 | 97.33 (6) | H8A—C8—H8C | 109.5 |
N5—Cu1—N8 | 77.82 (6) | H8B—C8—H8C | 109.5 |
N4—Cu1—N8 | 98.90 (6) | N3—C9—H9A | 109.5 |
N1—Cu1—Cl1 | 93.19 (5) | N3—C9—H9B | 109.5 |
N5—Cu1—Cl1 | 93.78 (5) | H9A—C9—H9B | 109.5 |
N4—Cu1—Cl1 | 128.60 (4) | N3—C9—H9C | 109.5 |
N8—Cu1—Cl1 | 132.50 (4) | H9A—C9—H9C | 109.5 |
C3—N1—C1 | 107.14 (17) | H9B—C9—H9C | 109.5 |
C3—N1—Cu1 | 117.07 (13) | C11—C10—N5 | 108.7 (2) |
C1—N1—Cu1 | 135.76 (15) | C11—C10—H10 | 125.6 |
C3—N2—C2 | 107.22 (17) | N5—C10—H10 | 125.6 |
C3—N2—C7 | 127.23 (19) | C10—C11—N6 | 106.85 (18) |
C2—N2—C7 | 125.53 (19) | C10—C11—H11 | 126.6 |
C6—N3—N4 | 111.62 (15) | N6—C11—H11 | 126.6 |
C6—N3—C9 | 127.65 (16) | N5—C12—N6 | 110.84 (16) |
N4—N3—C9 | 120.72 (15) | N5—C12—C13 | 119.79 (16) |
C4—N4—N3 | 105.15 (14) | N6—C12—C13 | 129.37 (18) |
C4—N4—Cu1 | 110.79 (11) | N8—C13—C14 | 111.07 (16) |
N3—N4—Cu1 | 144.00 (11) | N8—C13—C12 | 113.71 (15) |
C12—N5—C10 | 106.69 (18) | C14—C13—C12 | 135.21 (17) |
C12—N5—Cu1 | 117.93 (12) | C15—C14—C13 | 105.27 (16) |
C10—N5—Cu1 | 135.37 (15) | C15—C14—H14 | 127.4 |
C12—N6—C11 | 106.90 (18) | C13—C14—H14 | 127.4 |
C12—N6—C18 | 127.53 (18) | N7—C15—C14 | 107.11 (16) |
C11—N6—C18 | 125.55 (18) | N7—C15—C17 | 122.55 (19) |
C15—N7—N8 | 111.44 (15) | C14—C15—C17 | 130.34 (19) |
C15—N7—C16 | 127.86 (16) | N7—C16—H16A | 109.5 |
N8—N7—C16 | 120.70 (15) | N7—C16—H16B | 109.5 |
C13—N8—N7 | 105.10 (14) | H16A—C16—H16B | 109.5 |
C13—N8—Cu1 | 110.70 (11) | N7—C16—H16C | 109.5 |
N7—N8—Cu1 | 144.10 (11) | H16A—C16—H16C | 109.5 |
C2—C1—N1 | 108.2 (2) | H16B—C16—H16C | 109.5 |
C2—C1—H1 | 125.9 | C15—C17—H17A | 109.5 |
N1—C1—H1 | 125.9 | C15—C17—H17B | 109.5 |
C1—C2—N2 | 107.16 (19) | H17A—C17—H17B | 109.5 |
C1—C2—H2 | 126.4 | C15—C17—H17C | 109.5 |
N2—C2—H2 | 126.4 | H17A—C17—H17C | 109.5 |
N1—C3—N2 | 110.32 (17) | H17B—C17—H17C | 109.5 |
N1—C3—C4 | 119.69 (16) | N6—C18—H18A | 109.5 |
N2—C3—C4 | 129.94 (17) | N6—C18—H18B | 109.5 |
N4—C4—C5 | 110.70 (16) | H18A—C18—H18B | 109.5 |
N4—C4—C3 | 113.73 (15) | N6—C18—H18C | 109.5 |
C5—C4—C3 | 135.56 (17) | H18A—C18—H18C | 109.5 |
C6—C5—C4 | 105.54 (16) | H18B—C18—H18C | 109.5 |
C6—C5—H5 | 127.2 | C19—O5—H5A | 109.5 |
C4—C5—H5 | 127.2 | O5—C19—H19A | 109.5 |
N3—C6—C5 | 106.99 (16) | O5—C19—H19B | 109.5 |
N3—C6—C8 | 122.76 (19) | H19A—C19—H19B | 109.5 |
C5—C6—C8 | 130.25 (18) | O5—C19—H19C | 109.5 |
N2—C7—H7A | 109.5 | H19A—C19—H19C | 109.5 |
N2—C7—H7B | 109.5 | H19B—C19—H19C | 109.5 |
H7A—C7—H7B | 109.5 | H1A—O1—H1B | 103.3 |
N2—C7—H7C | 109.5 | H2A—O2—H2B | 110.7 |
H7A—C7—H7C | 109.5 | H3A—O3—H3B | 102.6 |
H7B—C7—H7C | 109.5 | H4A—O4—H4B | 111.9 |
C6—C8—H8A | 109.5 | ||
N4—Cu1—N1—C3 | −4.61 (13) | C2—N2—C3—C4 | 176.81 (18) |
N8—Cu1—N1—C3 | 93.03 (14) | C7—N2—C3—C4 | −4.9 (3) |
Cl1—Cu1—N1—C3 | −133.39 (13) | N3—N4—C4—C5 | 0.24 (19) |
N4—Cu1—N1—C1 | 177.6 (2) | Cu1—N4—C4—C5 | 178.19 (11) |
N8—Cu1—N1—C1 | −84.8 (2) | N3—N4—C4—C3 | 179.21 (14) |
Cl1—Cu1—N1—C1 | 48.8 (2) | Cu1—N4—C4—C3 | −2.84 (17) |
C6—N3—N4—C4 | −0.30 (19) | N1—C3—C4—N4 | −0.8 (2) |
C9—N3—N4—C4 | −179.64 (18) | N2—C3—C4—N4 | −178.02 (17) |
C6—N3—N4—Cu1 | −177.04 (15) | N1—C3—C4—C5 | 177.79 (19) |
C9—N3—N4—Cu1 | 3.6 (3) | N2—C3—C4—C5 | 0.6 (3) |
N1—Cu1—N4—C4 | 4.05 (12) | N4—C4—C5—C6 | −0.1 (2) |
N5—Cu1—N4—C4 | −170.41 (12) | C3—C4—C5—C6 | −178.75 (19) |
N8—Cu1—N4—C4 | −91.68 (12) | N4—N3—C6—C5 | 0.2 (2) |
Cl1—Cu1—N4—C4 | 88.86 (12) | C9—N3—C6—C5 | 179.53 (19) |
N1—Cu1—N4—N3 | −179.3 (2) | N4—N3—C6—C8 | −178.74 (17) |
N5—Cu1—N4—N3 | 6.2 (2) | C9—N3—C6—C8 | 0.5 (3) |
N8—Cu1—N4—N3 | 84.9 (2) | C4—C5—C6—N3 | −0.1 (2) |
Cl1—Cu1—N4—N3 | −94.5 (2) | C4—C5—C6—C8 | 178.80 (19) |
N4—Cu1—N5—C12 | 95.69 (14) | C12—N5—C10—C11 | −0.5 (2) |
N8—Cu1—N5—C12 | −1.91 (13) | Cu1—N5—C10—C11 | 178.32 (15) |
Cl1—Cu1—N5—C12 | −134.62 (13) | N5—C10—C11—N6 | 0.4 (3) |
N4—Cu1—N5—C10 | −83.1 (2) | C12—N6—C11—C10 | −0.1 (2) |
N8—Cu1—N5—C10 | 179.3 (2) | C18—N6—C11—C10 | 178.7 (2) |
Cl1—Cu1—N5—C10 | 46.61 (19) | C10—N5—C12—N6 | 0.5 (2) |
C15—N7—N8—C13 | −0.05 (19) | Cu1—N5—C12—N6 | −178.63 (12) |
C16—N7—N8—C13 | 179.66 (17) | C10—N5—C12—C13 | −179.30 (16) |
C15—N7—N8—Cu1 | −175.72 (15) | Cu1—N5—C12—C13 | 1.6 (2) |
C16—N7—N8—Cu1 | 4.0 (3) | C11—N6—C12—N5 | −0.2 (2) |
N1—Cu1—N8—C13 | −172.90 (11) | C18—N6—C12—N5 | −179.04 (19) |
N5—Cu1—N8—C13 | 2.02 (11) | C11—N6—C12—C13 | 179.52 (18) |
N4—Cu1—N8—C13 | −93.51 (11) | C18—N6—C12—C13 | 0.7 (3) |
Cl1—Cu1—N8—C13 | 85.92 (12) | N7—N8—C13—C14 | 0.25 (18) |
N1—Cu1—N8—N7 | 2.63 (19) | Cu1—N8—C13—C14 | 177.54 (12) |
N5—Cu1—N8—N7 | 177.6 (2) | N7—N8—C13—C12 | −179.07 (13) |
N4—Cu1—N8—N7 | 82.02 (19) | Cu1—N8—C13—C12 | −1.78 (17) |
Cl1—Cu1—N8—N7 | −98.55 (19) | N5—C12—C13—N8 | 0.3 (2) |
C3—N1—C1—C2 | −0.7 (2) | N6—C12—C13—N8 | −179.36 (17) |
Cu1—N1—C1—C2 | 177.22 (15) | N5—C12—C13—C14 | −178.76 (19) |
N1—C1—C2—N2 | 0.4 (2) | N6—C12—C13—C14 | 1.5 (3) |
C3—N2—C2—C1 | 0.1 (2) | N8—C13—C14—C15 | −0.4 (2) |
C7—N2—C2—C1 | −178.17 (19) | C12—C13—C14—C15 | 178.76 (19) |
C1—N1—C3—N2 | 0.8 (2) | N8—N7—C15—C14 | −0.2 (2) |
Cu1—N1—C3—N2 | −177.57 (11) | C16—N7—C15—C14 | −179.86 (19) |
C1—N1—C3—C4 | −176.90 (16) | N8—N7—C15—C17 | 179.76 (18) |
Cu1—N1—C3—C4 | 4.7 (2) | C16—N7—C15—C17 | 0.1 (3) |
C2—N2—C3—N1 | −0.6 (2) | C13—C14—C15—N7 | 0.3 (2) |
C7—N2—C3—N1 | 177.67 (18) | C13—C14—C15—C17 | −179.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl2i | 0.85 | 2.33 | 3.162 (2) | 167 |
O1—H1B···Cl2 | 0.84 | 2.34 | 3.186 (2) | 175 |
O2—H2A···Cl2 | 0.83 | 2.39 | 3.205 (3) | 165 |
O3—H3B···Cl2ii | 0.85 | 2.38 | 3.234 (3) | 174 |
O4—H4A···O1 | 0.84 | 1.98 | 2.793 (3) | 165 |
O4—H4B···O2iii | 0.83 | 1.89 | 2.706 (4) | 165 |
C11—H11···Cl2iv | 0.93 | 2.75 | 3.592 (2) | 151 |
C18—H18C···Cl1v | 0.96 | 2.76 | 3.708 (3) | 177 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, −y+3/2, z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+2, y−1/2, −z+1/2; (v) −x+2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [CuCl(C9H12N4)2]Cl·0.5CH4O·4H2O |
Mr | 574.98 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 12.5213 (3), 15.5386 (4), 14.1806 (4) |
β (°) | 100.883 (1) |
V (Å3) | 2709.40 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.04 |
Crystal size (mm) | 0.44 × 0.33 × 0.19 |
Data collection | |
Diffractometer | Bruker X8 APEXII area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.668, 0.820 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 47954, 7884, 5480 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.124, 1.01 |
No. of reflections | 7884 |
No. of parameters | 323 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.26 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).
Cu1—N1 | 1.9531 (17) | Cu1—N8 | 2.2415 (14) |
Cu1—N5 | 1.9545 (17) | Cu1—Cl1 | 2.2739 (6) |
Cu1—N4 | 2.2161 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl2i | 0.85 | 2.33 | 3.162 (2) | 167 |
O1—H1B···Cl2 | 0.84 | 2.34 | 3.186 (2) | 175 |
O2—H2A···Cl2 | 0.83 | 2.39 | 3.205 (3) | 165 |
O3—H3B···Cl2ii | 0.85 | 2.38 | 3.234 (3) | 174 |
O4—H4A···O1 | 0.84 | 1.98 | 2.793 (3) | 165 |
O4—H4B···O2iii | 0.83 | 1.89 | 2.706 (4) | 165 |
C11—H11···Cl2iv | 0.93 | 2.75 | 3.592 (2) | 151 |
C18—H18C···Cl1v | 0.96 | 2.76 | 3.708 (3) | 177 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, −y+3/2, z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+2, y−1/2, −z+1/2; (v) −x+2, y+1/2, −z+1/2. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for making this work possible. They also thank H. Zouihri for his helpful technical assistance during the X-ray measurements.
References
Allen, C. F. H. & Wilson, B. D. (1963). US Patent No. 3 106 467. Google Scholar
Bouhaddioui, S. (1993). Thèse de doctorat d'état, Université Mohammed 1er, Faculté des Sciences Oujda, Morocco. Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
El-Khawass, E. S. M. & Bistawroos, A. E. (1990). Alex. J. Pharm. Sci. 4, 77–79. CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hartfiel, U., Dorfmeister, G., Franke, H., Geisler, J., Johann, G. & Rees, R. (1993). Eur. Patent Appl. EP 542 388. Google Scholar
Pearson, I. (1975). US Patent No. 3 883 549. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tjiou, E. M., Fruchier, A., Pellegerin, V. & Tarago, G. (1989). J. Heterocycl. Chem. 26, 893–898. CrossRef CAS Google Scholar
Trofimenko, S. (1993). Chem. Rev. 93, 943–980. CrossRef CAS Web of Science Google Scholar
Tsuboi, S., Moriie, K., Hatsutori, Y., Wada, K., Sone, S., Oohigata, T. & Ito, A. (1994). Jpn Kokai Tokkyo Koho, JP 06 184 114. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The ability of biheterocycles to form stable and biochemically interesting complexes, with transition metals has prompted several researchers to test them in several areas: medicine (El-Khawass & Bistawroos, 1990, Trofimenko, 1993), agriculture (Tsuboi et al., 1994, Hartfiel et al., 1993) and the photography industry (Allen & Wilson, 1963; Pearson, 1975). To contribute to the understanding of interaction of these heterocyclic compounds with transition metals, we have studied a copper complex of a biheterocycle prepared by Tjiou et al. (1989) and methylated using phase transfer catalysis process (Bouhaddioui, 1993).
The CuII ion adopts a distorted trigonal bipyramidal coordination arising from two bidentate ligands and a Cl- anion (Fig. 1). The axial positions are occupied by N1 and N5 [N1—Cu1—N5 = 173.03 (7)°], while atoms Cu1, Cl1, N4 and N8 lie in the equatorial plane [N4—Cu1—Cl1 = 128.60 (4)°, N8—Cu1—Cl1 = 132.50 (4)° and N4—Cu1—N8 = 98.90 (6)°]. The two organic ligands are almost planar; the dihedral angle between N1/C1/C2/N2/C3 and N3/N4/C4-C6 planes is 3.4 (1)° and that between N5/C10/C11/N6/C12 and N7/N8/C13-C15 planes is 0.7 (1)°.
In the crystal, the water molecules and uncoordinated chloride ions form a O—H···Cl and O—H···O hydrogen-bonded sheet parallel to the (100) and it lies between two layers of complex molecules. The packing is further stabilized by C—H···Cl and C—H···O hydrogen bonds (Table 2 and Fig.2).