organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-(di­methyl­amino)benzoate

aDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India, bDepartment of Physics, Aditanar College of Arts and Science, Tiruchendur 628 216, India, and cNanodevices and Nanomaterials Division, Research Institute of Electronics, Shizuoka University, Hamamatsu 432 8011, Japan
*Correspondence e-mail: rmarivu@ipc.shizuoka.ac.jp

(Received 22 December 2009; accepted 25 December 2009; online 13 January 2010)

Mol­ecules of the title compound, C11H15NO2, are essentially planar (r.m.s. deviation = 0.035 Å) and are linked into a chain along the a axis by weak C—H⋯O hydrogen bonds.

Related literature

Benzoic acid and its derivatives are good inhibitors of influenza viruses, see: Luo et al. (1995[Luo, M., Jedrzejas, M. J., Singh, S., White, C. L., Brouillette, W. J., Air, G. M. & Laver, W. G. (1995). Acta Cryst. D51, 504-510.]). For the use of benzoic acid derivatives such as 4-amino­benzoic acid as bifunctional organic ligands due to the variety of their coordination modes, see: Amiraslanov et al. (1979[Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.]); Chen & Chen (2002[Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.]); Hauptmann et al. (2000[Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.]). For the use of the title compound as a part of a self-curing two-part system comprising degradable copolymers with applications in medicine and dentistry as root-canal sealants, root-canal filling materials, dental restorative materials, implant materials, bone cements and pulp-capping materials, see: Jia & Jin (2004[Jia, W.-T. & Jin, S.-H. (2004). US Patent No. 6787584.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15NO2

  • Mr = 193.24

  • Monoclinic, P 21 /a

  • a = 12.6949 (8) Å

  • b = 6.6596 (4) Å

  • c = 12.8529 (9) Å

  • β = 98.672 (11)°

  • V = 1074.20 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.18 × 0.15 × 0.13 mm

Data collection
  • Nonius MACH-3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.985, Tmax = 0.989

  • 4088 measured reflections

  • 1873 independent reflections

  • 1424 reflections with I > 2σ(I)

  • Rint = 0.051

  • 3 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.134

  • S = 1.05

  • 1873 reflections

  • 131 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.93 2.55 3.4682 (19) 168
Symmetry code: (i) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzoic acid and its derivatives are good inhibitors of influenza viruses (Luo et al., 1995). Some benzoic acid derivatives such as 4-aminobenzoic acid have been extensively reported in coordination chemistry as bifunctional organic ligands due to the varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000). The title compound, a tertiary amine, is used as a part of self-curing two part system for dental/ medical compositions comprising degradable copolymers which are suitable for use as root canal sealants, root canal filling materials, dental restorative materials, implant materials, bone cements and pulp capping materials (Jia et al., 2004).

The molecule of the title compound, C11H15N O2, is essentially planar (r.m.s. deviation 0.035 Å). The molecules are linked into a chain along the a axis by weak C—H···O hydrogen bonds.

Related literature top

Benzoic acid and its derivatives are good inhibitors of influenza viruses, see: Luo et al. (1995). For the use of benzoic acid derivatives such as 4-aminobenzoic acid as bifunctional organic ligands due to the variety of their coordination modes, see: Amiraslanov et al. (1979); Chen & Chen (2002); Hauptmann et al. (2000). For the use of the title compound as a part of a self-curing two-part system comprising degradable copolymers with applications in medicine and dentistry as root-canal sealants, root-canal filling materials, dental restorative materials, implant materials, bone cements and pulp-capping materials, see: Jia & Jin (2004);

Experimental top

Ethyl 4-(dimethylamino)benzoate (EDMAB) obtained from Sigma–Aldrich, India, was dissolved in ethanol. The saturated solution was transferred to a crystallizer and covered by a perforated polyethylene sheet for controlled evaporation at room temperature. Colourless crystals were harvested, after five days

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms, with C-H = 0.93–0.97 Å and Uiso = 1.2Ueq(C) for CH2 and CH groups and Uiso = 1.5Ueq(C) for CH3 group.

Structure description top

Benzoic acid and its derivatives are good inhibitors of influenza viruses (Luo et al., 1995). Some benzoic acid derivatives such as 4-aminobenzoic acid have been extensively reported in coordination chemistry as bifunctional organic ligands due to the varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000). The title compound, a tertiary amine, is used as a part of self-curing two part system for dental/ medical compositions comprising degradable copolymers which are suitable for use as root canal sealants, root canal filling materials, dental restorative materials, implant materials, bone cements and pulp capping materials (Jia et al., 2004).

The molecule of the title compound, C11H15N O2, is essentially planar (r.m.s. deviation 0.035 Å). The molecules are linked into a chain along the a axis by weak C—H···O hydrogen bonds.

Benzoic acid and its derivatives are good inhibitors of influenza viruses, see: Luo et al. (1995). For the use of benzoic acid derivatives such as 4-aminobenzoic acid as bifunctional organic ligands due to the variety of their coordination modes, see: Amiraslanov et al. (1979); Chen & Chen (2002); Hauptmann et al. (2000). For the use of the title compound as a part of a self-curing two-part system comprising degradable copolymers with applications in medicine and dentistry as root-canal sealants, root-canal filling materials, dental restorative materials, implant materials, bone cements and pulp-capping materials, see: Jia & Jin (2004);

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Ethyl 4-(dimethylamino)benzoate top
Crystal data top
C11H15NO2F(000) = 416
Mr = 193.24Dx = 1.195 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 25 reflections
a = 12.6949 (8) Åθ = 2–25°
b = 6.6596 (4) ŵ = 0.08 mm1
c = 12.8529 (9) ÅT = 293 K
β = 98.672 (11)°Block, colourless
V = 1074.20 (12) Å30.18 × 0.15 × 0.13 mm
Z = 4
Data collection top
Nonius MACH-3
diffractometer
1424 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 25.0°, θmin = 3.2°
ω–2θ scansh = 115
Absorption correction: ψ scan
(North et al., 1968)
k = 77
Tmin = 0.985, Tmax = 0.989l = 1515
4088 measured reflections3 standard reflections every 60 min
1873 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.2249P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1873 reflectionsΔρmax = 0.16 e Å3
131 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (3)
Crystal data top
C11H15NO2V = 1074.20 (12) Å3
Mr = 193.24Z = 4
Monoclinic, P21/aMo Kα radiation
a = 12.6949 (8) ŵ = 0.08 mm1
b = 6.6596 (4) ÅT = 293 K
c = 12.8529 (9) Å0.18 × 0.15 × 0.13 mm
β = 98.672 (11)°
Data collection top
Nonius MACH-3
diffractometer
1424 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.051
Tmin = 0.985, Tmax = 0.9893 standard reflections every 60 min
4088 measured reflections intensity decay: none
1873 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
1873 reflectionsΔρmin = 0.14 e Å3
131 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40072 (9)0.08183 (18)0.88044 (9)0.0572 (4)
O20.54776 (10)0.0855 (2)0.80386 (11)0.0707 (4)
C10.34843 (11)0.5441 (3)0.66547 (12)0.0469 (4)
C40.42325 (12)0.1813 (3)0.76552 (12)0.0461 (4)
N10.31326 (11)0.7203 (3)0.61807 (13)0.0627 (5)
C70.46496 (12)0.0065 (3)0.81690 (12)0.0497 (4)
C30.32462 (12)0.2619 (3)0.77847 (12)0.0479 (4)
H30.28280.19500.82080.057*
C60.44776 (12)0.4608 (3)0.65238 (13)0.0528 (5)
H60.49000.52620.60980.063*
C20.28788 (12)0.4375 (3)0.73023 (13)0.0491 (4)
H20.22170.48690.74050.059*
C50.48322 (12)0.2852 (3)0.70133 (13)0.0531 (5)
H50.54920.23430.69130.064*
C80.43523 (14)0.2641 (3)0.93720 (13)0.0574 (5)
H8A0.44480.37130.88840.069*
H8B0.50230.24190.98290.069*
C1A0.37347 (16)0.8242 (3)0.54815 (15)0.0685 (5)
H1A10.37620.74370.48670.103*
H1A20.33970.95010.52770.103*
H1A30.44450.84810.58350.103*
C2A0.21248 (14)0.8068 (3)0.63395 (17)0.0690 (6)
H2A10.20900.81380.70800.103*
H2A20.20620.93950.60440.103*
H2A30.15530.72470.60000.103*
C90.34993 (18)0.3176 (3)1.00051 (16)0.0767 (6)
H9A0.28350.33400.95450.115*
H9B0.36830.44091.03760.115*
H9C0.34310.21251.05020.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0615 (7)0.0553 (8)0.0586 (7)0.0047 (6)0.0215 (6)0.0083 (6)
O20.0583 (7)0.0663 (9)0.0929 (10)0.0141 (7)0.0289 (7)0.0111 (7)
C10.0436 (8)0.0519 (10)0.0451 (8)0.0024 (7)0.0062 (6)0.0041 (7)
C40.0448 (8)0.0495 (10)0.0459 (8)0.0027 (7)0.0129 (7)0.0052 (7)
N10.0543 (8)0.0650 (11)0.0710 (10)0.0081 (7)0.0163 (7)0.0160 (8)
C70.0481 (8)0.0529 (10)0.0500 (9)0.0034 (8)0.0132 (7)0.0061 (8)
C30.0465 (8)0.0507 (10)0.0500 (9)0.0056 (7)0.0186 (7)0.0041 (7)
C60.0470 (8)0.0591 (11)0.0560 (10)0.0024 (8)0.0200 (7)0.0052 (8)
C20.0399 (8)0.0560 (11)0.0535 (9)0.0010 (7)0.0139 (7)0.0055 (8)
C50.0431 (8)0.0622 (12)0.0578 (10)0.0045 (8)0.0198 (7)0.0025 (8)
C80.0711 (11)0.0483 (10)0.0526 (10)0.0032 (9)0.0089 (8)0.0005 (8)
C1A0.0794 (13)0.0657 (13)0.0612 (11)0.0003 (11)0.0133 (9)0.0123 (10)
C2A0.0613 (11)0.0597 (12)0.0851 (13)0.0125 (10)0.0083 (9)0.0028 (10)
C90.0951 (15)0.0653 (13)0.0750 (13)0.0003 (12)0.0296 (11)0.0139 (11)
Geometric parameters (Å, º) top
O1—C71.3361 (19)C2—H20.9300
O1—C81.449 (2)C5—H50.9300
O2—C71.2095 (19)C8—C91.493 (2)
C1—N11.365 (2)C8—H8A0.9700
C1—C21.408 (2)C8—H8B0.9700
C1—C61.411 (2)C1A—H1A10.9600
C4—C51.389 (2)C1A—H1A20.9600
C4—C31.395 (2)C1A—H1A30.9600
C4—C71.475 (3)C2A—H2A10.9600
N1—C1A1.442 (2)C2A—H2A20.9600
N1—C2A1.446 (2)C2A—H2A30.9600
C3—C21.372 (2)C9—H9A0.9600
C3—H30.9300C9—H9B0.9600
C6—C51.372 (3)C9—H9C0.9600
C6—H60.9300
C7—O1—C8117.15 (13)O1—C8—C9106.59 (14)
N1—C1—C2121.76 (14)O1—C8—H8A110.4
N1—C1—C6121.51 (14)C9—C8—H8A110.4
C2—C1—C6116.73 (16)O1—C8—H8B110.4
C5—C4—C3117.49 (16)C9—C8—H8B110.4
C5—C4—C7119.76 (14)H8A—C8—H8B108.6
C3—C4—C7122.75 (14)N1—C1A—H1A1109.5
C1—N1—C1A121.48 (15)N1—C1A—H1A2109.5
C1—N1—C2A121.10 (15)H1A1—C1A—H1A2109.5
C1A—N1—C2A117.40 (16)N1—C1A—H1A3109.5
O2—C7—O1123.00 (17)H1A1—C1A—H1A3109.5
O2—C7—C4124.59 (15)H1A2—C1A—H1A3109.5
O1—C7—C4112.41 (13)N1—C2A—H2A1109.5
C2—C3—C4121.61 (15)N1—C2A—H2A2109.5
C2—C3—H3119.2H2A1—C2A—H2A2109.5
C4—C3—H3119.2N1—C2A—H2A3109.5
C5—C6—C1121.20 (14)H2A1—C2A—H2A3109.5
C5—C6—H6119.4H2A2—C2A—H2A3109.5
C1—C6—H6119.4C8—C9—H9A109.5
C3—C2—C1121.24 (15)C8—C9—H9B109.5
C3—C2—H2119.4H9A—C9—H9B109.5
C1—C2—H2119.4C8—C9—H9C109.5
C6—C5—C4121.73 (15)H9A—C9—H9C109.5
C6—C5—H5119.1H9B—C9—H9C109.5
C4—C5—H5119.1
C2—C1—N1—C1A177.23 (16)C7—C4—C3—C2179.64 (15)
C6—C1—N1—C1A3.2 (3)N1—C1—C6—C5179.15 (16)
C2—C1—N1—C2A1.0 (3)C2—C1—C6—C50.5 (2)
C6—C1—N1—C2A178.53 (16)C4—C3—C2—C10.1 (2)
C8—O1—C7—O21.5 (2)N1—C1—C2—C3179.19 (15)
C8—O1—C7—C4178.51 (13)C6—C1—C2—C30.4 (2)
C5—C4—C7—O23.6 (3)C1—C6—C5—C40.2 (3)
C3—C4—C7—O2176.55 (16)C3—C4—C5—C60.2 (2)
C5—C4—C7—O1176.49 (14)C7—C4—C5—C6179.69 (15)
C3—C4—C7—O13.4 (2)C7—O1—C8—C9179.26 (15)
C5—C4—C3—C20.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.553.4682 (19)168
Symmetry code: (i) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC11H15NO2
Mr193.24
Crystal system, space groupMonoclinic, P21/a
Temperature (K)293
a, b, c (Å)12.6949 (8), 6.6596 (4), 12.8529 (9)
β (°) 98.672 (11)
V3)1074.20 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.18 × 0.15 × 0.13
Data collection
DiffractometerNonius MACH-3
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.985, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
4088, 1873, 1424
Rint0.051
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.134, 1.05
No. of reflections1873
No. of parameters131
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.14

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.553.4682 (19)168
Symmetry code: (i) x1/2, y1/2, z.
 

Acknowledgements

The authors thank the DST for the FIST programme.

References

First citationAmiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080.  CAS Google Scholar
First citationChen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172.  CAS Google Scholar
First citationJia, W.-T. & Jin, S.-H. (2004). US Patent No. 6787584.  Google Scholar
First citationLuo, M., Jedrzejas, M. J., Singh, S., White, C. L., Brouillette, W. J., Air, G. M. & Laver, W. G. (1995). Acta Cryst. D51, 504–510.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds