organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-acetyl-3-(4-bromo­anilino)butanoate

aOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India, bDepartment of Physics, The Madura College, Madurai 625 011, India, cMaterials Research Centre, Indian Institute of Science, Bangalore 560 012, India, and dDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 22 December 2009; accepted 24 December 2009; online 9 January 2010)

The title compound, C14H18BrNO3, adopts an extended conformation, with all of the main-chain torsion angles associated with the ester and amino groups close to trans. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds are observed.

Related literature

For related structures see: Rajesh et al. (2009[Rajesh, K., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o2125.]); Priya et al. (2006[Priya, S., Sinha, S., Vijayakumar, V., Narasimhamurthy, T., Vijay, T. & Rathore, R. S. (2006). Acta Cryst. E62, o5367-o5368.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18BrNO3

  • Mr = 328.20

  • Triclinic, [P \overline 1]

  • a = 6.9107 (3) Å

  • b = 10.1549 (4) Å

  • c = 11.6457 (5) Å

  • α = 88.104 (2)°

  • β = 81.932 (2)°

  • γ = 72.872 (2)°

  • V = 773.26 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.66 mm−1

  • T = 293 K

  • 0.17 × 0.14 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.646, Tmax = 0.746

  • 11063 measured reflections

  • 3140 independent reflections

  • 2298 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.084

  • S = 1.06

  • 3140 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O12i 0.82 (3) 2.22 (3) 3.025 (2) 169 (3)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Crystal structures of ethyl 2-acetyl-3-(4-chloroanilino)butanoate (Rajesh et al., 2009) and 2-acetyl-3-anilinobutanoate (Priya et al., 2006) have been reported. Now, we report here the the crystal structure of the title compound.

In the title molecule (Fig. 1), there are three planar subunits viz., the bromophenyl amine (C1–C6/Br1/N7), acetyl (C10/C11/O12/C13) and ethyl acetate (C10/C14/O15/O16/C17/C18) groups. The bromophenyl amino ring is inclined at angles of 77.5 (1) and 4.9 (1)° to the acetyl and ethyl acetate groups, respectively, with the acetyl group at an angle of 72.6 (1)° to the ethyl acetate group. The molecules adopts an extended conformation, with all of the main chain torsion angles associated with the ester and amino groups, i.e. from C18—C17—O16—C14 to C10—C8—N7—C1 lie in the range -144.14 (19)–179.9 (2)°.

In the crystal structure, molecules associate into dimers through intermolecular N—H···O hydrogen bonds (Table 1). The hydrogen-bonded centrosymmetric dimers are characterized by an R22(12) ring motif (Fig. 2) (Bernstein et al., 1995).

Related literature top

For related structures see: Rajesh et al. (2009); Priya et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of acetaldehyde (22.5 ml), ethyl acetoacetate (6.3 ml) and 4-bromoaniline (8.7 ml) was placed in a round bottomed flask. The contents were stirred at 273 K to 278 K for 5 h under nitrogen atmosphere. A paste-like solid was formed, which was initially washed with benzene, then chloroform and then extracted with diethyl ether. The extract allowed to evaporate under room temperature yielded the product with crystalline nature. The resulting compound was recrystallized from diethyl ether (yield: 86%, m.p. 349 K).

Refinement top

The amino H atom was located in a difference map and was refined isotropically. The remaining H atoms were placed in calculated positions and allowed to ride on their carrier atoms, with C–H = 0.93–0.98 Å and Uiso = 1.2Ueq(C,) for CH, CH2 groups and Uiso = 1.5Ueq(C) for CH3 groups.

Structure description top

Crystal structures of ethyl 2-acetyl-3-(4-chloroanilino)butanoate (Rajesh et al., 2009) and 2-acetyl-3-anilinobutanoate (Priya et al., 2006) have been reported. Now, we report here the the crystal structure of the title compound.

In the title molecule (Fig. 1), there are three planar subunits viz., the bromophenyl amine (C1–C6/Br1/N7), acetyl (C10/C11/O12/C13) and ethyl acetate (C10/C14/O15/O16/C17/C18) groups. The bromophenyl amino ring is inclined at angles of 77.5 (1) and 4.9 (1)° to the acetyl and ethyl acetate groups, respectively, with the acetyl group at an angle of 72.6 (1)° to the ethyl acetate group. The molecules adopts an extended conformation, with all of the main chain torsion angles associated with the ester and amino groups, i.e. from C18—C17—O16—C14 to C10—C8—N7—C1 lie in the range -144.14 (19)–179.9 (2)°.

In the crystal structure, molecules associate into dimers through intermolecular N—H···O hydrogen bonds (Table 1). The hydrogen-bonded centrosymmetric dimers are characterized by an R22(12) ring motif (Fig. 2) (Bernstein et al., 1995).

For related structures see: Rajesh et al. (2009); Priya et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing hydrogen-bonded dimers. H atoms not involved in hydrogen-bonding (dashed lines) have been omitted for clarity
Ethyl 2-acetyl-3-(4-bromoanilino)butanoate top
Crystal data top
C14H18BrNO3Z = 2
Mr = 328.20F(000) = 336
Triclinic, P1Dx = 1.410 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9107 (3) ÅCell parameters from 25 reflections
b = 10.1549 (4) Åθ = 2–25°
c = 11.6457 (5) ŵ = 2.66 mm1
α = 88.104 (2)°T = 293 K
β = 81.932 (2)°Block, colourless
γ = 72.872 (2)°0.17 × 0.14 × 0.11 mm
V = 773.26 (6) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3140 independent reflections
Radiation source: fine-focus sealed tube2298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 88
Tmin = 0.646, Tmax = 0.746k = 1212
11063 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.2034P]
where P = (Fo2 + 2Fc2)/3
3140 reflections(Δ/σ)max = 0.002
179 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C14H18BrNO3γ = 72.872 (2)°
Mr = 328.20V = 773.26 (6) Å3
Triclinic, P1Z = 2
a = 6.9107 (3) ÅMo Kα radiation
b = 10.1549 (4) ŵ = 2.66 mm1
c = 11.6457 (5) ÅT = 293 K
α = 88.104 (2)°0.17 × 0.14 × 0.11 mm
β = 81.932 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3140 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2298 reflections with I > 2σ(I)
Tmin = 0.646, Tmax = 0.746Rint = 0.018
11063 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.46 e Å3
3140 reflectionsΔρmin = 0.36 e Å3
179 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H70.351 (4)0.090 (3)0.647 (2)0.057 (8)*
C10.3126 (3)0.2211 (2)0.76505 (19)0.0455 (5)
C20.2092 (4)0.3540 (2)0.8052 (2)0.0594 (7)
H20.11870.41300.76090.071*
C30.2387 (4)0.4000 (3)0.9097 (2)0.0589 (6)
H30.17040.48990.93460.071*
C40.3687 (4)0.3134 (3)0.97710 (19)0.0501 (6)
C50.4724 (4)0.1817 (3)0.9396 (2)0.0567 (6)
H50.56140.12320.98500.068*
C60.4451 (4)0.1361 (2)0.8353 (2)0.0555 (6)
H60.51640.04660.81070.067*
C80.1297 (3)0.2327 (2)0.59098 (19)0.0479 (5)
H80.09530.33330.59580.058*
C90.0615 (5)0.1911 (3)0.6344 (3)0.0772 (8)
H9A0.03270.09320.62590.116*
H9B0.16860.23720.59000.116*
H9C0.10410.21640.71470.116*
C100.2161 (3)0.1881 (2)0.46537 (18)0.0420 (5)
H100.24360.08800.45970.050*
C110.4164 (3)0.2228 (2)0.42887 (19)0.0459 (5)
C130.4194 (4)0.3670 (2)0.4450 (2)0.0601 (7)
H13A0.41270.38520.52600.090*
H13B0.30410.42960.41550.090*
H13C0.54340.37900.40380.090*
C140.0662 (3)0.2561 (2)0.38162 (18)0.0426 (5)
C170.0513 (4)0.2264 (3)0.2058 (2)0.0576 (6)
H17A0.01490.30490.16980.069*
H17B0.19390.25690.23950.069*
C180.0196 (5)0.1175 (3)0.1183 (3)0.0826 (9)
H18A0.12220.08700.08620.124*
H18B0.10080.15350.05760.124*
H18C0.05950.04130.15420.124*
N70.2990 (3)0.1728 (2)0.65820 (17)0.0567 (6)
O120.5679 (3)0.13442 (17)0.38785 (16)0.0664 (5)
O150.0423 (3)0.37258 (17)0.39042 (15)0.0613 (5)
O160.0767 (2)0.17047 (15)0.29562 (13)0.0491 (4)
Br10.40364 (5)0.37808 (3)1.12205 (2)0.07438 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0498 (13)0.0417 (13)0.0422 (12)0.0068 (10)0.0120 (10)0.0033 (10)
C20.0734 (17)0.0460 (15)0.0512 (14)0.0027 (13)0.0276 (12)0.0024 (11)
C30.0721 (17)0.0470 (15)0.0529 (14)0.0056 (12)0.0164 (12)0.0070 (11)
C40.0556 (14)0.0575 (16)0.0419 (12)0.0201 (12)0.0150 (10)0.0025 (11)
C50.0592 (15)0.0580 (16)0.0521 (14)0.0094 (13)0.0246 (12)0.0105 (12)
C60.0604 (15)0.0440 (14)0.0561 (14)0.0004 (11)0.0211 (12)0.0020 (11)
C80.0517 (13)0.0458 (13)0.0446 (12)0.0076 (11)0.0162 (10)0.0031 (10)
C90.0732 (19)0.097 (2)0.0654 (18)0.0332 (17)0.0090 (15)0.0152 (16)
C100.0500 (13)0.0295 (11)0.0466 (12)0.0067 (9)0.0175 (10)0.0011 (9)
C110.0486 (13)0.0414 (13)0.0446 (12)0.0045 (11)0.0140 (10)0.0049 (10)
C130.0568 (15)0.0448 (15)0.0798 (18)0.0173 (12)0.0046 (13)0.0139 (13)
C140.0452 (12)0.0407 (14)0.0426 (12)0.0104 (11)0.0128 (10)0.0008 (10)
C170.0536 (14)0.0708 (17)0.0482 (14)0.0101 (13)0.0238 (11)0.0005 (12)
C180.090 (2)0.094 (2)0.0631 (18)0.0131 (18)0.0333 (16)0.0209 (16)
N70.0715 (14)0.0405 (13)0.0493 (12)0.0057 (11)0.0261 (10)0.0037 (9)
O120.0546 (11)0.0479 (10)0.0843 (14)0.0009 (9)0.0003 (10)0.0136 (9)
O150.0705 (11)0.0435 (10)0.0609 (10)0.0071 (9)0.0289 (9)0.0073 (8)
O160.0552 (9)0.0446 (9)0.0476 (9)0.0076 (7)0.0211 (7)0.0057 (7)
Br10.0865 (2)0.0964 (3)0.04916 (17)0.03385 (18)0.02258 (14)0.00476 (14)
Geometric parameters (Å, º) top
C1—N71.378 (3)C10—C141.523 (3)
C1—C21.390 (3)C10—C111.527 (3)
C1—C61.397 (3)C10—H100.98
C2—C31.380 (3)C11—O121.210 (3)
C2—H20.93C11—C131.489 (3)
C3—C41.372 (3)C13—H13A0.96
C3—H30.93C13—H13B0.96
C4—C51.371 (3)C13—H13C0.96
C4—Br11.903 (2)C14—O151.199 (3)
C5—C61.370 (3)C14—O161.328 (3)
C5—H50.93C17—O161.457 (3)
C6—H60.93C17—C181.476 (4)
C8—N71.469 (3)C17—H17A0.97
C8—C91.520 (4)C17—H17B0.97
C8—C101.530 (3)C18—H18A0.96
C8—H80.98C18—H18B0.96
C9—H9A0.96C18—H18C0.96
C9—H9B0.96N7—H70.82 (3)
C9—H9C0.96
N7—C1—C2123.4 (2)C11—C10—C8110.94 (18)
N7—C1—C6119.2 (2)C14—C10—H10108.4
C2—C1—C6117.3 (2)C11—C10—H10108.4
C3—C2—C1121.0 (2)C8—C10—H10108.4
C3—C2—H2119.5O12—C11—C13121.4 (2)
C1—C2—H2119.5O12—C11—C10120.3 (2)
C4—C3—C2120.2 (2)C13—C11—C10118.39 (19)
C4—C3—H3119.9C11—C13—H13A109.5
C2—C3—H3119.9C11—C13—H13B109.5
C5—C4—C3120.0 (2)H13A—C13—H13B109.5
C5—C4—Br1120.62 (17)C11—C13—H13C109.5
C3—C4—Br1119.42 (19)H13A—C13—H13C109.5
C6—C5—C4120.0 (2)H13B—C13—H13C109.5
C6—C5—H5120.0O15—C14—O16124.58 (19)
C4—C5—H5120.0O15—C14—C10124.46 (19)
C5—C6—C1121.5 (2)O16—C14—C10110.93 (18)
C5—C6—H6119.3O16—C17—C18108.5 (2)
C1—C6—H6119.3O16—C17—H17A110.0
N7—C8—C9113.4 (2)C18—C17—H17A110.0
N7—C8—C10105.24 (18)O16—C17—H17B110.0
C9—C8—C10113.0 (2)C18—C17—H17B110.0
N7—C8—H8108.3H17A—C17—H17B108.4
C9—C8—H8108.3C17—C18—H18A109.5
C10—C8—H8108.3C17—C18—H18B109.5
C8—C9—H9A109.5H18A—C18—H18B109.5
C8—C9—H9B109.5C17—C18—H18C109.5
H9A—C9—H9B109.5H18A—C18—H18C109.5
C8—C9—H9C109.5H18B—C18—H18C109.5
H9A—C9—H9C109.5C1—N7—C8124.3 (2)
H9B—C9—H9C109.5C1—N7—H7116.0 (18)
C14—C10—C11108.83 (18)C8—N7—H7112.9 (19)
C14—C10—C8111.84 (18)C14—O16—C17116.17 (17)
N7—C1—C2—C3175.7 (3)C8—C10—C11—O12126.8 (2)
C6—C1—C2—C30.7 (4)C14—C10—C11—C1370.2 (3)
C1—C2—C3—C41.3 (4)C8—C10—C11—C1353.2 (3)
C2—C3—C4—C51.2 (4)C11—C10—C14—O1585.1 (3)
C2—C3—C4—Br1179.0 (2)C8—C10—C14—O1537.8 (3)
C3—C4—C5—C60.5 (4)C11—C10—C14—O1692.9 (2)
Br1—C4—C5—C6179.66 (19)C8—C10—C14—O16144.14 (19)
C4—C5—C6—C10.1 (4)C2—C1—N7—C821.6 (4)
N7—C1—C6—C5176.5 (2)C6—C1—N7—C8162.1 (2)
C2—C1—C6—C50.0 (4)C9—C8—N7—C178.0 (3)
N7—C8—C10—C14173.30 (18)C10—C8—N7—C1158.0 (2)
C9—C8—C10—C1462.5 (3)O15—C14—O16—C171.5 (3)
N7—C8—C10—C1151.6 (2)C10—C14—O16—C17176.53 (19)
C9—C8—C10—C11175.8 (2)C18—C17—O16—C14179.9 (2)
C14—C10—C11—O12109.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O12i0.82 (3)2.22 (3)3.025 (2)169 (3)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H18BrNO3
Mr328.20
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.9107 (3), 10.1549 (4), 11.6457 (5)
α, β, γ (°)88.104 (2), 81.932 (2), 72.872 (2)
V3)773.26 (6)
Z2
Radiation typeMo Kα
µ (mm1)2.66
Crystal size (mm)0.17 × 0.14 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.646, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
11063, 3140, 2298
Rint0.018
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.084, 1.06
No. of reflections3140
No. of parameters179
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.36

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O12i0.82 (3)2.22 (3)3.025 (2)169 (3)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the use of the CCD facility at the Indian Institute of Science, Bangalore, set up under the IRHPA–DST programme.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPriya, S., Sinha, S., Vijayakumar, V., Narasimhamurthy, T., Vijay, T. & Rathore, R. S. (2006). Acta Cryst. E62, o5367–o5368.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRajesh, K., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o2125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds