organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Chloro­benzo­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 23 December 2009; accepted 27 December 2009; online 9 January 2010)

The asymmetric unit of the title compound, C13H10ClNO3S, contains two independent mol­ecules, the chloro­phenyl ring of one of them being disordered over two orientations with occupancies of 0.836 (2) and 0.164 (2). In one of the independent mol­ecules, the sulfonyl-bound phenyl ring and the chloro­phenyl ring form dihedral angles of 87.3 (1) and 46.8 (1)°, respectively, with the –S–NH–C=O segment, while in the other mol­ecule the corresponding angles are 76.0 (1) and 39.6 (1)°. In the crystal, mol­ecules are linked into tetra­meric units by N—H⋯O hydrogen bonds.

Related literature

For background literature and similar structures, see: Gowda et al. (2009a[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009a). Acta Cryst. E65, o2516.],b[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009b). Acta Cryst. E65, o2750.]); Suchetan et al. (2009[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3156.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10ClNO3S

  • Mr = 295.73

  • Triclinic, [P \overline 1]

  • a = 7.3390 (5) Å

  • b = 10.828 (1) Å

  • c = 17.685 (1) Å

  • α = 93.088 (6)°

  • β = 96.863 (7)°

  • γ = 103.057 (8)°

  • V = 1354.46 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 299 K

  • 0.50 × 0.44 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.811, Tmax = 0.902

  • 9641 measured reflections

  • 5521 independent reflections

  • 4327 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.113

  • S = 1.03

  • 5521 reflections

  • 359 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.09 (2) 2.922 (2) 168 (2)
N2—H2N⋯O3ii 0.82 (2) 2.06 (2) 2.883 (2) 179 (3)
Symmetry codes: (i) -x+1, -y, -z; (ii) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As part of a study of the effect of ring and the side chain substituents on crystal structures of N-aromatic sulfonamides (Gowda et al., 2009a,b; Suchetan et al., 2009), in the present work, the structure of N-(2-chlorobenzoyl)benzenesulfonamide (I) has been determined (Fig.1).

The asymmetric unit of the title compound contains two independent molecules, A (with S1) and B (with S2). The conformation of the N—H bond in the C—SO2—NH—C(O) segment of the structure is anti to the CO bond, similar to that observed in N-(benzoyl)benzenesulfonamide (II) (Gowda et al., 2009a), N-(3-chlorobenzoyl)benzenesulfonamide (III) (Gowda et al., 2009b) and N-(4-chlorobenzoyl)benzenesulfonamide (IV) (Suchetan et al., 2009).

Both independent molecules are twisted at their S atoms; the dihedral angle between the sulfonyl-bound phenyl ring and the S—N(H)—CO segment is 87.3 (1)° in molecule A and 76.0 (1)° in molecule B, compared to the values of 86.5(0.1) in (II), 89.9 (1)° in (III) and 75.7 (1)° in (IV). Furthermore, the dihedral angle between the chlorophenyl ring and the S—NH—CO segment is 46.8 (1)° in molecule A and 39.6 (1)° in molecule B.

The dihedral angles between the two phenyl rings in the two molecules of (I) are 69.8 (1)° (molecule A) and 89.8 (1)° (molecule B), compared to the values of 80.3(0.1) in (II), 87.5 (1)° in (III) and 68.6 (1)° in (IV).

The packing of molecules linked by of N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For background literature and similar structures, see: Gowda et al. (2009a,b); Suchetan et al. (2009).

Experimental top

The title compound was prepared by refluxing a mixture of 2-chlorobenzoic acid, benzenesulfonamide and phosphorous oxy chloride for 3 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized. Rod like colourless single crystals of the title compound were obtained by slow evaporation of its toluene solution at room temperature.

Refinement top

One of the Chlorophenyl rings is disordered over two orientations corresponding to a 180° rotation about the C7—C8 bond. The occupancies of the two conformers were refined so that their sum was unity [0.836 (2) and 0.164 (2)]. The C9—Cl1A and C13—CL1B distances were restrained to 1.75 (1) Å.

The H atoms of the NH groups were located in a difference map and refined with the N-H distance restrained to 0.86 (2) %A. The remaining H atoms were positioned with idealized geometry using a riding model with C–H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Structure description top

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As part of a study of the effect of ring and the side chain substituents on crystal structures of N-aromatic sulfonamides (Gowda et al., 2009a,b; Suchetan et al., 2009), in the present work, the structure of N-(2-chlorobenzoyl)benzenesulfonamide (I) has been determined (Fig.1).

The asymmetric unit of the title compound contains two independent molecules, A (with S1) and B (with S2). The conformation of the N—H bond in the C—SO2—NH—C(O) segment of the structure is anti to the CO bond, similar to that observed in N-(benzoyl)benzenesulfonamide (II) (Gowda et al., 2009a), N-(3-chlorobenzoyl)benzenesulfonamide (III) (Gowda et al., 2009b) and N-(4-chlorobenzoyl)benzenesulfonamide (IV) (Suchetan et al., 2009).

Both independent molecules are twisted at their S atoms; the dihedral angle between the sulfonyl-bound phenyl ring and the S—N(H)—CO segment is 87.3 (1)° in molecule A and 76.0 (1)° in molecule B, compared to the values of 86.5(0.1) in (II), 89.9 (1)° in (III) and 75.7 (1)° in (IV). Furthermore, the dihedral angle between the chlorophenyl ring and the S—NH—CO segment is 46.8 (1)° in molecule A and 39.6 (1)° in molecule B.

The dihedral angles between the two phenyl rings in the two molecules of (I) are 69.8 (1)° (molecule A) and 89.8 (1)° (molecule B), compared to the values of 80.3(0.1) in (II), 87.5 (1)° in (III) and 68.6 (1)° in (IV).

The packing of molecules linked by of N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

For background literature and similar structures, see: Gowda et al. (2009a,b); Suchetan et al. (2009).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Both disorder components are shown. The minor disorder components are shown with dashed bonds.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines. For clarity, only the major disorder component is shown.
N-(2-Chlorobenzoyl)benzenesulfonamide top
Crystal data top
C13H10ClNO3SZ = 4
Mr = 295.73F(000) = 608
Triclinic, P1Dx = 1.450 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3390 (5) ÅCell parameters from 4232 reflections
b = 10.828 (1) Åθ = 2.9–27.8°
c = 17.685 (1) ŵ = 0.44 mm1
α = 93.088 (6)°T = 299 K
β = 96.863 (7)°Rod, colourless
γ = 103.057 (8)°0.50 × 0.44 × 0.24 mm
V = 1354.46 (17) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
5521 independent reflections
Radiation source: fine-focus sealed tube4327 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Rotation method data acquisition using ω and φ scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 89
Tmin = 0.811, Tmax = 0.902k = 1313
9641 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.4941P]
where P = (Fo2 + 2Fc2)/3
5521 reflections(Δ/σ)max = 0.001
359 parametersΔρmax = 0.38 e Å3
4 restraintsΔρmin = 0.34 e Å3
Crystal data top
C13H10ClNO3Sγ = 103.057 (8)°
Mr = 295.73V = 1354.46 (17) Å3
Triclinic, P1Z = 4
a = 7.3390 (5) ÅMo Kα radiation
b = 10.828 (1) ŵ = 0.44 mm1
c = 17.685 (1) ÅT = 299 K
α = 93.088 (6)°0.50 × 0.44 × 0.24 mm
β = 96.863 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
5521 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
4327 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 0.902Rint = 0.014
9641 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0414 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.38 e Å3
5521 reflectionsΔρmin = 0.34 e Å3
359 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl1A0.80617 (12)0.24676 (7)0.30758 (5)0.0701 (3)0.836 (2)
Cl1B0.8403 (6)0.1454 (3)0.1258 (2)0.0654 (14)0.164 (2)
S10.74595 (8)0.18519 (6)0.00953 (3)0.05430 (17)
O10.5985 (3)0.11237 (18)0.04655 (8)0.0717 (5)
O20.9314 (3)0.22227 (19)0.00917 (10)0.0716 (5)
O30.9713 (2)0.22974 (14)0.16030 (8)0.0560 (4)
N10.7439 (3)0.09130 (18)0.08133 (10)0.0518 (5)
H1N0.649 (3)0.029 (2)0.0776 (14)0.062*
C10.6742 (3)0.3164 (2)0.04645 (11)0.0523 (5)
C20.4851 (4)0.3057 (3)0.05382 (14)0.0684 (7)
H20.39650.23030.03730.082*
C30.4304 (5)0.4070 (4)0.08556 (17)0.0816 (9)
H30.30410.40010.09100.098*
C40.5603 (6)0.5189 (3)0.10952 (17)0.0851 (9)
H40.52180.58750.13090.102*
C50.7469 (5)0.5298 (3)0.10189 (17)0.0813 (8)
H50.83390.60610.11810.098*
C60.8074 (4)0.4290 (2)0.07053 (14)0.0628 (6)
H60.93410.43640.06560.075*
C70.8515 (3)0.13091 (19)0.15128 (11)0.0434 (5)
C80.8065 (3)0.04413 (19)0.21252 (11)0.0430 (5)
C90.7874 (3)0.0905 (2)0.28521 (12)0.0519 (5)
H13B0.80260.17750.29620.062*0.164 (2)
C100.7457 (4)0.0082 (3)0.34149 (15)0.0696 (7)
H100.73210.03990.38990.083*
C110.7248 (4)0.1190 (3)0.32582 (18)0.0775 (8)
H110.69670.17380.36370.093*
C120.7444 (4)0.1672 (3)0.25526 (18)0.0727 (7)
H120.73170.25420.24510.087*
C130.7833 (3)0.0856 (2)0.19942 (14)0.0568 (6)
H13A0.79440.11900.15110.068*0.836 (2)
Cl20.23536 (16)0.10580 (9)0.45805 (4)0.1023 (3)
S20.29519 (8)0.52286 (5)0.28419 (3)0.04751 (15)
O40.1951 (3)0.54542 (16)0.21405 (9)0.0656 (5)
O50.4931 (2)0.57334 (16)0.30069 (11)0.0668 (5)
O60.4183 (3)0.35322 (17)0.39635 (9)0.0690 (5)
N20.2562 (2)0.36633 (16)0.28095 (10)0.0435 (4)
H2N0.175 (3)0.327 (2)0.2468 (11)0.052*
C140.1875 (3)0.57205 (18)0.36012 (12)0.0446 (5)
C150.0041 (3)0.5674 (2)0.34812 (15)0.0566 (6)
H150.07520.53700.30100.068*
C160.0869 (4)0.6085 (3)0.40744 (17)0.0702 (7)
H160.21580.60450.40080.084*
C170.0204 (4)0.6556 (3)0.47655 (17)0.0726 (7)
H170.03650.68430.51610.087*
C180.2094 (4)0.6607 (3)0.48769 (15)0.0662 (7)
H180.28050.69300.53460.079*
C190.2947 (3)0.6181 (2)0.42967 (13)0.0533 (5)
H190.42300.62040.43720.064*
C200.3323 (3)0.3006 (2)0.33667 (11)0.0437 (5)
C210.3018 (3)0.16165 (19)0.31408 (12)0.0429 (4)
C220.2646 (3)0.0685 (2)0.36477 (14)0.0568 (6)
C230.2407 (4)0.0596 (3)0.3413 (2)0.0743 (8)
H230.21310.12090.37570.089*
C240.2578 (4)0.0950 (3)0.2678 (2)0.0776 (8)
H240.24280.18050.25230.093*
C250.2967 (4)0.0054 (3)0.21684 (17)0.0689 (7)
H250.30910.03000.16690.083*
C260.3177 (3)0.1217 (2)0.23930 (13)0.0515 (5)
H260.34290.18170.20400.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0738 (5)0.0520 (4)0.0757 (5)0.0070 (3)0.0281 (4)0.0179 (3)
Cl1B0.091 (3)0.050 (2)0.055 (2)0.0276 (19)0.0028 (18)0.0126 (15)
S10.0569 (3)0.0613 (4)0.0326 (3)0.0079 (3)0.0006 (2)0.0020 (2)
O10.0812 (12)0.0787 (12)0.0339 (8)0.0156 (9)0.0091 (8)0.0000 (8)
O20.0661 (11)0.0814 (13)0.0610 (10)0.0014 (9)0.0200 (9)0.0044 (9)
O30.0544 (9)0.0511 (9)0.0462 (8)0.0111 (7)0.0141 (7)0.0070 (7)
N10.0528 (11)0.0503 (11)0.0386 (9)0.0097 (8)0.0066 (8)0.0021 (8)
C10.0548 (13)0.0623 (14)0.0334 (10)0.0021 (10)0.0014 (9)0.0125 (9)
C20.0586 (15)0.091 (2)0.0481 (13)0.0007 (14)0.0062 (11)0.0157 (13)
C30.0758 (19)0.118 (3)0.0602 (16)0.0336 (19)0.0178 (14)0.0238 (17)
C40.110 (3)0.093 (2)0.0608 (17)0.039 (2)0.0141 (17)0.0143 (16)
C50.102 (2)0.0620 (17)0.0726 (18)0.0102 (16)0.0015 (17)0.0043 (14)
C60.0606 (15)0.0611 (15)0.0589 (14)0.0022 (12)0.0020 (11)0.0095 (12)
C70.0413 (10)0.0411 (11)0.0410 (10)0.0019 (9)0.0047 (8)0.0005 (8)
C80.0359 (10)0.0459 (11)0.0406 (10)0.0008 (8)0.0038 (8)0.0038 (8)
C90.0401 (11)0.0575 (13)0.0489 (12)0.0036 (9)0.0002 (9)0.0010 (10)
C100.0580 (15)0.095 (2)0.0468 (13)0.0030 (14)0.0085 (11)0.0107 (13)
C110.0737 (18)0.081 (2)0.0735 (19)0.0039 (15)0.0069 (14)0.0341 (16)
C120.0743 (17)0.0556 (15)0.087 (2)0.0093 (13)0.0099 (15)0.0240 (14)
C130.0589 (14)0.0477 (13)0.0601 (14)0.0073 (10)0.0029 (11)0.0055 (10)
Cl20.1560 (9)0.1102 (7)0.0606 (4)0.0553 (6)0.0380 (5)0.0304 (4)
S20.0530 (3)0.0358 (3)0.0472 (3)0.0006 (2)0.0003 (2)0.0021 (2)
O40.0932 (13)0.0518 (10)0.0497 (9)0.0166 (9)0.0012 (8)0.0118 (7)
O50.0538 (9)0.0578 (10)0.0762 (11)0.0117 (8)0.0120 (8)0.0072 (8)
O60.0854 (12)0.0619 (10)0.0536 (10)0.0279 (9)0.0276 (9)0.0126 (8)
N20.0445 (9)0.0359 (9)0.0430 (9)0.0046 (7)0.0099 (7)0.0036 (7)
C140.0483 (11)0.0318 (10)0.0508 (11)0.0082 (8)0.0018 (9)0.0021 (8)
C150.0538 (13)0.0473 (12)0.0654 (14)0.0139 (10)0.0096 (11)0.0058 (11)
C160.0562 (15)0.0707 (17)0.091 (2)0.0311 (13)0.0045 (14)0.0136 (15)
C170.087 (2)0.0755 (18)0.0693 (17)0.0443 (16)0.0174 (15)0.0069 (14)
C180.0777 (18)0.0701 (16)0.0520 (14)0.0290 (14)0.0031 (12)0.0059 (12)
C190.0502 (12)0.0504 (12)0.0556 (13)0.0129 (10)0.0056 (10)0.0037 (10)
C200.0420 (11)0.0476 (11)0.0415 (11)0.0163 (9)0.0031 (8)0.0019 (9)
C210.0389 (10)0.0435 (11)0.0478 (11)0.0149 (8)0.0033 (8)0.0011 (9)
C220.0599 (14)0.0578 (14)0.0602 (14)0.0251 (11)0.0128 (11)0.0132 (11)
C230.0720 (17)0.0556 (15)0.102 (2)0.0234 (13)0.0166 (16)0.0241 (15)
C240.0751 (18)0.0477 (15)0.111 (2)0.0223 (13)0.0070 (17)0.0074 (15)
C250.0631 (15)0.0697 (17)0.0738 (17)0.0223 (13)0.0086 (13)0.0216 (14)
C260.0457 (12)0.0537 (13)0.0549 (13)0.0145 (10)0.0053 (10)0.0055 (10)
Geometric parameters (Å, º) top
Cl1A—C91.687 (2)C13—H13A0.93
Cl1B—C131.565 (4)Cl2—C221.727 (3)
S1—O21.4137 (18)S2—O51.4201 (17)
S1—O11.4320 (16)S2—O41.4261 (16)
S1—N11.6683 (19)S2—N21.6506 (17)
S1—C11.744 (3)S2—C141.754 (2)
O3—C71.211 (2)O6—C201.204 (2)
N1—C71.376 (2)N2—C201.383 (3)
N1—H1N0.845 (17)N2—H2N0.822 (16)
C1—C21.389 (3)C14—C191.380 (3)
C1—C61.389 (3)C14—C151.386 (3)
C2—C31.366 (4)C15—C161.376 (4)
C2—H20.93C15—H150.93
C3—C41.373 (5)C16—C171.377 (4)
C3—H30.93C16—H160.93
C4—C51.371 (5)C17—C181.366 (4)
C4—H40.93C17—H170.93
C5—C61.381 (4)C18—C191.375 (3)
C5—H50.93C18—H180.93
C6—H60.93C19—H190.93
C7—C81.490 (3)C20—C211.495 (3)
C8—C131.380 (3)C21—C221.388 (3)
C8—C91.389 (3)C21—C261.396 (3)
C9—C101.387 (3)C22—C231.392 (4)
C9—H13B0.93C23—C241.363 (4)
C10—C111.361 (4)C23—H230.93
C10—H100.93C24—C251.366 (4)
C11—C121.363 (4)C24—H240.93
C11—H110.93C25—C261.380 (3)
C12—C131.373 (3)C25—H250.93
C12—H120.93C26—H260.93
O2—S1—O1119.45 (11)C12—C13—H13A118.8
O2—S1—N1109.51 (11)C8—C13—H13A118.8
O1—S1—N1102.84 (10)O5—S2—O4119.97 (11)
O2—S1—C1110.60 (11)O5—S2—N2107.85 (10)
O1—S1—C1109.12 (12)O4—S2—N2103.72 (9)
N1—S1—C1103.99 (10)O5—S2—C14108.61 (10)
C7—N1—S1122.29 (15)O4—S2—C14108.75 (11)
C7—N1—H1N119.6 (17)N2—S2—C14107.22 (10)
S1—N1—H1N115.2 (17)C20—N2—S2124.21 (14)
C2—C1—C6120.7 (3)C20—N2—H2N119.4 (17)
C2—C1—S1119.5 (2)S2—N2—H2N115.8 (17)
C6—C1—S1119.7 (2)C19—C14—C15121.1 (2)
C3—C2—C1119.4 (3)C19—C14—S2119.95 (17)
C3—C2—H2120.3C15—C14—S2118.89 (17)
C1—C2—H2120.3C16—C15—C14118.6 (2)
C2—C3—C4120.5 (3)C16—C15—H15120.7
C2—C3—H3119.7C14—C15—H15120.7
C4—C3—H3119.7C15—C16—C17120.2 (2)
C5—C4—C3120.1 (3)C15—C16—H16119.9
C5—C4—H4120.0C17—C16—H16119.9
C3—C4—H4120.0C18—C17—C16120.8 (3)
C4—C5—C6121.0 (3)C18—C17—H17119.6
C4—C5—H5119.5C16—C17—H17119.6
C6—C5—H5119.5C17—C18—C19120.1 (2)
C5—C6—C1118.3 (3)C17—C18—H18120.0
C5—C6—H6120.8C19—C18—H18120.0
C1—C6—H6120.8C18—C19—C14119.2 (2)
O3—C7—N1120.84 (19)C18—C19—H19120.4
O3—C7—C8124.36 (17)C14—C19—H19120.4
N1—C7—C8114.79 (17)O6—C20—N2121.96 (19)
C13—C8—C9117.3 (2)O6—C20—C21124.54 (19)
C13—C8—C7121.28 (19)N2—C20—C21113.47 (16)
C9—C8—C7121.41 (19)C22—C21—C26117.3 (2)
C10—C9—C8120.6 (2)C22—C21—C20123.27 (19)
C10—C9—Cl1A117.6 (2)C26—C21—C20119.43 (19)
C8—C9—Cl1A121.79 (18)C21—C22—C23121.1 (2)
C10—C9—H13B119.7C21—C22—Cl2121.50 (18)
C8—C9—H13B119.7C23—C22—Cl2117.3 (2)
C11—C10—C9119.9 (3)C24—C23—C22119.9 (3)
C11—C10—H10120.0C24—C23—H23120.0
C9—C10—H10120.0C22—C23—H23120.0
C10—C11—C12120.9 (3)C23—C24—C25120.3 (3)
C10—C11—H11119.6C23—C24—H24119.9
C12—C11—H11119.6C25—C24—H24119.9
C11—C12—C13119.0 (3)C24—C25—C26120.2 (3)
C11—C12—H12120.5C24—C25—H25119.9
C13—C12—H12120.5C26—C25—H25119.9
C12—C13—C8122.3 (2)C25—C26—C21121.2 (2)
C12—C13—Cl1B115.1 (3)C25—C26—H26119.4
C8—C13—Cl1B121.4 (2)C21—C26—H26119.4
O2—S1—N1—C759.3 (2)C7—C8—C13—Cl1B11.9 (3)
O1—S1—N1—C7172.73 (19)O5—S2—N2—C2049.5 (2)
C1—S1—N1—C759.0 (2)O4—S2—N2—C20177.73 (18)
O2—S1—C1—C2166.94 (17)C14—S2—N2—C2067.30 (19)
O1—S1—C1—C233.6 (2)O5—S2—C14—C1916.8 (2)
N1—S1—C1—C275.60 (19)O4—S2—C14—C19148.99 (18)
O2—S1—C1—C615.2 (2)N2—S2—C14—C1999.45 (18)
O1—S1—C1—C6148.54 (18)O5—S2—C14—C15161.18 (17)
N1—S1—C1—C6102.27 (19)O4—S2—C14—C1529.0 (2)
C6—C1—C2—C30.4 (3)N2—S2—C14—C1582.52 (18)
S1—C1—C2—C3177.40 (19)C19—C14—C15—C160.7 (3)
C1—C2—C3—C40.5 (4)S2—C14—C15—C16178.68 (19)
C2—C3—C4—C50.2 (4)C14—C15—C16—C171.3 (4)
C3—C4—C5—C60.3 (5)C15—C16—C17—C180.9 (4)
C4—C5—C6—C10.3 (4)C16—C17—C18—C190.2 (4)
C2—C1—C6—C50.0 (3)C17—C18—C19—C140.8 (4)
S1—C1—C6—C5177.8 (2)C15—C14—C19—C180.4 (3)
S1—N1—C7—O310.0 (3)S2—C14—C19—C18177.59 (19)
S1—N1—C7—C8169.48 (16)S2—N2—C20—O67.9 (3)
O3—C7—C8—C13134.5 (2)S2—N2—C20—C21170.30 (15)
N1—C7—C8—C1346.0 (3)O6—C20—C21—C2239.0 (3)
O3—C7—C8—C945.0 (3)N2—C20—C21—C22142.8 (2)
N1—C7—C8—C9134.4 (2)O6—C20—C21—C26138.5 (2)
C13—C8—C9—C100.3 (3)N2—C20—C21—C2639.6 (3)
C7—C8—C9—C10179.9 (2)C26—C21—C22—C231.2 (3)
C13—C8—C9—Cl1A178.19 (16)C20—C21—C22—C23178.8 (2)
C7—C8—C9—Cl1A2.2 (3)C26—C21—C22—Cl2178.16 (17)
C8—C9—C10—C110.5 (4)C20—C21—C22—Cl24.3 (3)
Cl1A—C9—C10—C11178.5 (2)C21—C22—C23—C241.4 (4)
C9—C10—C11—C120.1 (4)Cl2—C22—C23—C24178.5 (2)
C10—C11—C12—C130.9 (4)C22—C23—C24—C250.5 (4)
C11—C12—C13—C81.1 (4)C23—C24—C25—C260.5 (4)
C11—C12—C13—Cl1B169.1 (3)C24—C25—C26—C210.7 (4)
C9—C8—C13—C120.5 (3)C22—C21—C26—C250.2 (3)
C7—C8—C13—C12179.1 (2)C20—C21—C26—C25177.9 (2)
C9—C8—C13—Cl1B167.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.09 (2)2.922 (2)168 (2)
N2—H2N···O3ii0.82 (2)2.06 (2)2.883 (2)179 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC13H10ClNO3S
Mr295.73
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)7.3390 (5), 10.828 (1), 17.685 (1)
α, β, γ (°)93.088 (6), 96.863 (7), 103.057 (8)
V3)1354.46 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.50 × 0.44 × 0.24
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.811, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
9641, 5521, 4327
Rint0.014
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.03
No. of reflections5521
No. of parameters359
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.34

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.09 (2)2.922 (2)168 (2)
N2—H2N···O3ii0.82 (2)2.06 (2)2.883 (2)179 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

References

First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009a). Acta Cryst. E65, o2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009b). Acta Cryst. E65, o2750.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3156.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds